ISO Table View View Metadata As: Get Data, FAQ, HTML, 19139 XML
Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components

Metadata Identifier: gov.noaa.csc.maps:2012_USACE_PostSandy_MD_VA_m1437

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2012 USACE Post Hurricane Sandy Topographic LiDAR: Virginia and Maryland TASK ORDER NAME: VIRGINIA AND MARYLAND LIDAR ACQUISITION FOR HURRICANE SANDY RESPONSE CONTRACT NUMBER: W912P9-10-D-0533 TASK ORDER NUMBER: W81C8X2314841 Woolpert Project Number: 72903 HQ. USACE required high-resolution digital elevation data developed from airborne LiDAR technology for the Assateague Island, MD; Assateague Island, VA; Tangier Island, VA; Cape Henry to Willoughby Point, VA; AOIs for a total of approximately eighty (80) square miles in the North Atlantic Division. The final LiDAR data was delivered in a UTM projection tiling format, based on a modular layout. The tiles were clipped to eliminate overlap between adjacent tiles. The 1000 meter x 1000 meter tile file name was derived from the National Grid naming convention.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2012 USACE Post Hurricane Sandy Topographic LiDAR: Virginia and Maryland
  • 2013-01-01
2 None
    1 North American Datum 1983
    • 2007-01-19
    Top

    CI_Series

    none found
    Top

    CI_ResponsibleParty

    Count Component Individual Organization Position Email Role Linkage
    1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
    1 NOAA CSC (originator) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce ocm.info@noaa.gov originator
    1 NOAA CSC (publisher) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce ocm.info@noaa.gov publisher
    1 NOAA CSC(distributor) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce ocm.info@noaa.gov distributor
    1 NOAA CSC (processor) DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce ocm.info@noaa.gov processor
    1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
    1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
    1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
    1 Mike Sutherland (processor) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov processor
    1 US Army Corps of Engineers (USACE) St. Louis District originator
    1 US Army Corps of Engineers St. Louis District ted.e.stanton@usace.army.mil pointOfContact
    4 Woolpert, Inc. Geospatial Services processor
    Top

    CI_OnlineResource

    Count Component Linkage Name Description Function
    1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
    1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
    Top

    MD_Identifier or RS_Identifier

    Count Component Code
    1 Ellipsoid in Meters
    1 urn:ogc:def:crs:EPSG::4269
    Top

    EX_Extent

    Bounding Box Temporal Extent
    Count Component Description West East North South Start End
    1 -76.335528 -75.022929 38.488328 36.862742 2012-11-09 2012-11-11
    Top

    EX_GeographicBoundingBox

    Count Component West East North South
    1 -76.335528 -75.022929 38.488328 36.862742
    Top

    EX_TemporalExtent

    Count Component Start End
    1 2012-11-09 2012-11-11
    Top

    MD_Format

    Count Component Name Version specification
    1 LAZ
    Top

    MD_Medium

    none found
    Top

    MD_Constraints

    Count Component Use Limitation
    1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
    Top

    MD_ReferenceSystem

    Count Component Code Authority Title
    1 Ellipsoid Ellipsoid in Meters
    1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
    Top

    MD_GridSpatialRepresentation

    none found
    Top

    MD_Georeferenceable or MI_Georeferenceable

    none found
    Top

    MD_Georectified or MI_Georectified

    none found
    Top

    MD_Dimension

    none found
    Top

    MD_CoverageDescription or MI_CoverageDescription

    none found
    Top

    MD_Band or MI_Band

    none found
    Top

    MI_RangeElementDescription

    none found
    Top

    MD_AggregateInformation

    none found
    Top

    LE_Source or LI_Source

    none found
    Top

    LE_ProcessStep or LI_ProcessStep

    Count Component DateTime Description
    1 2012-01-01T00:00:00 The LiDAR system calibration and system performance is verified on a periodic basis using Woolpert's calibration range. The calibration range consists of a large building and runway. The edges of the building and control points along the runway have been located using conventional survey methods. Inertial measurement unit (IMU) misalignment angles and horizontal accuracy are calculated by comparing the position of the building edges between opposing flight lines. The scanner scale factor and vertical accuracy is calculated through comparison of LiDAR data against control points along the runway. Field calibration is performed on all flight lines to refine the IMU misalignment angles. IMU misalignment angles are calculated from the relative displacement of features within the overlap region of adjacent (and opposing) flight lines. The raw LiDAR data is reduced using the refined misalignment angles.
    1 2012-11-09T00:00:00 Using an Optech Gemini LiDAR Sensor, 32 flight lines of high density data, at a nominal pulse spacing (NPS) of 1 meter, were collected along the Virginia coastal area separated into areas of interest: Assateague Island (Maryland), Assateague Island (Virginia), Tangier Island (Virginia), and Cape Henry to Willoughby Point (Virginia) (approximately 80 square miles). Data Acquisition Height = 5,500 feet AGL - Aircraft Speed = 125 Knots. Multiple returns were recorded for each laser pulse along with an intensity value for each return. A total of three (3) missions were flown during a period from November 9, 2012 through November 11, 2012. Two airborne global positioning system (GPS) base stations were used in support of the LiDAR data acquisition. Sixteen (16) ground control points were surveyed through static methods. The geoid used to reduce satellite derived elevations to orthometric heights was Geoid12A. Data for the task order is referenced to the UTM Zone 18N, North American Datum of 1983 (NAD83), and NAVD88, in Meters. Airborne GPS data was differentially processed and integrated with the post processed IMU data to derive a smoothed best estimate of trajectory (SBET). The SBET was used to reduce the LiDAR slant range measurements to a raw reflective surface for each flight line. The coverage was classified to extract a bare earth digital elevation model (DEM) and separate last returns. In addition to the LAS deliverables, one layer of coverage was delivered in the ArcGrid Format: bare-earth.
    1 2012-11-12T00:00:00 Once the data acquisition and GPS processing phases are complete, the LiDAR data was processed immediately to verify the coverage had no voids. The GPS and IMU data was post processed using differential and Kalman filter algorithms to derive a best estimate of trajectory. The quality of the solution was verified to be consistent with the accuracy requirements of the project.
    1 2012-11-12T00:00:00 The individual flight lines were inspected to ensure the systematic and residual errors have been identified and removed. Then, the flight lines were compared to adjacent flight lines for any mismatches to obtain a homogenous coverage throughout the project area. The point cloud underwent a classification process to determine bare-earth points and non-ground points utilizing "first and only" as well as "last of many" LiDAR returns. This process determined Default (Class 1), Ground (Class 2),Noise (Class 7), Model Key Points (Class 8), and Overlap (Class 12) classifications. The bare-earth (Class 2 - Ground) LiDAR points underwent a manual QA/QC step to verify that artifacts have been removed from the bare-earth surface. The surveyed ground control points are used to perform the accuracy checks and statistical analysis of the LiDAR dataset.
    1 2013-01-01T00:00:00 The NOAA Coastal Services Center (CSC) received topographic files in LAS format. The files contained lidar elevation and intensity measurements. The data were received in projected coordinates of NAD83 UTM18N, meters and were vertically referenced to NAVD88 using the Geoid12a model. The vertical units of the data were meters. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The topographic las files were converted from orthometric (NAVD88) heights to ellipsoidal heights using Geoid12a. 2. The topographic las files were converted from Projected Coordinates (NAD83 UTM18N, meters) to Geographic Coordinates (NAD83, decimal degrees). 3. The data were converted to LAZ format.
    1 2013-02-20T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
    Top

    MI_Operation

    none found
    Top

    MI_Platform

    none found
    Top

    MI_Instrument

    none found
    Top