ISO Table View Alternate Views: Get Data, FAQ, ISO Rubric, DOI Rubric, CSW, HTML, Components, XML

Metadata Identifier: gov.noaa.csc.maps:2009_OR_DOGAMI_Medford_m1171

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Medford The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic lidar data for multiple areas within the State of Oregon. The areas for lidar collection have been designed as part of a collaborative effort of state, federal, and local agencies in order to meet a wide range of project goals. The Medford study area was collected April 29 - May 12, 2009 and covers a portion of Jackson County. The total flown area covers 380 square miles, or 242,915 acres. This data set consists of bare earth and unclassified points. There are approximately 8 points per square meter over terrestrial surfaces. In some areas of heavy vegetation or forest cover, there may be relatively few ground points in the lidar data. Elevation values for open water surfaces are not valid elevation values because few lidar points are returned from water surfaces. Lidar intensity values were also collected.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Medford
  • 2012-04-01
2 None
    1 North American Datum 1983
    • 2007-01-19
    Top

    CI_Series

    none found
    Top

    CI_ResponsibleParty

    Count Component Individual Organization Position Email Role Linkage
    1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
    1 NOAA CSC (originator) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov originator
    1 NOAA CSC (publisher) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov publisher
    1 NOAA CSC(distributor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov distributor
    1 NOAA CSC (processor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov processor
    1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
    1 Ian Madin DOGAMI ian.madin@dogami.state.or.us pointOfContact
    1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
    1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
    1 Mike Sutherland (processor) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov processor
    1 Oregon Department of Geology and Mineral Industries (DOGAMI) originator
    2 Watershed Sciences, Inc. watershedsciences.com processor
    Top

    CI_OnlineResource

    Count Component Linkage Name Description Function
    1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
    1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
    Top

    MD_Identifier or RS_Identifier

    Count Component Code
    1 Ellipsoid in Meters
    1 urn:ogc:def:crs:EPSG::4269
    Top

    EX_Extent

    Bounding Box Temporal Extent
    Count Component Description West East North South Start End
    1 -123.249957 -122.507457 42.497776 42.001276 2009-04-29 2009-05-12
    Top

    EX_GeographicBoundingBox

    Count Component West East North South
    1 -123.249957 -122.507457 42.497776 42.001276
    Top

    EX_TemporalExtent

    Count Component Start End
    1 2009-04-29 2009-05-12
    Top

    MD_Format

    Count Component Name Version specification
    1 LAZ
    Top

    MD_Medium

    none found
    Top

    MD_Constraints

    Count Component Use Limitation
    1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
    Top

    MD_ReferenceSystem

    Count Component Code Authority Title
    1 Ellipsoid Ellipsoid in Meters
    1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
    Top

    MD_GridSpatialRepresentation

    none found
    Top

    MD_Georeferenceable or MI_Georeferenceable

    none found
    Top

    MD_Georectified or MI_Georectified

    none found
    Top

    MD_Dimension

    none found
    Top

    MD_CoverageDescription or MI_CoverageDescription

    none found
    Top

    MD_Band or MI_Band

    none found
    Top

    MI_RangeElementDescription

    none found
    Top

    MD_AggregateInformation

    none found
    Top

    LE_Source or LI_Source

    none found
    Top

    LE_ProcessStep or LI_ProcessStep

    Count Component DateTime Description
    1 2009-01-01T00:00:00 The LiDAR data was collected between April 29 and May 12, 2009. The survey used a Leica ALS50 Phase II laser system mounted in a Cessna Caravan 208B. The system was set to acquire greater than or equal to 105,000 laser pulses per second (i.e. 105 kHz pulse rate) and flown at 900 meters above ground level (AGL), capturing a scan angle of plus or minus 14 degrees from nadir. These settings were developed to yield points with an average native density of greater than or equal to 8 points per square meter over terrestrial surfaces. The native pulse density is the number of pulses emitted by the LiDAR system. Some types of surfaces (i.e. dense vegetation or water) may return fewer pulses than the laser originally emitted. Therefore, the delivered density can be less than the native density and lightly variable according to distributions of terrain, land cover, and water bodies. The completed areas were surveyed with opposing flight line side-lap of greater than or equal to 50% (greater than or equal to 100% overlap) to reduce laser shadowing and increase surface laser painting. The system allows up to four range measurements per pulse, and all discernible laser returns were processed for the output dataset. During the LiDAR survey of the study area, a static (1 Hz recording frequency) ground survey was conducted over monuments with known coordinates. After the airborne survey, the static GPS data were processed using triangulation with CORS stations checked against the Online Positioning User Service (OPUS) to quantify daily variance. Multiple sessions are processed over the same monument to confirm the antenna height measurements and reported position accuracy. Multiple DGPS units are used for the ground real-time kinematic (RTK) portion of the survey. To collect accurate ground surveyed points, a GPS base unit is set up over monuments to broadcast a kinematic correction to a roving GPS unit. The ground crew uses a roving unit to receive radio-relayed kinematic corrected positions from the base unit. This method is referred to as real-time kinematic (RTK) surveying and allows precise location measurement (sigma less than or equal to 1.5 cm (0.6 in)). For the Medford study area, 2661 RTK points were collected.
    1 2009-01-01T00:00:00 1. Laser point coordinates are computed using the IPAS and ALS Post Processor software suites based on independent data from the LiDAR system (pulse time, scan angle), and aircraft trajectory data (SBET). Laser point returns (first through fourth) are assigned an associated (x, y, z) coordinate along with unique intensity values (0-255). The data are output into large LAS v. 1.1 files; each point maintains the corresponding scan angle, return number (echo), intensity, and x, y, z (easting, northing, and elevation) information. 2. These initial laser point files are too large to process. To facilitate laser point processing, bins (polygons) are created to divide the dataset into manageable sizes (less than 500 MB). Flightlines and LiDAR data are then reviewed to ensure complete coverage of the study area and positional accuracy of the laser points. 3. Once the laser point data are imported into bins in TerraScan, a manual calibration is performed to assess the system offsets for pitch, roll, heading, and mirror scale. Using a geometric relationship developed by Watershed Sciences, each of these offsets is resolved and corrected if necessary. 4. The LiDAR points are then filtered for noise, pits, and birds by screening for absolute elevation limits, isolated points, and height above ground. Each bin is then inspected for pits and birds manually; spurious points are removed. For a bin containing approximately 7.5-9.0 million points, an average of 50-100 points are typically found to be artificially low or high. These spurious non-terrestrial laser points must be removed from the dataset. Common sources of non-terrestrial returns are clouds, birds, vapor, and haze. 5. The internal calibration is refined using TerraMatch. Points from overlapping lines are tested for internal consistency and final adjustments are made for system misalignments (i.e., pitch, roll, heading offsets and mirror scale). Automated sensor attitude and scale corrections yield 3-5 cm improvements in the relative accuracy. Once the system misalignments are corrected, vertical GPS drift is then resolved and removed per flight line, yielding a slight improvement (less than 1 cm) in relative accuracy. At this point in the workflow, data have passed a robust calibration designed to reduce inconsistencies from multiple sources (i.e. sensor attitude offsets, mirror scale, GPS drift) using a procedure that is comprehensive (i.e. uses all of the overlapping survey data). Relative accuracy screening was complete. 6. The TerraScan software suite is designed specifically for classifying near-ground points (Soininen, 2004). The processing sequence begins by removing all points that are not near the earth based on geometric constraints used to evaluate multi-return points. The resulting bare earth (ground) model is visually inspected and additional ground point modeling is performed in site-specific areas (over a 50-meter radius) to improve ground detail. This is only done in areas with known ground modeling deficiencies, such as: bedrock outcrops, cliffs, deeply incised stream banks, and dense vegetation. In some cases, ground point classification includes known vegetation (i.e., understory, low/dense shrubs, etc.) and these points are manually reclassified as non-grounds. Ground surface rasters were developed from triangulated irregular networks (TINs) of ground points.
    1 2012-03-01T00:00:00 The NOAA Coastal Services Center (CSC) received the files in las format. The files contained LiDAR elevation and intensity measurements. The data were in Oregon Lambert (NAD83), International Feet projection and NAVD88 (Geoid 03) vertical datum. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The data were converted from Oregon Lambert (NAD83), International Feet to geographic coordinates. 2. The data were converted from NAVD88 (orthometric) heights to GRS80 (ellipsoid) heights using Geoid 03. 3. The vertical units of the data were converted from International feet to meters. 4. Elevation outliers were filtered. 5. The data were converted to LAZ.
    1 2013-01-22T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
    Top

    MI_Operation

    none found
    Top

    MI_Platform

    none found
    Top

    MI_Instrument

    none found
    Top