ISO Table View Alternate Views: Get Data, FAQ, ISO Rubric, DOI Rubric, CSW, HTML, Components, XML

Metadata Identifier: gov.noaa.csc.maps:2002_Texas_m13

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2002 Upper Texas Coast Lidar Point Data, Gulf of Mexico Shoreline in the Northeast 3.75-Minute Quadrant of the Lake Como 7.5-Minute Quadrangle: Post Fay Survey This data set contains elevation data derived from a lidar survey approximately 300m wide of the Gulf of Mexico shoreline in the Northeast Lake Como quarter-quadrangle on Galveston Island Texas. The geographic extent of the data set is equivalent to the quarter-quadrangle plus 30 meters of overedge. The data is created by combining data collected using an Optech Inc. Airborne Laser Terrain Mapper (ALTM) 1225 in combination with geodetic quality Global Positioning System (GPS) airborne and ground-based receivers. The Bureau of Economic Geology, the University of Texas at Austin owns and operates an ALTM 1225 system (serial number 99d118). This system is installed in a single engine Cessna 206 (tail number N4589U) owned and operated by the Texas State Aircraft Pooling Board. The lidar data described by this document was collected on 18 September 2002 (26102) between 20:34 and 00:08 UTC (actual data collection). Conditions on that day were low clouds at 335m Above Ground Level (AGL), haze, and occasional showers. 99d118 instrument settings for this flight were; laser pulse rate: 25kHz, scanner rate: 26Hz, scan angle: +/-20deg, beam divergence: wide, altitude: 300-490m AGL, and ground speed: 70-106kts. Three GPS base stations, 2 Ashtech and 1 Trimble 4000SSI receivers (backup), were operating during the survey. The three base stations were at the following locations: one 3.5km south of San Luis Pass, one at the Scholes International Airport Galveston, and one on the seawall at Rollover Pass. This data set consists of 1687100 records of x,y, and z values. The data set was generated from a larger data set and includes all valid points within the requested geographic bounds.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2002 Upper Texas Coast Lidar Point Data, Gulf of Mexico Shoreline in the Northeast 3.75-Minute Quadrant of the Lake Como 7.5-Minute Quadrangle: Post Fay Survey
  • 2006-10-17
1 Air and Ground GPS files from 26102
  • 2002-09-18
1 None
    1 North American Datum 1983
    • 2007-01-19
    1 Raw lidar data output from ALTM 1225
    • 2002-09-18
    2 none
      Top

      CI_Series

      none found
      Top

      CI_ResponsibleParty

      Count Component Individual Organization Position Email Role Linkage
      1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
      3 Bureau of Economic Geology, University of Texas at Austin originator
      1 Bureau of Economic Geology, University of Texas at Austin pointOfContact
      1 NOAA CSC (originator) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov originator
      1 NOAA CSC (publisher) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov publisher
      1 NOAA CSC(distributor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov distributor
      1 NOAA CSC (processor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov processor
      1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
      1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
      1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
      1 Pamela Grothe DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce processor
      1 Roberto Guiterrez and John Andrews Bureau of Economic Geology, The University of Texas at Austin Research Associate and Research Scientist Associate Roberto: oskar@mail.utexas.edu John: john.andrews@beg.utexas.edu processor
      Top

      CI_OnlineResource

      Count Component Linkage Name Description Function
      1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
      1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
      Top

      MD_Identifier or RS_Identifier

      Count Component Code
      1 Ellipsoid in Meters
      1 urn:ogc:def:crs:EPSG::4269
      Top

      EX_Extent

      Bounding Box Temporal Extent
      Count Component Description West East North South Start End
      1 -95.568694 -93.831419 29.688483 28.797218
      2
      Top

      EX_GeographicBoundingBox

      Count Component West East North South
      1 -95.568694 -93.831419 29.688483 28.797218
      Top

      EX_TemporalExtent

      Count Component Start End
      3
      Top

      MD_Format

      Count Component Name Version specification
      1 LAZ
      Top

      MD_Medium

      none found
      Top

      MD_Constraints

      Count Component Use Limitation
      1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
      Top

      MD_ReferenceSystem

      Count Component Code Authority Title
      1 Ellipsoid Ellipsoid in Meters
      1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
      Top

      MD_GridSpatialRepresentation

      none found
      Top

      MD_Georeferenceable or MI_Georeferenceable

      none found
      Top

      MD_Georectified or MI_Georectified

      none found
      Top

      MD_Dimension

      none found
      Top

      MD_CoverageDescription or MI_CoverageDescription

      none found
      Top

      MD_Band or MI_Band

      none found
      Top

      MI_RangeElementDescription

      none found
      Top

      MD_AggregateInformation

      none found
      Top

      LE_Source or LI_Source

      Count Component Title Date Description
      1 Air and Ground GPS files from 26102 2002-09-18 Source Contribution: GPS data. Air and ground GPS files Source Type: digital file
      1 Raw lidar data output from ALTM 1225 2002-09-18 Source Contribution: Raw lidar data files. Raw lidar data from ALTM 1225 Source Type: digital file
      Top

      LE_ProcessStep or LI_ProcessStep

      Count Component DateTime Description
      1 2003-02-11T00:00:00 Transfer raw ALTM 1225 flight data, airborne GPS data collected at 1 Hz using Ashtech receiver, and ground-based GPS data collected at 1 Hz using Ashtech and Trimble 4000SSI receivers to NT workstation. Generate decimated lidar point file from above three data sets using Optech's Realm 2.27 software. This is a 9-column ASCII data set with the following format: time tag; first pulse Easting, Northing, HAE; last pulse Easting, Northing, HAE; first pulse intensity; and last pulse intensity. View decimated lidar point file to check data coverage (i.e. sufficient overlap of flight lines and point spacing). Compute base station coordinates using National Geodetic Survey's PAGES software. Computed aircraft trajectories for both base stations using National Geodetic Survey's KINPOS software. Coordinates for base stations and trajectories are in the International Terrestrial Reference Frame of 2000 (ITRF2000) datum. Trajectories from both base stations were merged into one. Weighting for trajectory merge is based upon baseline length (distance from base station) and solution RMS. Transformed trajectory solution from ITRF2000 to North American Datum of 1983 (NAD83). Use NAD83 trajectories and aircraft inertial measurement unit data in Applanix's POSProc version 2.1.4 to compute an optimal 50Hz inertial navigation solution. Substitute the aircraft position and attitude information from the inertial navigation solution into Realm 2.27. Extract calibration area data set from lidar point file for quality control and instrument calibration checks. If necessary, use multiple iterations to adjust calibration parameters (pitch, roll, and scale) and reprocess sample data set. Then generate entire lidar point file (9-column ASCII file). Transfer point file from NT workstation to UNIX workstation. Parse the 9-column lidar point file into 3.75-minute quarter-quadrangle components and apply elevation bias correction (determined during calibration step). There are some points in the file that only contain 5-columns. These are points that either the first or last pulse was not recorded. Processing done over 20020918-20030211.
      1 2003-02-24T00:00:00 The 9-column post-processed data from University of Texas were provided in UTM projection (Zone 15) referenced to NAD83 with vertical elevations in meters referenced to the Geodetic Reference System 80 (GRS80) ellipsoid. The xyz values for the last return were extracted from the 9-column file. The data were converted to geographic coordinates using General Cartographic Transformation Program software developed by the United States Geological Survey. A vertical datum transformation was performed to convert vertical elevations referenced to GRS80 ellipsoid to NAVD88 using National Geodetic Survey (NGS) GEOID99 grids. The data were then converted to a binary format and loaded into the LIDAR Data Retrieval Tool (LDART) database.
      1 2006-01-03T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
      Top

      MI_Operation

      none found
      Top

      MI_Platform

      none found
      Top

      MI_Instrument

      none found
      Top