ISO Table View View Metadata As: Get Data, FAQ, HTML, 19139 XML
Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components

Metadata Identifier: gov.noaa.csc.maps:2011_usgs_baldwin_m1425

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2011 U.S. Geological Survey (USGS) Alabama Topographic LiDAR: Baldwin County East and West USGS Contract: G10PC00026 Task Order Number: G10PD02126 LiDAR was collected at a 2.0 meter nominal post spacing (2.0m GSD) for approximately 329 square miles of Baldwin County, Alabama, while no snow was on the ground and rivers were at or below normal levels. Project was divided into two separate AOIs, Baldwin West and Baldwin East. Project meets U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 13. LAS Classifications: Class 1: Unclassified Class 2: Bare Earth Ground Class 5: High Vegetation Class 7: Noise (Low points) Class 9: Water Class 10: Ignored Ground (within 1m of breakline) Class 12: Overlap Class 13: Witheld
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2011 U.S. Geological Survey (USGS) Alabama Topographic LiDAR: Baldwin County East and West
  • 2013-01-01
1 None
    1 North American Datum 1983
    • 2007-01-19
    1 none
      Top

      CI_Series

      none found
      Top

      CI_ResponsibleParty

      Count Component Individual Organization Position Email Role Linkage
      1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
      1 NOAA CSC (originator) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov originator
      1 NOAA CSC (publisher) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov publisher
      1 NOAA CSC(distributor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov distributor
      1 NOAA CSC (processor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov processor
      1 DOI/USGS > United States Geological Survey, U.S. Department of Interior originator
      1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
      1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
      1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
      1 Mike Sutherland (processor) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov processor
      1 Patrick Emmett USGS/NGTOC pemmett@usgs.gov pointOfContact
      Top

      CI_OnlineResource

      Count Component Linkage Name Description Function
      1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
      1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
      Top

      MD_Identifier or RS_Identifier

      Count Component Code
      1 Ellipsoid in Meters
      1 urn:ogc:def:crs:EPSG::4269
      Top

      EX_Extent

      Bounding Box Temporal Extent
      Count Component Description West East North South Start End
      1 -88.045250 -87.354075 30.865296 30.298128 2011-01-22 2011-01-28
      Top

      EX_GeographicBoundingBox

      Count Component West East North South
      1 -88.045250 -87.354075 30.865296 30.298128
      Top

      EX_TemporalExtent

      Count Component Start End
      1 2011-01-22 2011-01-28
      Top

      MD_Format

      Count Component Name Version specification
      1 LAZ
      Top

      MD_Medium

      none found
      Top

      MD_Constraints

      Count Component Use Limitation
      1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
      Top

      MD_ReferenceSystem

      Count Component Code Authority Title
      1 Ellipsoid Ellipsoid in Meters
      1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
      Top

      MD_GridSpatialRepresentation

      none found
      Top

      MD_Georeferenceable or MI_Georeferenceable

      none found
      Top

      MD_Georectified or MI_Georectified

      none found
      Top

      MD_Dimension

      none found
      Top

      MD_CoverageDescription or MI_CoverageDescription

      none found
      Top

      MD_Band or MI_Band

      none found
      Top

      MI_RangeElementDescription

      none found
      Top

      MD_AggregateInformation

      none found
      Top

      LE_Source or LI_Source

      none found
      Top

      LE_ProcessStep or LI_ProcessStep

      Count Component DateTime Description
      1 2011-01-01T00:00:00 Applanix software was used in the post processing of the airborne GPS and inertial data that is critical to the positioning and orientation of the sensor during all flights. POSPac MMS provides the smoothed best estimate of trajectory (SBET) that is necessary for Optech's post processor to develop the point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional collection of all returns from all laser pulses as determined from the aerial mission. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the above ground features are removed from the data set. The point cloud was manipulated within the Optech software; GeoCue, TerraScan, and TerraModeler software was used for the automated data classification, manual cleanup, and bare earth generation from this data. Project specific macros were used to classify the ground and to remove the side overlap between parallel flight lines. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. The Baldwin County project (G10PD02126) is immediately adjacent to the NGOM Mobile Bay LiDAR project (G10PD00578). A manual review was performed to ensure that the two datasets tied together as seemlessly as possible. Revisions were made to both the LAS and breakline datasets as needed in order to achieve a smooth transition between the two datasets. NGOM Mobile Bay data was used to produce full tile deliverables on the eastern edge of the Baldwin County West dataset and the western edge of the Baldwin County East dataset. Upon completion of the Baldwin County deliverables, revised copies of the NGOM deliverables that border the Baldwin dataset will be provided in order to ensure that the two datasets agree with each other. All Class 2 LiDAR data inside of the collected breaklines were then classified to Class 9 using TerraScan macro functionality. A buffer of 1 meter was also used around each hydro flattened feature. The breakline files were then translated to ESRI Shapefile format using ESRI conversion tools. Data was then run through additional macros to ensure deliverable classification levels matching LAS ASPRS Classification structure. GeoCue functionality was then used to ensure correct LAS Version. In house software was used as a final QA/QC check to provide LAS Analysis of the delivered tiles.
      1 2012-12-01T00:00:00 The NOAA Coastal Services Center (CSC) received topographic files in LAS format. The files contained lidar elevation and intensity measurements. The data were received in UTM Zone 16 (NAD83) coordinates and were vertically referenced to NAVD88 using the Geoid09 model. The vertical units of the data were meters. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The topographic las files were converted from orthometric (NAVD88) heights to ellipsoidal heights using Geoid09. 2. The topographic las files were horizontally converted from UTM coordinates (m) to NAD83 Geographic coordinates (dd). 3. ASPRS Class 11 (Witheld) was changed to Class 13 (Witheld). 4. The data were converted to LAZ format.
      1 2013-03-28T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
      Top

      MI_Operation

      none found
      Top

      MI_Platform

      none found
      Top

      MI_Instrument

      none found
      Top