ISO Table View View Metadata As: Get Data, FAQ, HTML, 19139 XML
Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components

Metadata Identifier: gov.noaa.csc.maps:2008_FL_Ofaloosa_m85

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2008 NWFWMD (Northwest Florida Water Management District) Florida LiDAR: Inland Okaloosa County This Light Detection and Ranging (LiDAR) LAS dataset is a survey of inland Okaloosa County, Florida not covered in the 2008 Florida Department of Emergency Management LiDAR initiative. The project area consists of approximately 874 square miles, including a buffer of approximately 50 feet along the edges of the project. The project design of the LiDAR data acquisition was developed to support a nominal post spacing of 4.9 feet or 1.5 meters for un-obscured areas. Fugro EarthData, Inc. acquired 49 flight lines in three lifts on February 10, 2008. The data was divided into 5000' by 5000' foot cells that serve as the tiling scheme. LiDAR data collection was performed with a Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as intensity data. LiDAR data was processed to achieve a bare ground surface. LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range finding, GPS positioning and inertial measurement technologies, LIDAR instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures and vegetation. This data of inland Okaloosa County, Florida, was collected at sufficient resolution to provide a nominal point spacing of 1.5m for collected points. Up to 5 returns were recorded for each pulse in addition to an intensity value.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2008 NWFWMD (Northwest Florida Water Management District) Florida LiDAR: Inland Okaloosa County
  • 2008-07-10
1 Lidar QA/QC Report
    2 None
      1 North American Datum 1983
      • 2007-01-19
      Top

      CI_Series

      Count Component Name Issue Identification Page
      1 LiDAR 1
      Top

      CI_ResponsibleParty

      Count Component Individual Organization Position Email Role Linkage
      1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
      1 Citation URL ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/fl/okaloosa/20081204_Okaloosa_QA-QC_Report.pdf
      1 NOAA CSC (originator) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov originator http://coast.noaa.gov
      1 NOAA CSC (publisher) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov publisher http://coast.noaa.gov
      1 NOAA CSC (pointOfContact) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov pointOfContact http://coast.noaa.gov
      1 NOAA CSC(distributor) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov distributor http://coast.noaa.gov
      1 NOAA CSC (processor) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov processor http://coast.noaa.gov
      1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
      1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
      1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
      1 Northwest Florida Water Management District (NWFWMD) originator
      1 Pamela Grothe DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce processor
      4 Program Management Fugro EarthData, Inc. metadata@earthdata.com processor
      Top

      CI_OnlineResource

      Count Component Linkage Name Description Function
      1 ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/fl/okaloosa/20081204_Okaloosa_QA-QC_Report.pdf Lidar QA/QC Report information
      5 http://coast.noaa.gov
      1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
      1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
      Top

      MD_Identifier or RS_Identifier

      Count Component Code
      1 Ellipsoid in Meters
      1 urn:ogc:def:crs:EPSG::4269
      Top

      EX_Extent

      Bounding Box Temporal Extent
      Count Component Description West East North South Start End
      1 -086.807000 -086.371000 31.010000 30.373000
      Top

      EX_GeographicBoundingBox

      Count Component West East North South
      1 -086.807000 -086.371000 31.010000 30.373000
      Top

      EX_TemporalExtent

      Count Component Start End
      1
      Top

      MD_Format

      Count Component Name Version specification
      1 LAZ
      Top

      MD_Medium

      none found
      Top

      MD_Constraints

      Count Component Use Limitation
      1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
      Top

      MD_ReferenceSystem

      Count Component Code Authority Title
      1 Ellipsoid Ellipsoid in Meters
      1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
      Top

      MD_GridSpatialRepresentation

      none found
      Top

      MD_Georeferenceable or MI_Georeferenceable

      none found
      Top

      MD_Georectified or MI_Georectified

      none found
      Top

      MD_Dimension

      none found
      Top

      MD_CoverageDescription or MI_CoverageDescription

      none found
      Top

      MD_Band or MI_Band

      none found
      Top

      MI_RangeElementDescription

      none found
      Top

      MD_AggregateInformation

      Count Component Title Code Association Type Code
      1 Lidar QA/QC Report crossReference
      Top

      LE_Source or LI_Source

      none found
      Top

      LE_ProcessStep or LI_ProcessStep

      Count Component DateTime Description
      1 2008-02-10T00:00:00 EarthData International, Inc. collected ALS-50-derived LiDAR over Okaloosa County, Florida with a 1.5m, nominal post spacing using a Cessna 310 aircraft. The collection for the entire project area was accomplished in one day on February 10, 2008. The collection was performed by EarthData International, Inc., using a Leica ALS50-II MPiA LiDAR system, serial number ALS039, including an inertial measuring unit (IMU) and a dual frequency GPS receiver. This project required 3 lifts of flight lines to be collected. The lines were flown at an average of 6,000 feet above mean terrain using a pulse rate of 122,500 pulses per second.
      1 2008-03-14T00:00:00 The airborne GPS data were processed and integrated with the IMU. The results were imported into the processing system for use in the LiDAR boresight. The raw LiDAR data was downloaded onto a production server. The ground control and airport GPS base station were used in conjunction with the processed ABGPS results for the LiDAR boresight. The properly formatted processing results were used for subsequent processing.
      1 2008-07-16T00:00:00 EarthData has developed a unique method for processing LiDAR data to identify and remove elevation points falling on vegetation, buildings, and other aboveground structures. The algorithms for filtering data were utilized within EarthData's proprietary software and commercial software written by TerraSolid. This software suite of tools provides efficient processing for small to large-scale, projects and has been incorporated into ISO 9001 compliant production work flows. The following is a step-by-step breakdown of the process. 1. Using the LiDAR data set provided by EarthData Aviation, the technician performs calibrations on the data set. 2. The technician performed a visual inspection of the data to verify that the flight lines overlap correctly. The technician also verified that there were no voids, and that the data covered the project limits. The technician then selected a series of areas from the data set and inspected them where adjacent flight lines overlapped. These overlapping areas were merged and a process which utilizes 3-D Analyst and EarthData's proprietary software was run to detect and color code the differences in elevation values and profiles. The technician reviewed these plots and located the areas that contained systematic errors or distortions that were introduced by the LiDAR sensor. 3. Systematic distortions highlighted in step 2 were removed and the data was re-inspected. Corrections and adjustments can involve the application of angular deflection or compensation for curvature of the ground surface that can be introduced by crossing from one type of land cover to another. 4. The LiDAR data for each flight line was trimmed in batch for the removal of the overlap areas between flight lines. The data was checked against a control network to ensure that vertical requirements were maintained. Conversion to the client-specified datum and projections were then completed. The LiDAR flight line data sets were then segmented into adjoining tiles for batch processing and data management. 5. The initial batch-processing run removed 95% of points falling on vegetation. The algorithm also removed the points that fell on the edge of hard features such as structures, elevated roadways and bridges. 6. The operator interactively processed the data using LiDAR editing tools. During this final phase the operator generated a TIN based on a desired thematic layer to evaluate the automated classification performed in step 5. This allowed the operator to quickly re-classify points from one layer to another and recreate the TIN surface to see the effects of edits. Geo-referenced images were toggled on or off to aid the operator in identifying problem areas. The data was also examined with an automated profiling tool to aid the operator in the reclassification. 7. The point cloud data were delivered in LAS 1.1 format. 9 - points in water, 2 - ground points, and 1 - all other.
      1 2008-07-16T00:00:00 The LiDAR ground points created in Process Step 3 were loaded into a Terrascan project. The export lattice model function in Terrascan was then used to create and output the LiDAR DEM grid to the Arc ASCII Raster format. As a final step, the Arc ASCII Raster format grid tiles were converted to ESRI Grid format using an Arc command.
      1 2008-07-21T00:00:00 The NOAA Coastal Services Center (CSC) received files in LAS format. The files contained LiDAR intensity and elevation measurements. CSC performed the following processing on the data to make it available within the LiDAR Data Retrieval Tool (LDART): 1. The LAS files were converted from UTM coordinates to geographic coordinates. 2. The data were converted from NAVD88 (orthometric) heights to GRS80 (ellipsoid) heights using Geoid 03. 3. The LAS header fields were sorted by latitude and updated. 4. The data was filtered to eliminate outliers.
      1 2009-04-21T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
      Top

      MI_Operation

      none found
      Top

      MI_Platform

      none found
      Top

      MI_Instrument

      none found
      Top