ISO Table View Alternate Views: Get Data, FAQ, ISO Rubric, DOI Rubric, CSW, HTML, Components, XML

Metadata Identifier: gov.noaa.csc.maps:2004_ME_m17

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2004 Maine Lidar This metadata document describes the collection and processing of Light Detection and Ranging (LIDAR) data over an area along the coast of Maine. Data was collected at a nominal two (2) meter post spacing between points. The elevations in this data set represent the first surface returns. Features that are above the ground - such as buildings, bridges, tree tops, etc. - have NOT been eliminated.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2004 Maine Lidar
  • 2006-10-19
1 Coastal Miane LIDAR Scanning Project
  • 2004-09-12
1 Ground Control Survey of Coastal Maine
  • 2004-09-12
1 Lidar QA/QC Report
    2 None
      1 North American Datum 1983
      • 2007-01-19
      Top

      CI_Series

      none found
      Top

      CI_ResponsibleParty

      Count Component Individual Organization Position Email Role Linkage
      1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
      1 Citation URL ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/me/20041201_QA_REPORT_Maine.pdf
      1 NOAA CSC (originator) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov originator
      1 NOAA CSC (publisher) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov publisher
      1 NOAA CSC (pointOfContact) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov pointOfContact
      1 NOAA CSC(distributor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov distributor
      1 NOAA CSC (processor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov processor
      1 EarthData Aviation publisher
      1 EarthData Aviation originator
      1 EarthData International of Maryland metadata@earthdata.com processor
      1 EarthData International of Maryland publisher
      1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
      1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
      1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
      1 Pamela Grothe DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce processor
      1 Terrasurv, Inc originator
      Top

      CI_OnlineResource

      Count Component Linkage Name Description Function
      1 ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/me/20041201_QA_REPORT_Maine.pdf Lidar QA/QC Report information
      1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
      1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
      Top

      MD_Identifier or RS_Identifier

      Count Component Code
      1 Ellipsoid in Meters
      1 urn:ogc:def:crs:EPSG::4269
      Top

      EX_Extent

      Bounding Box Temporal Extent
      Count Component Description West East North South Start End
      1 -70.692195 -69.716843 43.800050 43.065356 2004-05-05 2004-05-06
      1 2004-06-16 2004-06-18
      1 2004-05-05 2004-05-06
      Top

      EX_GeographicBoundingBox

      Count Component West East North South
      1 -70.692195 -69.716843 43.800050 43.065356
      Top

      EX_TemporalExtent

      Count Component Start End
      2 2004-05-05 2004-05-06
      1 2004-06-16 2004-06-18
      Top

      MD_Format

      Count Component Name Version specification
      1 LAZ
      Top

      MD_Medium

      none found
      Top

      MD_Constraints

      Count Component Use Limitation
      1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
      Top

      MD_ReferenceSystem

      Count Component Code Authority Title
      1 Ellipsoid Ellipsoid in Meters
      1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
      Top

      MD_GridSpatialRepresentation

      none found
      Top

      MD_Georeferenceable or MI_Georeferenceable

      none found
      Top

      MD_Georectified or MI_Georectified

      none found
      Top

      MD_Dimension

      none found
      Top

      MD_CoverageDescription or MI_CoverageDescription

      none found
      Top

      MD_Band or MI_Band

      none found
      Top

      MI_RangeElementDescription

      none found
      Top

      MD_AggregateInformation

      Count Component Title Code Association Type Code
      1 Lidar QA/QC Report crossReference
      Top

      LE_Source or LI_Source

      Count Component Title Date Description
      1 Coastal Miane LIDAR Scanning Project 2004-09-12 Source Contribution: Aerial Lidar Acquisition. The project area was flown using EarthData Aviation's Piper Navajo aircraft with tail number 62912. LIDAR data was captured using an ALS40 LIDAR system, including an inertial measuring unit (IMU) and a dual frequency GPS receiver. The acquisition was flown during the period of May 5, 2004 through May 6 2004. One ground based GPS receivers was in constant operation during each flight. During the data acquisition, all receivers collected phase data at an epoch rate of 1 Hz. All GPS phase data was post processed with continuous kinematic survey techniques using "On the Fly" (OTF) integer ambiguity resolution. The GPS data was processed with forward and reverse processing algorithms. The results from each process, using the data collected at the airport, were combined to yield a single fixed integer phase differential solution of the aircraft trajectory. Source Type: CD-ROM
      1 Ground Control Survey of Coastal Maine 2004-09-12 Source Contribution: GPS Ground Control. Ten (10) ground control points were established by Terrasurv, Inc. using GPS for vertical and horizontal coordinate values. Ground control references NAD83, NAVD88, Geoid99, in meters. An additional thirty (30) independent check ground control points were acquired by Terrasurv, Inc. and provided directly to NOAA, CSC to support an independent analysis of the accuracy of the Lidar data. Source Type: electronic mail system
      Top

      LE_ProcessStep or LI_ProcessStep

      Count Component DateTime Description
      1 2004-09-12T00:00:00 EarthData has developed a unique method for processing LIDAR data. The algorithms for filtering data were utilized within EarthData's proprietary software and commercial software written by TerraSolid. This software suite of tools provides efficient processing for small to large-scale projects and has been incorporated into ISO 9001 compliant production work flows. POINT CLOUD The following is a step-by-step breakdown of the process utilized to produce the variably-spaced point cloud surface data set. 1. Processing of the LIDAR data begins with refinement of the initial boresight alignment parameters provided by EarthData Aviation in the LITES configuration file delivered with the raw data. The technician also verifies that there are no voids, and that the data covers the entire project area. Calibration is accomplished using the tri-directional flight lines over the project airport, which is generally flat and free of major obstructions, trees or brush. Two overlapping bi-directional lines are flown along the length of the runway, and the cross flight line is perpendicular to both. All three lines are examined to ensure that they agree, within expected system tolerances, in the overlapping areas. The technician will review flight lines and locate the areas that contained systematic errors or distortions that were introduced by the LIDAR sensor. 2. Systematic distortions highlighted in step 1 were removed and the data was re-inspected. Corrections and adjustments can involve the application of angular deflection or compensation for curvature of the ground surface that can be introduced by crossing from on type of land cover to another. 3. All flight lines are processed with the refined calibration parameters obtained thru steps 1 and 2. All flight line are examined to ensure that they agree, within expected system tolerances, in the overlapping areas (side lap). 4. The LIDAR data for each flight line was trimmed in batch for the removal of the overlap areas between flight lines. The data was checked against a control network to ensure that vertical requirements were maintained. Conversion to the client-specified datum and projections were then completed. The LIDAR flight line data sets were then segmented into adjoining tiles for batch processing and data management. 5. The data was then edited for Blunder removal. 6. The data was processed interactively by the operator using LIDAR editing tools. During this final phase the operator generated a TIN based on a desired thematic layers to evaluate the automated classification performed in step 5. This allowed the operator to quickly re-classify points from one layer to another and recreate the TIN surface to see the effects of edits. The use of geo-referenced images were toggled on or off to aid the operator in identifying problem areas. The data was also examined with an automated profiling tool to aid the operator in the reclassification. 7. Orthometric heights were converted using the Geoid 03 undulation model. 8. The data was separated into (1) variably-spaced point cloud in LAS files. The files were written to PC readable CD-ROM.
      1 2005-01-05T00:00:00 The NOAA Coastal Services Center (CSC) received files in LAS format. The files contained lidar intensity and elevation measurements. CSC performed the following processing on the data to make it available within the Lidar Data Retrieval Tool (LDART): 1. The data were projected from UTM to geographic decimal degrees using the General Cartopgraphic Transformation Package. 2. The las files were sorted by latitude and the las header fields were completed. 3. The data were converted from orthometric to ellipsoidal heights using Geoid03.
      1 2006-01-03T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
      Top

      MI_Operation

      none found
      Top

      MI_Platform

      none found
      Top

      MI_Instrument

      none found
      Top