ISO Table View Alternate Views: Get Data, FAQ, ISO Rubric, DOI Rubric, CSW, HTML, Components, XML

Metadata Identifier: gov.noaa.ngdc.mgg.photos:G01226

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 Hawaii Volcanism: Lava Forms Over the last several million years the Hawaiian Islands have been built of successive lava flows. They are the most recent additions in a long line of volcanoes that extends up the intersection ofthe Aleutian Island chain with the Kamchatka peninsula. This set includes very colorful imagesof lava fountains, lakes, cascades, flows, spatter and lava entry to the sea from eruptionsoccurring over the last 30 years. Most of these volcanoes are no longer visible above the sea surface. These islands and sea mounts formed as the Pacific plate moved over a hot spot in Earth's mantle. The amount of lava that has erupted here is difficult to comprehend. Mauna Loa, on the Island of Hawaii (Big Island) is the largest volcanic structure in the world with a volume estimated at 42,000 km3. It rises from the ocean floor, 5,000 m below sea level, to a height above sea level of 4,172 meters. In addition to eruptions at the summit, Hawaiian volcanoes have flank eruptions with lavaflowing several kilometers from the vent. The height of such volcanic structures (known as shield volcanoes) increases only slightly while they continually grow in width. Hawaii's usually non-explosive eruptions are characterized by the relatively quiet outpouring of lava known as effusive eruptions. High temperature, a low gas content, and exceptionally fluid lava are typical of these eruptions. The high fluidity of Hawaiian lava comes from its basaltic composition. They are contrasted to the more viscous dacite erupted explosively at Mount Saint Helens in 1980. Hawaiian eruptions usually start with lava issuing vertically from a central vent or a fissure in a rhythmic jet-like eruption, called a lava fountain. The lava fountains vary widely in form, size and duration depending on the shape of the vent, volume of lava, and other conditions. Fountains spouting from a series of nearly continuous fissures are called curtains of fire. As the eruption proceeds the lava fountain activity is confined to a single vent or opening. The lava may form lava lakes of fluid rock in summit craters or in pit craters on the flanks of the volcanoes. If the lava lake forms around an active vent, the crust breaks up in response to circulation and sloshing of the molten lavabeneath. Lava falling from fountains and flowing from vents often forms glowing lava streams or lava flows. During some Mauna Loa eruptions flows rushed down the steep slopes at 58 km per hour. As the eruption continues, the lava solidifies along the edges of the flow building levees or ramparts that allow the level of the lava to be raised. If the roof of the channel hardens and forms a solid crust the molten lava may continue to flow within what has become a lava tube. Lava tubes generally have arched roofs but their floors may be flat, formed by the surface of the last liquid lava to move through them. The walls of such tubes become thermal insulators allowing the lava to flow greater distances from the vent. Lava streams that plunge over cliffs or the steep walls of craters form lava cascades or lava falls. There are two main types of lava flows: pahoehoe, and aa. The Hawaiian names refer to the surface character of the lava. Many flows consist ofpahoehoe upstream and change to aa downstream. However, aa flows do not change into pahoehoe. The type of lava is determined by the initial gascontent of the lava, the changes in lava viscosity and the rate of deformation (shear strain of the lava during flow and cooling). Pahoehoe has a smooth surface. In some areas it is wrinkled and twisted resembling folds in heavy cloth. This appearance results from the dragging and twisting of the thin, hot, still-plastic crust of the flow by movement of the liquid lava underneath. The surfaces of most pahoehoeflows are rolling or undulating. One can walk across a moving flow, and although the crust may bend, it does not break. The crust of a lava flow is a poor conductor of heat so the part of the flow beneath the crust may remain hot and liquid for long periods. Shrinkage on cooling and distortion by the movement of the liquid beneath it causes fractures in the crust. The interior of thick flows may remain liquid for weeks, months, or year. A is characterized by a rough, rubbled surface. The layer of angular jagged fragments is known as clinker. The streams of molten lava that feedaa flows usually do not "freeze over" like those of pahoehoe and therefore seldom form lava tubes. Close to the vent the surface of the aa stream maybe smooth orange-hot lava that quickly becomes covered with a lead-gray glassy skin. As the crust is disrupted by movement of the flow beneath it the characteristic spiny surface begins to appear. When lava flows reach a shore line and encounter the ocean, littoral (coastal) explosions can occur. A lava flow within a body of water formspillow lava. Each pillow is enclosed in a thin skin of glass. The pillows accumulate by settling one on top of another while they are stillsufficiently plastic to mold themselves to the underlying surface. Evidence of rapid chilling and close association with water deposited sediments indicates clearly that pillow lavas were formed either beneath water or by extrusion over very wet swampy surfaces. The Islands of Hawaii provide an excellent location for the study of the many and varied forms of lava.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 Container Packet ID
    1 Getty Thesaurus of Geographic Names
      1 Hawaii Volcanism: Lava Forms
      • 1994
      Document
      1 INFOTERRA Keyword Thesaurus
        1 NASA/GCMD Data Center Keywords
          1 NASA/GCMD Earth Science Keywords
            Top

            CI_Series

            none found
            Top

            CI_ResponsibleParty

            Count Component Individual Organization Position Email Role Linkage
            1 DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (comp) originator
            1 Heather McCullough DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce Heather.McCullough@noaa.gov http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_RoleCode
            1 Heather McCullough DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce Heather.McCullough@noaa.gov pointOfContact
            1 Heather McCullough DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce Heather.McCullough@noaa.gov custodian
            1 National Geophysical Data Center publisher
            1 User Services DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce ngdc.info@noaa.gov distributor
            Top

            CI_OnlineResource

            Count Component Linkage Name Description Function
            1 http://www.ngdc.noaa.gov/hazard/
            2 http://www.ngdc.noaa.gov/nndc/struts/results?eq_1=33&t=101634&s=0&d=4&d=44
            Top

            MD_Identifier or RS_Identifier

            Count Component Code
            1 Document
            1 G01143
            Top

            EX_Extent

            Bounding Box Temporal Extent
            Count Component Description West East North South Start End
            1 -158.17 -155.29 21.35 19.42 1959-12-00 1990-02-00
            Top

            EX_GeographicBoundingBox

            Count Component West East North South
            1 -158.17 -155.29 21.35 19.42
            Top

            EX_TemporalExtent

            Count Component Start End
            1 1959-12-00 1990-02-00
            Top

            MD_Format

            Count Component Name Version specification
            2 TIFF
            Top

            MD_Medium

            Count Component Name mediumFormat mediumNote
            1 cdRom iso9660
            Top

            MD_Constraints

            Count Component Use Limitation
            Top

            MD_ReferenceSystem

            none found
            Top

            MD_GridSpatialRepresentation

            none found
            Top

            MD_Georeferenceable or MI_Georeferenceable

            none found
            Top

            MD_Georectified or MI_Georectified

            none found
            Top

            MD_Dimension

            none found
            Top

            MD_CoverageDescription or MI_CoverageDescription

            none found
            Top

            MD_Band or MI_Band

            none found
            Top

            MI_RangeElementDescription

            none found
            Top

            MD_AggregateInformation

            Count Component Title Code Association Type Code
            1 G01143 largerWorkCitation
            Top

            LE_Source or LI_Source

            none found
            Top

            LE_ProcessStep or LI_ProcessStep

            none found
            Top

            MI_Operation

            none found
            Top

            MI_Platform

            none found
            Top

            MI_Instrument

            none found
            Top