ISO Table View View Metadata As: Get Data, FAQ, HTML, 19139 XML
Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components

Metadata Identifier: gov.noaa.csc.maps:2011_usvi_bathymetry_m1394

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2011 NOAA Bathymetric Lidar: U.S. Virgin Islands - St. Thomas, St. John, St. Croix (Salt River Bay, Buck Island) This data represents a LiDAR (Light Detection & Ranging) gridded bathymetric surface and a gridded relative seafloor reflectivity surface (incorporated into the las format as intensity) for an area of shallow seabed: 1. Surrounding St. Thomas and St. John (STT/STJ): 3m x 3m grid 2. Mouth of Salt River Bay (SARI) in St. Croix: 5m x 5m grid 3. Buck Island Reef National Monument (BUIS) in St. Croix: 3m x 3m grid Fugro LADS, in collaboration with NOAA's National Ocean Service (NOS), National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment (CCMA), Biogeography Branch, the University of New Hampshire and the National Park Service, acquired bathymetry, relative seafloor reflectivity and hyperspectral imagery in St. Thomas and St. John on thirteen separate dates between 1/29/2011 to 2/28/2011 and in St. Croix (SARI and BUIS) on 2/21/2011 and 2/22/2011. 1. STT/STJ Hyperspectral data were acquired using a Hyspex VNIR-1600 sensor. Bathymetry and reflectivity data were acquired using a LADS (Laser Airborne Depth Sounder) Mark II Airborne System from altitudes between 1,200 and 2,200ft at ground speeds between 140 and 210 knots. The 900 Hertz Nd: YAG (neodymium-doped yttrium aluminum garnet) laser (1064 nm) acquired 3x3 meter spot spacing and 200% seabed coverage. For STT/STJ, 168.1 square kilometers of LiDAR were collected between 0 m and 40 m in depth. Data was flown for charting. This data met IHO Order 1 standards. 2. SARI Hyperspectral data were acquired using a Hyspex VNIR-1600 sensor. Bathymetry and reflectivity data were acquired using a LADS (Laser Airborne Depth Sounder) Mark II Airborne System from altitudes between 1,200 and 2,200ft at ground speeds between 140 and 175 knots. The 900 Hertz Nd: YAG (neodymium-doped yttrium aluminum garnet) laser (1064 nm) acquired 5x5 meter spot spacing and 200% seabed coverage. For SARI, 1.62 square kilometers of LiDAR were collected between 0 m and 34 m in depth. This data was collected for research, not charting. It was collected using the same acquistion parameters as STT/STJ, but its uncertainties were not quantified. As such, it is not known if this data meets IHO Order 1 standards. 3. BUIS Hyperspectral data were acquired using a Hyspex VNIR-1600 sensor. Bathymetry and reflectivity data were acquired using a LADS (Laser Airborne Depth Sounder) Mark II Airborne System from altitudes between 1,200 and 2,200ft at ground speeds between 140 and 175 knots. The 900 Hertz Nd: YAG (neodymium-doped yttrium aluminum garnet) laser (1064 nm) acquired 3x3 meter spot spacing and 200% seabed coverage. For BUIS, 35.9 square kilometers of LiDAR were collected between 0 m and 49 m in depth. This data was collected for research, not charting. It was collected using the same acquistion parameters as STT/STJ, but its uncertainties were not quantified. As such, it is not known if this data meets IHO Order 1 standards. The data received from NCCOS were in GEOTIFF format for both the lidar and seafloor reflectivity. The NOAA Coastal Services Center converted these two data sets to text format and then combined them into one text file based on x and y. The text file was then converted to las format, where the seafloor reflectivity is represented as intensity. The data's horizontal coordinate system was NAD83 UTM 20 North, and depth values were collected in meters referenced to Mean Lower Low Water (MLLW) depths. Upon receipt of the data, the NOAA Coastal Services Center converted the data to geographic coordinates and ellipsoid heights for data storage and Digital Coast provisioning purposes. Environmental factors such as wind strength and direction, cloud cover, water clarity and depth influenced the area of data acquisition on a daily basis. The data was processed using the LADS Mark II Ground System and data visualization, quality control and final products were created using CARIS HIPS and SIPS and CARIS BASE Editor. All users should individually evaluate the suitability of this data according to their own needs and standards.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2011 NOAA Bathymetric Lidar: U.S. Virgin Islands - St. Thomas, St. John, St. Croix (Salt River Bay, Buck Island)
  • 2013-06-01
1 CARIS BASE Surface
1 Descriptive Report
    1 GeoTIFFs of: 1. 3x3 m Bathymetry for St. Thomas & St. John, 2011, UTM 20N NAD83, 3x3 m Relative Reflectivity for St. Thomas & St. John, 2011, UTM 20N NAD83 2. 5x5 m Bathymetry for Salt River Bay, St. Croix, 2011, UTM 20N NAD83, 5x5 m Relative Reflectivity for Salt River Bay, St. Croix, 2011, UTM 20N NAD83 3. 3x3 m Bathymetry for Buck Island, St. Croix, 2011, UTM 20N NAD83, 3x3 m Relative Reflectivity for Buck Island, St. Croix, 2011, UTM 20N NAD83
    • 2011-01-01
    2 None
      1 North American Datum 1983
      • 2007-01-19
      1 Processed Lidar Data
      1 Raw Lidar Data
      Top

      CI_Series

      none found
      Top

      CI_ResponsibleParty

      Count Component Individual Organization Position Email Role Linkage
      1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
      1 Citation URL ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/vi/LiDAR_2011_StThomasJohn_DAPR.pdf
      5 DOC/NOAA/NOS/NCCOS/CCMA/Biogeography Branch > Biogeography Branch, Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce originator
      1 DOC/NOAA/NOS/NCCOS/CCMA/Biogeography Branch > Biogeography Branch, Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce ccma@noaa.gov pointOfContact
      1 NOAA CSC (originator) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov originator http://coast.noaa.gov
      1 NOAA CSC (publisher) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov publisher http://coast.noaa.gov
      1 NOAA CSC(distributor) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov distributor http://coast.noaa.gov
      1 NOAA CSC (processor) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce coastal.info@noaa.gov processor http://coast.noaa.gov
      1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
      1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
      1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
      1 Mike Sutherland (processor) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov processor
      Top

      CI_OnlineResource

      Count Component Linkage Name Description Function
      1 ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/vi/LiDAR_2011_StThomasJohn_DAPR.pdf Descriptive Report information
      4 http://coast.noaa.gov
      1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
      1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
      Top

      MD_Identifier or RS_Identifier

      Count Component Code
      1 Ellipsoid in Meters
      1 urn:ogc:def:crs:EPSG::4269
      Top

      EX_Extent

      Bounding Box Temporal Extent
      Count Component Description West East North South Start End
      1 -65.072310 -64.554218 18.420755 17.763395 2011-01-29 2011-02-28
      1 2011-01-29 2011-02-28
      3 2011-02-01 2011-03-01
      Top

      EX_GeographicBoundingBox

      Count Component West East North South
      1 -65.072310 -64.554218 18.420755 17.763395
      Top

      EX_TemporalExtent

      Count Component Start End
      2 2011-01-29 2011-02-28
      3 2011-02-01 2011-03-01
      Top

      MD_Format

      Count Component Name Version specification
      1 LAZ
      Top

      MD_Medium

      none found
      Top

      MD_Constraints

      Count Component Use Limitation
      1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
      Top

      MD_ReferenceSystem

      Count Component Code Authority Title
      1 Ellipsoid Ellipsoid in Meters
      1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
      Top

      MD_GridSpatialRepresentation

      none found
      Top

      MD_Georeferenceable or MI_Georeferenceable

      none found
      Top

      MD_Georectified or MI_Georectified

      none found
      Top

      MD_Dimension

      none found
      Top

      MD_CoverageDescription or MI_CoverageDescription

      none found
      Top

      MD_Band or MI_Band

      none found
      Top

      MI_RangeElementDescription

      none found
      Top

      MD_AggregateInformation

      Count Component Title Code Association Type Code
      1 Descriptive Report crossReference
      Top

      LE_Source or LI_Source

      Count Component Title Date Description
      1 CARIS BASE Surface Source Contribution: Base Surface. Down sampled CARIS BASE (Bathymetry Associated with Statistical Error) grid with best depth layer. Sourced from processed HDCS data. Source Type: external hard drive
      1 GeoTIFFs of: 1. 3x3 m Bathymetry for St. Thomas & St. John, 2011, UTM 20N NAD83, 3x3 m Relative Reflectivity for St. Thomas & St. John, 2011, UTM 20N NAD83 2. 5x5 m Bathymetry for Salt River Bay, St. Croix, 2011, UTM 20N NAD83, 5x5 m Relative Reflectivity for Salt River Bay, St. Croix, 2011, UTM 20N NAD83 3. 3x3 m Bathymetry for Buck Island, St. Croix, 2011, UTM 20N NAD83, 3x3 m Relative Reflectivity for Buck Island, St. Croix, 2011, UTM 20N NAD83 2011-01-01 Source Contribution: Depth and Reflectivity Grids in Geotiff format. Down sampled GeoTIFF raster containing depth values in meters (referenced to MLLW). Sourced from CARIS BASE surface. Down sampled GeoTIFF raster containing relative reflectivity (intensity) values. These values do not have units given the complexity of modeling losses through the water-column and at the water/air interface. Because the dataset is of relative reflectivity rather than an absolute value for each point, the entire dataset is scaled to ensure the full dynamic range is used over the dataset. This scaling is applied over an entire survey area to ensure dataset consistency. Sourced from CARIS BASE surface. Source Type: external hard drive
      1 Processed Lidar Data Source Contribution: Processed Lidar Data. Processed, cleaned, and corrected full resolution dataset. Sourced from raw LADS data.Source Type: external hard drive
      1 Raw Lidar Data Source Contribution: Raw lidar data. Original raw full resolution dataset.Source Type: external hard drive
      Top

      LE_ProcessStep or LI_ProcessStep

      Count Component DateTime Description
      1 2011-01-01T00:00:00 1. STT/STJ James Guilford and Scott Ramsay from Fugro LADS led this mapping effort. Hyperspectral data were acquired using a Hyspex VNIR-1600 sensor. Bathymetry and reflectivity data were acquired using a LADS (Laser Airborne Depth Sounder) Mark II Airborne System from altitudes between 1,200 and 2,200ft at ground speeds between 140 and 210 knots. The 900 Hertz Nd: YAG (neodymium-doped yttrium aluminum garnet) laser (1064 nm) acquired 3x3 meter spot spacing and 200% seabed coverage. Green laser pulses are scanned beneath the aircraft in a rectilinear pattern. The pulses are reflected from the land, sea surface, within the water column and from the seabed. The height of the aircraft is determined by the infrared laser return, which is supplemented by the inertial height from the Attitude and Heading Reference System and GPS height. Real-time positioning is obtained by an Ashtech GG24 GPS receiver combined with Wide Area DGPS (Differential Global Positioning System) provided by the Fugro Omnistar to provide a differentially corrected position. Ashtech Z12 GPS receivers are also provided as part of the Airborne System and Ground Systems to log KGPS (Kinetic Global Positioning System) data on the aircraft and at a locally established GPS (Global Positioning System) base station. 2. SARI James Guilford and Scott Ramsay from Fugro LADS lead this mapping effort. Hyperspectral data were acquired using a Hyspex VNIR-1600 sensor. Bathymetry and reflectivity data were acquired using a LADS (Laser Airborne Depth Sounder) Mark II Airborne System from altitudes between 1,200 and 2,200ft at ground speeds between 140 and 175 knots. The 900 Hertz Nd: YAG (neodymium-doped yttrium aluminum garnet) laser (1064 nm) acquired 5x5 meter spot spacing and 200% seabed coverage. Green laser pulses are scanned beneath the aircraft in a rectilinear pattern. The pulses are reflected from the land, sea surface, within the water column and from the seabed. The height of the aircraft is determined by the infrared laser return, which is supplemented by the inertial height from the Attitude and Heading Reference System and GPS height. Real-time positioning is obtained by an Ashtech GG24 GPS receiver combined with Wide Area DGPS (Differential Global Positioning System) provided by the Fugro Omnistar to provide a differentially corrected position. Ashtech Z12 GPS receivers are also provided as part of the Airborne System and Ground Systems to log KGPS (Kinetic Global Positioning System) data on the aircraft and at a locally established GPS (Global Positioning System) base station. 3. BUIS James Guilford and Scott Ramsay from Fugro LADS lead this mapping effort. Hyperspectral data were acquired using a Hyspex VNIR-1600 sensor. Bathymetry and reflectivity data were acquired using a LADS (Laser Airborne Depth Sounder) Mark II Airborne System from altitudes between 1,200 and 2,200ft at ground speeds between 140 and 175 knots. The 900 Hertz Nd: YAG (neodymium-doped yttrium aluminum garnet) laser (1064 nm) acquired 3x3 meter spot spacing and 200% seabed coverage. Green laser pulses are scanned beneath the aircraft in a rectilinear pattern. The pulses are reflected from the land, sea surface, within the water column and from the seabed. The height of the aircraft is determined by the infrared laser return, which is supplemented by the inertial height from the Attitude and Heading Reference System and GPS height. Real-time positioning is obtained by an Ashtech GG24 GPS receiver combined with Wide Area DGPS (Differential Global Positioning System) provided by the Fugro Omnistar to provide a differentially corrected position. Ashtech Z12 GPS receivers are also provided as part of the Airborne System and Ground Systems to log KGPS (Kinetic Global Positioning System) data on the aircraft and at a locally established GPS (Global Positioning System) base station.
      1 2011-01-01T00:00:00 The reflectivity of an LADS pulse is a measure of the amount of energy reflected from the seabed for each individual laser pulse at the wavelength of the laser, 532nm (green/blue). The basic difference between processing an ALB waveform for depth and for reflectivity is that depth processing focuses on the leading edge of the return waveform, whereas reflectivity requires integration of the entire return pulse. Each sounding is assessed for suitability. Dry soundings and soundings in very shallow water are not processed for reflectivity. Each sounding is normalized for the electronic gain applied to the photo multiplier tube to which the received laser energy is optically routed. The gain-normalized return waveform is then analyzed to determine energy returning from the seabed. Integration of the waveform from the seabed will produce a numerical value of reflectivity. To ensure that this value accurately and meaningfully describes variation in seabed reflectivity several parameters must be taken into consideration. Energy is lost from the pulses transmitted from the aircraft. These losses include the air/water interface and those through the water column, and any system specific losses such as optical filtering and receiver field of view. Reflectivity value, calculated for each pulse, is the ratio between the received energy normalized for the losses described and the transmitted energy. Once a relative reflectivity value has been calculated, further statistical cleaning to remove outliers is completed. Because the dataset is of relative reflectivity rather than an absolute value for each point, the entire dataset is scaled to ensure the full dynamic range is used over the dataset. This scaling is applied over an entire survey area to ensure dataset consistency (Collins et al. 2007). Collins et al. 2007 is available online here: http://www.fugrolads.com/datasheets/Hydro_Intl_LiDAR_Seabed_Classification.pdf
      1 2013-04-01T00:00:00 The NOAA Coastal Services Center received the bathymetric and reflectivity gridded data in GEOTIFF format. The data were in UTM Zone 20N, NAD83 coordinates and were vertically referenced to MLLW. The vertical units of the data were meters. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The bathymetric and reflectivity data were converted from GEOTIFF format to text format. 2. A perl script, brundle.pl was created to combine the bathymetric and reflectivity text data sets into one text file based on x and y. The new text file format was x, y, z, r. 3. The new xyzr text file was processed through VDatum to convert from UTM coordinates to geographic coordinates and to convert from MLLW depths to ellipsoid heights using Geoid12A. 4. Data were converted from txt to las format and the points given a NOAA CSC bathymetric classification of 11 using the lastools tool, txt2las. The reflectivity data were incorporated into the las format and are represented as intensity. 5. Data were filtered for outliers using the lastools tool, las2las 6. The data were converted to LAZ format.
      1 2013-06-28T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
      Top

      MI_Operation

      none found
      Top

      MI_Platform

      none found
      Top

      MI_Instrument

      none found
      Top