Text View of ISO 19115/19115-2 Metadata with Links to Guidance on NOAA EDM WikiBack to Collection NOAA/NESDIS/NGDC/MGG/Lidar

View Metadata As: Get Data, FAQ, HTML, 19139 XML

Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components
spatialRepresentationInfo
referenceSystemInfo
referenceSystemInfo
identificationInfo
distributionInfo
dataQualityInfo
metadataMaintenance

2009 U.S. Geological Survey (USGS) Lidar: Umpqua River Study Area
 (MI_Metadata)
    fileIdentifier:  gov.noaa.csc.maps:2009_USGS_Umpqua_River_m1429
    language:  eng; USA
    characterSet:  (MD_CharacterSetCode) utf8
    hierarchyLevel:  (MD_ScopeCode) dataset
    contact:  Mike Sutherland(author) (CI_ResponsibleParty)
        organisationName: (template)
        role:  (CI_RoleCode) author
    dateStamp:  2013-03-28
    metadataStandardName:  ISO 19115-2 Geographic Information - Metadata - Part 2: Extensions for Imagery and Gridded Data
    metadataStandardVersion:  ISO 19115-2:2009(E)
return to top
    spatialRepresentationInfo:  (MD_VectorSpatialRepresentation)
        geometricObjects:  (MD_GeometricObjects)
            geometricObjectType:  (MD_GeometricObjectTypeCode) point
return to top
    referenceSystemInfo:  NAD83
return to top
    referenceSystemInfo:  Ellipsoid
return to top
    identificationInfo:  (MD_DataIdentification)
        citation:  (CI_Citation)
            title:  2009 U.S. Geological Survey (USGS) Lidar: Umpqua River Study Area
            date:  (CI_Date)
                date:  2012-01-01
                dateType:  (CI_DateTypeCode) publication
            citedResponsibleParty:  NOAA CSC (originator)
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DOI/USGS > United States Geological Survey, U.S. Department of Interior
                role:  (CI_RoleCode) originator
            citedResponsibleParty:  NOAA CSC (publisher) (CI_ResponsibleParty)
                organisationName: (template)
                role:  (CI_RoleCode) publisher
            presentationForm:  (CI_PresentationFormCode) imageDigital
        abstract:  Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data for the U.S. Geological Survey (USGS) Umpqua River study site in collaboration with the Puget Sound LiDAR Consortium (PSLC). The areas for LiDAR collection have been designed as part of a collaborative effort of state, federal, and local agencies in order to meet a wide range of project goals. This LiDAR data set was collected between April 21 - July 13, 2009 and falls in Douglas County, Oregon. This data set consists of bare earth and unclassified points. The average pulse density is 8.80 pulses per square meter over terrestrial surfaces. The area of interest (AOI) encompasses approximately 67,408 acres and the total area flown (TAF) covers 69,925 acres. The TAF acreage is greater than the original AOI acreage due to buffering and flight planning optimization. In some areas of heavy vegetation or forest cover, there may be relatively few ground points in the LiDAR data. Elevation values for open water surfaces are not valid elevation values because few lidar points are returned from water surfaces. Lidar intensity values were also collected.
        purpose:  Provide high resolution terrain elevation and land cover elevation data.
        credit:  U.S. Geological Survey (USGS)
        status:  (MD_ProgressCode) completed
        pointOfContact:  (CI_ResponsibleParty)
            individualName:  Ian Madin
            organisationName:  DOGAMI
            contactInfo:  (CI_Contact)
                phone:  (CI_Telephone)
                    voice:  971-673-1542
                address:  (CI_Address)
                    deliveryPoint:  800 NE Oregon St. #28, Ste. 965
                    city:  Portland
                    administrativeArea:  OR
                    postalCode:  97232
                    country:  USA
                    electronicMailAddress:  ian.madin@dogami.state.or.us
            role:  (CI_RoleCode) pointOfContact
        resourceMaintenance:  (MD_MaintenanceInformation)
            maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) notPlanned
        graphicOverview:  (MD_BrowseGraphic)
            fileName:  ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/or/umpqua/2009_USGS_Umpqua_River_Lidar.kmz
            fileDescription:  This kmz file shows the extent of coverage for the 2009 USGS Umpqua River lidar data.
            fileType:  kmz
        descriptiveKeywords:  (MD_Keywords)
            keyword:  Bathymetry/Topography
            keyword:  LiDAR
            keyword:  Light Detection and Ranging
            keyword:  DEM
            keyword:  Digital Terrain Model
            keyword:  DOGAMI
            keyword:  Elevation data
            keyword:  Bare earth
            keyword:  High-resolution
            keyword:  Bare ground
            keyword:  DTM
            type:  (MD_KeywordTypeCode) theme
            thesaurusName:  (CI_Citation)
                title:  None
                date: (unknown)
        descriptiveKeywords:  (MD_Keywords)
            keyword:  United States
            keyword:  Oregon
            keyword:  Pacific Northwest
            keyword:  Douglas County
            type:  (MD_KeywordTypeCode) place
            thesaurusName:  (CI_Citation)
                title:  None
                date: (unknown)
        resourceConstraints:  Lidar Use Limitation
        resourceConstraints:  NOAA Legal Statement
        spatialRepresentationType:  (MD_SpatialRepresentationTypeCode) vector
        language:  eng; USA
        topicCategory:  (MD_TopicCategoryCode) elevation
        extent:  (EX_Extent)
            geographicElement:  (EX_GeographicBoundingBox)
                westBoundLongitude:  -123.667727
                eastBoundLongitude:  -123.374727
                southBoundLatitude:  43.367274
                northBoundLatitude:  43.607074
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimePeriod:
                    beginPosition:  2009-04-21
                    endPosition:  2009-07-13
return to top
    distributionInfo:  (MD_Distribution)
        distributionFormat:  (MD_Format)
            name:  LAZ
            version: (unknown)
        distributor:  (MD_Distributor)
            distributorContact:  NOAA CSC(distributor) (CI_ResponsibleParty)
                organisationName: (template)
                role:  (CI_RoleCode) distributor
            distributionOrderProcess:  (MD_StandardOrderProcess)
                orderingInstructions:  The National Geophysical Data Center serves as the archive for this LIDAR data. NGDC should only be contacted for this data if it cannot be obtained from NOAA Coastal Services Center.
        distributor:  (MD_Distributor)
            distributorContact:  Mike Sutherland
            distributionOrderProcess:  (MD_StandardOrderProcess)
                orderingInstructions:  The National Geophysical Data Center serves as the archive for this LIDAR dataset. NGDC should only be contacted for the data if it cannot be obtained from NOAA Coastal Services Center.
return to top
    dataQualityInfo:  (DQ_DataQuality)
        scope:  (DQ_Scope)
            level:  (MD_ScopeCode) dataset
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Horizontal Positional Accuracy Report
            evaluationMethodDescription:  Not specified in final report, assumed to be 1 m.
            result: (missing)
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Vertical Positional Accuracy Report
            evaluationMethodDescription:  The Root Mean Square Error (RMSE) of the data is 0.04 meters. Accuracy was assessed using 2,832 ground survey RTK (real time kinematic) points. These ground survey points are distributed throughout the Umpqua River study area. The final LiDAR Report for the Umpqua River study area may be accessed at: ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/or/umpqua/Umpqua_River_LiDAR_Data_Report.pdf
            result: (missing)
        report:  (DQ_CompletenessCommission)
            evaluationMethodDescription:  LiDAR data has been collected and processed for all areas within the project study area.
            result: (unknown)
        report:  (DQ_ConceptualConsistency)
            measureDescription:  LiDAR flight lines have been examined to ensure that there is at least 50% sidelap, that there are no gaps between flightlines, and that overlapping flightlines have consistent elevation values. Shaded relief images have been visually inspected for data errors such as pits, border artifacts, gaps, and shifting.
            result: (unknown)
        lineage:  (LI_Lineage)
            processStep:  (LE_ProcessStep)
                description:  No metadata was provided to NOAA CSC with this data set. The following process step is derived from the Watershed Sciences, Inc. lidar report. This report may be accessed at: ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/or/umpqua/Umpqua_River_LiDAR_Data_Report.pdf Acquisition 1. The lidar data were collected between April 21 - July 13, 2009. 2. The survey used a Leica ALS50 Phase II and an ALS60 Phase II sensor mounted in a Cessna Caravan 208B. 3. Near nadir scan angles were used to increase penetration of vegetation to ground surfaces. 4. Ground level GPS and aircraft IMU were collected during the flight. Processing 1. Laser point coordinates are computed using the IPAS and ALS Post Processor software suites based on independent data from the LiDAR system (pulse time, scan angle), and aircraft trajectory data (SBET). Laser point returns (first through fourth) are assigned an associated (x, y, z) coordinate along with unique intensity values (0-255). The data are output into large LAS v. 1.2 files; each point maintains the corresponding scan angle, return number (echo), intensity, and x, y, z (easting, northing, and elevation) information. 2. These initial laser point files are too large to process. To facilitate laser point processing, bins (polygons) are created to divide the dataset into manageable sizes (less than 500 MB). Flightlines and LiDAR data are then reviewed to ensure complete coverage of the study areas and positional accuracy of the laser points. 3. Once the laser point data are imported into bins in TerraScan, a manual calibration is performed to assess the system offsets for pitch, roll, heading and mirror scale. Using a geometric relationship developed by Watershed Sciences, each of these offsets is resolved and corrected if necessary. 4. The LiDAR points are then filtered for noise, pits and birds by screening for absolute elevation limits, isolated points and height above ground. Each bin is then inspected for pits and birds manually; spurious points are removed. For a bin containing approximately 7.5 - 9.0 million points, an average of 50 - 100 points are typically found to be artificially low or high. These spurious non-terrestrial laser points must be removed from the dataset. Common sources of non-terrestrial returns are clouds, birds, vapor, and haze. 5. The internal calibration is refined using TerraMatch. Points from overlapping lines are tested for internal consistency and final adjustments are made for system misalignments (i.e., pitch, roll, heading offsets and mirror scale). Automated sensor attitude and scale corrections yield 3 - 5 cm improvements in the relative accuracy. Once the system misalignments are corrected, vertical GPS drift is then resolved and removed per flight line, yielding a slight improvement (less than 1 cm) in relative accuracy. At this point in the workflow, data have passed a robust calibration designed to reduce inconsistencies from multiple sources (i.e. sensor attitude offsets, mirror scale, GPS drift) using a procedure that is comprehensive (i.e. uses all of the overlapping survey data). Relative accuracy screening is complete. 6. The TerraScan software suite is designed specifically for classifying near-ground points (Soininen, 2004). The processing sequence begins by removing all points that are not near the earth based on geometric constraints used to evaluate multi-return points. The resulting bare earth (ground) model is visually inspected and additional ground point modeling is performed in site-specific areas (over a 50-meter radius) to improve ground detail. This is only done in areas with known ground modeling deficiencies, such as: bedrock outcrops, cliffs, deeply incised stream banks, and dense vegetation. In some cases, ground point classification includes known vegetation (i.e., understory, low/dense shrubs, etc.) and these points are reclassified as non-grounds. Ground surface rasters are developed from triangulated irregular networks (TINs) of ground points.
                dateTime: (unknown)
                processor:  (CI_ResponsibleParty)
                    organisationName:  Watershed Sciences, Inc.
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  971-223-5152
                        address:  (CI_Address)
                            deliveryPoint:  215 SE 9th Ave., Suite 106
                            city:  Portland
                            administrativeArea:  OR
                            postalCode:  97214
                            electronicMailAddress:  watershedsciences.com
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The NOAA Coastal Services Center (CSC) received the files in las format. The files contained LiDAR elevation and intensity measurements. The data were in UTM Zone 10 NAD83(CORS96) projection, NAVD88 (Geoid03) vertical datum and units were in meters. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The data were converted from UTM Zone 10 coordinates to geographic coordinates. 2. The data were converted from NAVD88 (orthometric) heights to GRS80 (ellipsoid) heights using Geoid03. 3. The data were sorted by time. 4. The data were converted to LAZ format.
                dateTime:
                  DateTime:  2012-12-01T00:00:00
                processor:  NOAA CSC (processor) (CI_ResponsibleParty)
                    organisationName: (template)
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
                dateTime:
                  DateTime:  2013-03-28T00:00:00
                processor:  Mike Sutherland (processor) (CI_ResponsibleParty)
                    organisationName: (template)
                    role:  (CI_RoleCode) processor
return to top
    metadataMaintenance:  (MD_MaintenanceInformation)
        maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) annually
        dateOfNextUpdate:  2014-03-28
        maintenanceNote:  This metadata was automatically generated from the FGDC Content Standards for Digital Geospatial Metadata standard (version FGDC-STD-001-1998) using the 2013-01-04 version of the FGDC RSE to ISO 19115-2 for LiDAR transform.
        maintenanceNote:  Translated from FGDC 2013-03-28T14:16:31.633-06:00