Text View of ISO 19115/19115-2 Metadata with Links to Guidance on NOAA EDM WikiView Metadata As: Get Data, FAQ, HTML, 19139 XML

Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components
spatialRepresentationInfo
referenceSystemInfo
referenceSystemInfo
identificationInfo
distributionInfo
dataQualityInfo
metadataMaintenance

2007 FEMA New Jersey Flood Mitigation Lidar: Gloucester County
 (MI_Metadata)
    fileIdentifier:  gov.noaa.csc.maps:2007_NJ_Gloucester_m544
    language:  eng; USA
    characterSet:  (MD_CharacterSetCode) utf8
    hierarchyLevel:  (MD_ScopeCode) dataset
    contact:  (CI_ResponsibleParty)
        individualName:  Mike Sutherland
        organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
        contactInfo:  (CI_Contact)
            phone:  (CI_Telephone)
                voice:  303-497-6120
                facsimile:  303-497-6513
            address:  (CI_Address)
                deliveryPoint:  NOAA/NESDIS/NGDC E/GC1 325 Broadway
                city:  Boulder
                administrativeArea:  CO
                postalCode:  80305-3328
                country:  USA
                electronicMailAddress:  mike.sutherland@noaa.gov
            hoursOfService:  7:30am-5:00pm Mountain
        role:  (CI_RoleCode) author
    dateStamp:  2013-06-07
    metadataStandardName:  ISO 19115-2 Geographic Information - Metadata - Part 2: Extensions for Imagery and Gridded Data
    metadataStandardVersion:  ISO 19115-2:2009(E)
return to top
    spatialRepresentationInfo:  (MD_VectorSpatialRepresentation)
        geometricObjects:  (MD_GeometricObjects)
            geometricObjectType:  (MD_GeometricObjectTypeCode) point
return to top
    referenceSystemInfo:  (MD_ReferenceSystem)
        referenceSystemIdentifier:  (RS_Identifier)
            authority:  (CI_Citation)
                title:  North American Datum 1983
                alternateTitle:  NAD83
                date:  (CI_Date)
                    date:  2007-01-19
                    dateType:  (CI_DateTypeCode) revision
                citedResponsibleParty:  (CI_ResponsibleParty)
                    organisationName:
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage: http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
                            name:  NAD83
                            description:  Link to Geographic Markup Language (GML) description of reference system.
                            function:  (CI_OnLineFunctionCode) information
                    role:  (CI_RoleCode) resourceProvider
                citedResponsibleParty:  (CI_ResponsibleParty)
                    organisationName:  European Petroleum Survey Group
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage: http://www.epsg-registry.org/
                            name:  European Petroleum Survey Group Geodetic Parameter Registry
                            description:  Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations.
                            function:  (CI_OnLineFunctionCode) search
                    role:  (CI_RoleCode) publisher
            code:  urn:ogc:def:crs:EPSG::4269
return to top
    referenceSystemInfo:  (MD_ReferenceSystem)
        referenceSystemIdentifier:  (RS_Identifier)
            code:  Ellipsoid in Meters
            codeSpace:  Local Vertical Reference
return to top
    identificationInfo:  (MD_DataIdentification)
        citation:  (CI_Citation)
            title:  2007 FEMA New Jersey Flood Mitigation Lidar: Gloucester County
            date:  (CI_Date)
                date:  2007-11-23
                dateType:  (CI_DateTypeCode) publication
            edition:  One
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  ocm.info@noaa.gov
                role:  (CI_RoleCode) originator
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DHS/FEMA > Federal Emergency Management Agency, U.S. Department of Homeland Security
                role:  (CI_RoleCode) originator
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  ocm.info@noaa.gov
                role:  (CI_RoleCode) publisher
            presentationForm:  (CI_PresentationFormCode) imageDigital
        abstract:  LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. By positioning laser range finding with the use of 1 second GPS with 100hz inertial measurement unit corrections, Terrapoint's LIDAR instruments are able to make highly detailed geospatial elevation products of the ground, man-made structures and vegetation. These data were collected from March 29 - April 6, 2007 for Gloucester County, New Jersey. The project area covers 353 square miles. The LiDAR flightlines for this project were planned for a 50% acquisition overlap. The nominal resolution of this project without overlap is 1.25 m. Four returns were recorded for each pulse in addition to an intensity value. GPS Week Time, Intensity, Flightline and number attributes were provided for each LiDAR point. Data is provided as random points, in LAS v1.1 format, classified according to the following ASPRS Class Codes: Class 1 - Non-ground Class 2 - Ground Class 7 - Noise Class 9 - Water
        purpose:  The purpose of this LiDAR data was to produce high accuracy 3D elevation based geospatial products for floodplain mapping for Gloucester County, New Jersey.
        status:  (MD_ProgressCode) completed
        pointOfContact:  (CI_ResponsibleParty)
            organisationName:  Federal Emergency Management Agency, Region II
            contactInfo:  (CI_Contact)
                address:  (CI_Address)
                    deliveryPoint:  26 Federal Plaza
                    city:  New York
                    administrativeArea:  NY
                    postalCode:  10278
                    country:  U.S.
            role:  (CI_RoleCode) pointOfContact
        resourceMaintenance:  (MD_MaintenanceInformation)
            maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) notPlanned
        graphicOverview:  (MD_BrowseGraphic)
            fileName:  ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/fl/fdem/bay/FDEM_Lidar_Bay_County.kmz
            fileDescription:  This kmz file shows the extent of coverage for the 2007 FDEM Bay County, FL lidar data set.
            fileType:  kmz
        descriptiveKeywords:  (MD_Keywords)
            keyword:  Bathymetry/Topography
            keyword:  ASPRS standards
            keyword:  DEM
            keyword:  digital elevation model
            keyword:  elevation
            keyword:  LAS_v1.1
            keyword:  laser
            keyword:  LiDAR
            keyword:  OPTECH_3100EA
            keyword:  surface model
            type:  (MD_KeywordTypeCode) theme
            thesaurusName:  (CI_Citation)
                title:  None
                date:
        descriptiveKeywords:  (MD_Keywords)
            keyword:  US
            keyword:  New Jersey
            keyword:  Gloucester County
            type:  (MD_KeywordTypeCode) place
            thesaurusName:  (CI_Citation)
                title:  None
                date:
        resourceConstraints:  (MD_Constraints)
            useLimitation:  These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
        resourceConstraints:  (MD_LegalConstraints)
            useLimitation:  While every effort has been made to ensure that these data are accurate and reliable within the limits of the current state of the art, NOAA cannot assume liability for any damages caused by any errors or omissions in the data, nor as a result of the failure of the data to function on a particular system. NOAA makes no warranty, expressed or implied, nor does the fact of distribution constitute such a warranty.
        aggregationInfo:  (MD_AggregateInformation)
            aggregateDataSetName:  (CI_Citation)
                title:  Lidar QA/QC Report
                date:
                citedResponsibleParty:  (CI_ResponsibleParty)
                    positionName:  Citation URL
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage:  ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/nj/lidarqaqcreport_gloucester_final.pdf
                            name:  Lidar QA/QC Report
                            description:
                            function:  (CI_OnLineFunctionCode) information
                    role:
            associationType:  (DS_AssociationTypeCode) crossReference
        spatialRepresentationType:  (MD_SpatialRepresentationTypeCode) vector
        language:  eng; USA
        topicCategory:  (MD_TopicCategoryCode) elevation
        extent:  (EX_Extent)
            geographicElement:  (EX_GeographicBoundingBox)
                westBoundLongitude:  -75.450650
                eastBoundLongitude:  -74.862458
                southBoundLatitude:  39.504954
                northBoundLatitude:  39.888795
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimePeriod:
                    beginPosition:  2007-03-29
                    endPosition:  2007-04-06
        supplementalInformation:  Please note that the LiDAR intensity is not calibrated or normalized. The intensity value is meant to provide relative signal return strengths for features imaged by the sensor. Water is not included in the bare earth ground model, rather it is classified as water on Class 9. Water body delineation was collected using hillshades, intensity and cross-sections from the LiDAR. In the event of multiple tides from overlapping missions only the lowest tide was included for the water; nor were the peaks of tall waves; all remaining points within the water body were classified to class 1.
return to top
    distributionInfo:  (MD_Distribution)
        distributionFormat:  (MD_Format)
            name:  LAZ
            version:
        distributor:  (MD_Distributor)
            distributorContact:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  ocm.info@noaa.gov
                role:  (CI_RoleCode) distributor
            distributionOrderProcess:  (MD_StandardOrderProcess)
                orderingInstructions:  The National Geophysical Data Center serves as the archive for this LIDAR data. NGDC should only be contacted for this data if it cannot be obtained from NOAA Coastal Services Center.
        distributor:  (MD_Distributor)
            distributorContact:  (CI_ResponsibleParty)
                individualName:  Mike Sutherland
                organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  303-497-6120
                        facsimile:  303-497-6513
                    address:  (CI_Address)
                        deliveryPoint:  NOAA/NESDIS/NGDC E/GC1 325 Broadway
                        city:  Boulder
                        administrativeArea:  CO
                        postalCode:  80305-3328
                        country:  USA
                        electronicMailAddress:  mike.sutherland@noaa.gov
                    hoursOfService:  7:30am-5:00pm Mountain
                role:  (CI_RoleCode) distributor
            distributionOrderProcess:  (MD_StandardOrderProcess)
                orderingInstructions:  The National Geophysical Data Center serves as the archive for this LIDAR dataset. NGDC should only be contacted for the data if it cannot be obtained from NOAA Coastal Services Center.
return to top
    dataQualityInfo:  (DQ_DataQuality)
        scope:  (DQ_Scope)
            level:  (MD_ScopeCode) dataset
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Horizontal Positional Accuracy Report
            evaluationMethodDescription:  Compiled to meet 1 m vertical accuracy at the 95% confidence level.
            result:
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Vertical Positional Accuracy Report
            evaluationMethodDescription:  Tested to 0.181 m Fundamental Vertical Accuracy (FVA) at the 95% confidence level.
            result:
        report:  (DQ_CompletenessCommission)
            evaluationMethodDescription:  According to Terrapoint standards; the following aspects of the LiDAR data was verified during the course of the project processing: -Data completeness and integrity, -Data accuracy and errors, -Anomaly checks through full-feature hillshades, -Post automated classification Bare-earth verification, -RMSE inspection of final bare-earth model using kinematic GPS, -Final quality control of deliverable products; ensuring integrity; graphical quality; conformance to Terrapoint standards are met for all delivered products.
            result:
        report:  (DQ_ConceptualConsistency)
            measureDescription:  All LiDAR files delivered were verified and tested to ensure they open and are positioned properly.
            result:
        lineage:  (LI_Lineage)
            processStep:  (LE_ProcessStep)
                description:  General Overview: Project Area = 874 square kilometers, Type of Scanner = Optech 3100EA, Number of Scanners = 1, Data Acquisition Height = 1550 meters, AGL Scanner Field of View = 46 degrees, The scan frequency = 30 Hertz, Pulse Repetition Rate = 71 Kilohertz, Aircraft Speed = 150 Knots, Swath Width = 1315 m, Nominal Ground Sample Distance = 1.25 meters - no overlap, Number of Returns Per Pulse = 4, Distance Between Flight Lines = 658 m, The Airborne LiDAR survey was conducted using one OPTECH 3100EA system flying at a nominal height of 1550 metres AGL, a total angular coverage of 46 degrees. Flight line spacing nominally 658 meters providing overlap of 50% on adjacent flight lines. Lines were flown in NE/SW to best optimize flying time considering the layout for the project. The aircraft used for this survey was a Piper Navajo, registration C-GPJT. This aircraft has a flight range of approximately 6 hours and was flown at an average altitude of 1550 meters above ground level (AGL). The aircraft was staged from the Millville Airport and ferried daily to the project site for flight operations. GPS Receivers: A combination of Sokkia GSR 2600 and Applanix POSAv-510 dual frequency GPS receivers were used to support the airborne operations of this survey and to establish the GPS control network. Number of Flights and Flight Lines: A total of 8 missions were flown for this project with flight time ranging approximately 15 hours under good meteorological and GPS conditions. 76 flight lines were flown over the project site to provide complete coverage. Reference Coordinate System Used Existing NGS (National Geodetic Survey) monuments were observed in a GPS control network to establish 1 new station(s): Station_ID: 128U-01128U-01 was used as primary control for the project flight missions and kinematic ground surveys. The published horizontal datum of the NGS stations is NAD83 and the vertical datum NAVD88. The following are the final coordinates of the newly established control points used in this project: Station_ID: 128U-01, West_Longitude: 75 09 04.89385, North_Latitude: 39 43 09.54246, Ellips_Elev: 14.761 m, Geoid Model Used: The Geoid03 geoid model, published by the NGS, was used to transform all ellipsoidal heights to orthometric.
                dateTime:
                  DateTime:  2007-04-01T00:00:00
                processor:  (CI_ResponsibleParty)
                    individualName:  Shiva Shenoy
                    organisationName:  Terrapoint USA
                    positionName:  Operations Manager
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  1-877-80-TERRA
                            facsimile:  1-281-296-0869
                        address:  (CI_Address)
                            deliveryPoint:  251216 Grogan's Park Drive
                            city:  The Woodlands
                            administrativeArea:  Texas
                            postalCode:  77380
                            country:  USA
                            electronicMailAddress:  Shiva.Shenoy@terrapoint.com
                        hoursOfService:  Monday to Friday, 8:30 - 4:30, Eastern Time
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  Airborne GPS Kinematic Airborne GPS kinematic data was processed on-site using GrafNav kinematic On-The-Fly (OTF) software. Flights were flown with a minimum of 6 satellites in view (13o above the horizon) and with a PDOP of better than 3.5. Distances from base station to aircraft were kept to a maximum of 30 km, to ensure a strong OTF (On-The-Fly) solution. For all flights,the GPS data can be classified as excellent, with GPS residuals of 5 cm average but no larger than 10 cm being recorded. Generation and Calibration of laser points (raw data) The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete. Subsequently the mission points are output using Optech's Dashmap, initially with default values from Optech or the last mission calibrated for system. The initial point generation for each mission calibration is verified within Microstation/Terrascan for calibration errors. If a calibration error greater than specification is observed within the mission, the roll pitch and scanner scale corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality. All missions are validated against the adjoining missions for relative vertical biases and collected GPS kinematic ground truthing points for absolute vertical accuracy purposes. On a project level, a coverage check is carried out to ensure no slivers are present. Data Classification and Editing The data was processed using the software TerraScan, and followed the methodology described herein. The initial step is the setup of the TerraScan project, which is done by importing client provided tile boundary index (converted to the native UTM zone for processing) encompassing the entire project areas. The 3D laser point clouds, in binary format, were imported into the TerraScan project and divided in 440 tiles in LAS 1.0 format. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine removes any obvious outliers from the dataset following which the ground layer is extracted from the point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model. This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within an iteration. A second critical parameter is the maximum terrain angle constraint,which determines the maximum terrain angle allowed within the classification model. The data is then manually quality controlled with the use of hillshading, cross-sections and profiles. Any points found to be of class vegetation, building or error during the quality control process, are removed from the ground model and placed on the appropriate layer. An integrity check is also performed simultaneously to verify that ground features such as rock cuts, elevated roads and crests are present. Once data has been cleaned and complete, it is then reviewed by a supervisor via manual inspection and through the use of a hillshade mosaic of the entire project area. Deliverable Tiling Scheme All files were converted to LAS 1.1, in the specified projection and units and were delivered in the client provided tiling scheme with a total of 440 tiles.
                dateTime:
                  DateTime:  2007-11-01T00:00:00
                processor:  (CI_ResponsibleParty)
                    individualName:  Claude Vickers
                    organisationName:  Terrapoint USA
                    positionName:  Production Manager
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  1-877-80-TERRA
                            facsimile:  1-281-296-0869
                        address:  (CI_Address)
                            deliveryPoint:  251216 Grogan's Park Drive
                            city:  The Woodlands
                            administrativeArea:  Texas
                            postalCode:  77380
                            country:  USA
                            electronicMailAddress:  claude.vickers@terrapoint.com
                        hoursOfService:  Monday to Friday, 8:30 - 4:30, Eastern Time
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The NOAA Coastal Services Center (CSC) received the files in las format. The files contained Lidar elevation and intensity measurements. The data were in New Jersey State Plane projection, and NAVD88 Geoid 03 vertical datum.CSC performed the following processing to the data to make it available within the Digital Coast: 1. The data were converted from New Jersey State Plane coordinates to geographic coordinates. 2. The data were converted from NAVD88 (orthometric) heights to GRS80 (ellipsoid) heights using Geoid 03. 3. The LAS data were sorted by latitude and the headers were updated.
                dateTime:
                  DateTime:  2010-08-01T00:00:00
                processor:  (CI_ResponsibleParty)
                    organisationName:  DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  843-740-1200
                        address:  (CI_Address)
                            deliveryPoint:  2234 South Hobson Ave.
                            city:  Charleston
                            administrativeArea:  SC
                            postalCode:  29405-2413
                            electronicMailAddress:  ocm.info@noaa.gov
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
                dateTime:
                  DateTime:  2011-05-13T00:00:00
                processor:  (CI_ResponsibleParty)
                    individualName:  Pamela Grothe
                    organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
                    contactInfo:  (CI_Contact)
                        contactInstructions:  Contact Data Center
                    role:  (CI_RoleCode) processor
return to top
    metadataMaintenance:  (MD_MaintenanceInformation)
        maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) annually
        dateOfNextUpdate:  2014-06-07
        maintenanceNote:  This metadata was automatically generated from the FGDC Content Standard for Digital Geospatial Metadata standard (version FGDC-STD-001-1998) using the 2013-01-04 version of the FGDC RSE to ISO 19115-2 for LiDAR transform.
        maintenanceNote:  Translated from FGDC 2013-06-07T12:41:49.485-06:00
        maintenanceNote:  Last Metadata Review Date: 2011-11-19