ISO Table View View Metadata As: Get Data, FAQ, HTML, 19139 XML
Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components

Metadata Identifier: gov.noaa.csc.maps:2011_12_GA_DNR_m1390

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2011 Georgia Department of Natural Resources (GADNR) Environmental Protection Division (EPD) Lidar: Seven Counties (Bibb, Harris, Heard, Jasper, Jones, Monroe, Walton) This data set is the topographic elevation point data derived from multiple return light detection and ranging (LiDAR) measurements for seven counties in Georgia. These counties are: Bibb, Harris, Heard, Jasper, Jones, Monroe, and Walton. The Statement of Work (SOW) was developed by the National Oceanic and Atmospheric Administration's (NOAA) Coastal Services Center (referred to as the Center) in partnership with the Georgia Department of Natural Resources (GADNR) Environmental Protection Division (EPD). The data included hydro flattened DEMs for inclusion into the National Elevation Dataset (NED). LiDAR was collected as weather permitted between March 2 and April 14, 2011. In all, a total of 2570 square miles were collected in 390 flightlines. The data were collected at 1.0 point per square meter (1.0 m GSD) for the seven "inland" counties in Georgia. This area was flown during snow free and leaf-off conditions. The data contains las points with the following classifications: Class -1 No Classification Class 2 Ground Class 7 Low Point (Noise) Class 9 Water Class 10 Land below sea level Class 12 Overlap
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2011 Georgia Department of Natural Resources (GADNR) Environmental Protection Division (EPD) Lidar: Seven Counties (Bibb, Harris, Heard, Jasper, Jones, Monroe, Walton)
  • 2012-09-01
2 None
    1 North American Datum 1983
    • 2007-01-19
    Top

    CI_Series

    none found
    Top

    CI_ResponsibleParty

    Count Component Individual Organization Position Email Role Linkage
    1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
    1 NOAA CSC (originator) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov originator
    1 NOAA CSC (publisher) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov publisher
    1 NOAA CSC (pointOfContact) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov pointOfContact
    1 NOAA CSC(distributor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov distributor
    1 NOAA CSC (processor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov processor
    1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
    1 Georgia Department of Natural Resources (GADNR) originator
    1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
    1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
    1 Mike Sutherland (processor) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov processor
    Top

    CI_OnlineResource

    Count Component Linkage Name Description Function
    1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
    1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
    Top

    MD_Identifier or RS_Identifier

    Count Component Code
    1 Ellipsoid in Meters
    1 urn:ogc:def:crs:EPSG::4269
    Top

    EX_Extent

    Bounding Box Temporal Extent
    Count Component Description West East North South Start End
    1 -85.309409 -83.331076 33.944867 32.565594 2011-03-02 2011-04-12
    Top

    EX_GeographicBoundingBox

    Count Component West East North South
    1 -85.309409 -83.331076 33.944867 32.565594
    Top

    EX_TemporalExtent

    Count Component Start End
    1 2011-03-02 2011-04-12
    Top

    MD_Format

    Count Component Name Version specification
    1 LAZ
    Top

    MD_Medium

    none found
    Top

    MD_Constraints

    Count Component Use Limitation
    1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
    Top

    MD_ReferenceSystem

    Count Component Code Authority Title
    1 Ellipsoid Ellipsoid in Meters
    1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
    Top

    MD_GridSpatialRepresentation

    none found
    Top

    MD_Georeferenceable or MI_Georeferenceable

    none found
    Top

    MD_Georectified or MI_Georectified

    none found
    Top

    MD_Dimension

    none found
    Top

    MD_CoverageDescription or MI_CoverageDescription

    none found
    Top

    MD_Band or MI_Band

    none found
    Top

    MI_RangeElementDescription

    none found
    Top

    MD_AggregateInformation

    none found
    Top

    LE_Source or LI_Source

    none found
    Top

    LE_ProcessStep or LI_ProcessStep

    Count Component DateTime Description
    1 2011-01-01T00:00:00 Applanix software was used in the post processing of the airborne GPS and inertial data that is critical to the positioning and orientation of the sensor during all flights. POSPac MMS provides the smoothed best estimate of trajectory (SBET) that is necessary for Optech's post processor to develop the point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional collection of all returns from all laser pulses as determined from the aerial mission. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface modelin which the above ground features are removed from the data set. The point cloud was manipulated within the Optech or Leica software; GeoCue, TerraScan, and TerraModeler software was used for the automated data classification, manual cleanup, and bare earth generation from this data. Project specific macros were used to classify the ground and to remove the side overlap between parallel flight lines. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Class 2 LIDAR was used to create a bare earth surface model. The surface model was then used to heads-up digitize 2D breaklines of inland streams and rivers. Inland Ponds and Lakes of 0.5 acres or greater were also collected along with the Coastal Shoreline for the ten "coastal" counties and 2.0 acres for the seven "inland" counties. Elevation values were assigned to all Inland Ponds, Lakes, and Shorelines using TerraModeler functionality. Elevation values were assigned to all Inland streams and rivers using Photo Science proprietary software. All Class 2 LIDAR data falling inside of the collected breaklines were then classified to Class 9 and Class 2 LIDAR data falling within a proximity of three feet will be classified to Class 10 using TerraScan macro functionality. The breakline files were translated to ESRI Shapefile format using ESRI conversion tools. Data was then run through additional macros to ensure deliverable classification levels matching LAS ASPRS Classification structure. GeoCue functionality was used to ensure correct LAS Version. In house software was used as a final QA/QC check to provide LAS Analysis of the delivered tiles. Tiles were run through automated scripting within ArcMap and were combined with the Hydro Flattened Breaklines to create the 4' DEM. Final DEM tiles were clipped to the tile boundary in order to provide a seamless dataset. A manual QA review of the tiles was completed in ArcMap and Global Mapper to ensure full coverage with no gaps or slivers within the project area.
    1 2012-08-01T00:00:00 The NOAA Coastal Services Center (CSC) received the files in las format. The files contained lidar elevation and intensity measurements. The data were in State Plane projection (NAD83, Georgia West), and vertically referenced to NAVD88 using the Geoid 09 model. Both horizontal and vertical units were in survey feet. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The data were converted from Georgia State Plane coordinates to geographic (NAD83) coordinates. 2. The data were converted from orthometric (NAVD88) heights to ellipsoidal heights (GRS80) using Geoid 09. 3. The data were converted from vertical units of survey feet to meters 4. Elevation outliers were removed. 5. The data were converted to LAZ format.
    1 2013-01-22T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
    Top

    MI_Operation

    none found
    Top

    MI_Platform

    none found
    Top

    MI_Instrument

    none found
    Top