Text View of ISO 19115/19115-2 Metadata with Links to Guidance on NOAA EDM WikiAlternate Views: Get Data, FAQ, ISO Rubric, DOI Rubric, CSW, HTML, Components, XML

2011 Federal Emergency Management Agency (FEMA) Topographic Lidar: Massachusetts and Rhode Island

spatialRepresentationInfo
referenceSystemInfo
referenceSystemInfo
identificationInfo
distributionInfo
dataQualityInfo
metadataMaintenance

 (MI_Metadata)
    fileIdentifier:  gov.noaa.csc.maps:ne2011_fema_mari_m2557
    language:  eng; USA
    characterSet:  (MD_CharacterSetCode) utf8
    hierarchyLevel:  (MD_ScopeCode) dataset
    contact:  (CI_ResponsibleParty)
        individualName:  Mike Sutherland
        organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
        contactInfo:  (CI_Contact)
            phone:  (CI_Telephone)
                voice:  303-497-6120
                facsimile:  303-497-6513
            address:  (CI_Address)
                deliveryPoint:  NOAA/NESDIS/NGDC E/GC1 325 Broadway
                city:  Boulder
                administrativeArea:  CO
                postalCode:  80305-3328
                country:  USA
                electronicMailAddress:  mike.sutherland@noaa.gov
            hoursOfService:  7:30am-5:00pm Mountain
        role:  (CI_RoleCode) author
    dateStamp:  2013-10-17
    metadataStandardName:  ISO 19115-2 Geographic Information - Metadata - Part 2: Extensions for Imagery and Gridded Data
    metadataStandardVersion:  ISO 19115-2:2009(E)
return to top
    spatialRepresentationInfo:  (MD_VectorSpatialRepresentation)
        geometricObjects:  (MD_GeometricObjects)
            geometricObjectType:  (MD_GeometricObjectTypeCode) point
return to top
    referenceSystemInfo:  (MD_ReferenceSystem)
        referenceSystemIdentifier:  (RS_Identifier)
            authority:  (CI_Citation)
                title:  North American Datum 1983
                alternateTitle:  NAD83
                date:  (CI_Date)
                    date:  2007-01-19
                    dateType:  (CI_DateTypeCode) revision
                citedResponsibleParty:  (CI_ResponsibleParty)
                    organisationName:
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage: http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
                            name:  NAD83
                            description:  Link to Geographic Markup Language (GML) description of reference system.
                            function:  (CI_OnLineFunctionCode) information
                    role:  (CI_RoleCode) resourceProvider
                citedResponsibleParty:  (CI_ResponsibleParty)
                    organisationName:  European Petroleum Survey Group
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage: http://www.epsg-registry.org/
                            name:  European Petroleum Survey Group Geodetic Parameter Registry
                            description:  Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations.
                            function:  (CI_OnLineFunctionCode) search
                    role:  (CI_RoleCode) publisher
            code:  urn:ogc:def:crs:EPSG::4269
return to top
    referenceSystemInfo:  (MD_ReferenceSystem)
        referenceSystemIdentifier:  (RS_Identifier)
            code:  Ellipsoid in Meters
            codeSpace:  Local Vertical Reference
return to top
    identificationInfo:  (MD_DataIdentification)
        citation:  (CI_Citation)
            title:  2011 Federal Emergency Management Agency (FEMA) Topographic Lidar: Massachusetts and Rhode Island
            date:  (CI_Date)
                date:  2013-09-01
                dateType:  (CI_DateTypeCode) publication
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  csc.info@noaa.gov
                role:  (CI_RoleCode) originator
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DHS/FEMA > Federal Emergency Management Agency, U.S. Department of Homeland Security
                role:  (CI_RoleCode) originator
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  Strategic Alliance for Risk Reduction (STARR)
                role:  (CI_RoleCode) originator
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  csc.info@noaa.gov
                role:  (CI_RoleCode) publisher
            presentationForm:  (CI_PresentationFormCode) imageDigital
        abstract:  This data set is a combination of 3 seperate FEMA collections (Blackstone, Charles-Quincy and Narragansett) with similar specifications. See the Ground Control process step for further information on functional areas. Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data accurately represents the ground surface. QA/QC checkpoints, (FVA and CVA - see Ground Control process step for further information) also collected throughout the AOI, are used for independent quality checks of the processed LiDAR data. LiDAR acquisition products include Pre- and Post- flight reports which contain information on the flightlines, equipment parameters, and other pertinant acquisition details. The LiDAR product itself consists of tiles of LAS points which are partially classified such that the bare earth points can be calibrated to the ground surface and tested via the independent QC to ensure the ground surface is accurately represented.
        purpose:  Provide high resolution terrain elevation and land cover elevation data. Terrain data is used to represent the topography of a watershed and/or floodplain environment and to extract useful information for hydraulic and hydrologic models.
        credit:  Ground control and quality control checkpoints were collected by CompassData, Inc. LiDAR data was acquired and processed by Photo Science, Inc. Quality Assurance testing was conducted by Greenhorne & O'Mara, Inc. All firms were under contract to STARR, A Joint Venture which held the FEMA contract and task order for this work.
        status:  (MD_ProgressCode) completed
        resourceMaintenance:  (MD_MaintenanceInformation)
            maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) asNeeded
        graphicOverview:  (MD_BrowseGraphic)
            fileName:  ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/ne/ne2011_fema_mari_footprint.kmz
            fileDescription:  This kmz file shows the extent of coverage for the 2011 FEMA Massachusetts and Rhode Island lidar data set.
            fileType:  kmz
        descriptiveKeywords:  (MD_Keywords)
            keyword:  Topography/Bathymetry
            keyword:  Land Surface
            keyword:  Elevation Data
            keyword:  LIDAR
            keyword:  LAS
            type:  (MD_KeywordTypeCode) theme
            thesaurusName:  (CI_Citation)
                title:  none
                date:
        descriptiveKeywords:  (MD_Keywords)
            keyword:  US
            keyword:  Massachusetts
            keyword:  Rhode Island
            keyword:  Worchester County
            keyword:  Middlesex County
            keyword:  Suffolk County
            keyword:  Norfolk County
            keyword:  Bristol County
            type:  (MD_KeywordTypeCode) place
            thesaurusName:  (CI_Citation)
                title:  None
                date:
        resourceConstraints:  (MD_Constraints)
            useLimitation:  These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
        resourceConstraints:  (MD_LegalConstraints)
            useLimitation:  While every effort has been made to ensure that these data are accurate and reliable within the limits of the current state of the art, NOAA cannot assume liability for any damages caused by any errors or omissions in the data, nor as a result of the failure of the data to function on a particular system. NOAA makes no warranty, expressed or implied, nor does the fact of distribution constitute such a warranty.
        aggregationInfo:  (MD_AggregateInformation)
            aggregateDataSetName:  (CI_Citation)
                title:  Lidar Final Report
                date:
                citedResponsibleParty:  (CI_ResponsibleParty)
                    positionName:  Citation URL
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage:  ftp://ftp.csc.noaa.gov/pub/crs/beachmap/qa_docs/ne/
                            name:  Lidar Final Report(s)
                            description:
                            function:  (CI_OnLineFunctionCode) information
                    role:
            associationType:  (DS_AssociationTypeCode) crossReference
        spatialRepresentationType:  (MD_SpatialRepresentationTypeCode) vector
        language:  eng; USA
        topicCategory:  (MD_TopicCategoryCode) elevation
        extent:  (EX_Extent)
            geographicElement:  (EX_GeographicBoundingBox)
                westBoundLongitude:  -71.933732
                eastBoundLongitude:  -70.907919
                southBoundLatitude:  41.754609
                northBoundLatitude:  42.457842
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimePeriod:
                    beginPosition:  2010-12-02
                    endPosition:  2010-12-17
return to top
    distributionInfo:  (MD_Distribution)
        distributionFormat:  (MD_Format)
            name:  LAZ
            version:
        distributor:  (MD_Distributor)
            distributorContact:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  csc.info@noaa.gov
                role:  (CI_RoleCode) distributor
            distributionOrderProcess:  (MD_StandardOrderProcess)
                orderingInstructions:  The National Geophysical Data Center serves as the archive for this LIDAR data. NGDC should only be contacted for this data if it cannot be obtained from NOAA Coastal Services Center.
        distributor:  (MD_Distributor)
            distributorContact:  (CI_ResponsibleParty)
                individualName:  Mike Sutherland
                organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  303-497-6120
                        facsimile:  303-497-6513
                    address:  (CI_Address)
                        deliveryPoint:  NOAA/NESDIS/NGDC E/GC1 325 Broadway
                        city:  Boulder
                        administrativeArea:  CO
                        postalCode:  80305-3328
                        country:  USA
                        electronicMailAddress:  mike.sutherland@noaa.gov
                    hoursOfService:  7:30am-5:00pm Mountain
                role:  (CI_RoleCode) distributor
            distributionOrderProcess:  (MD_StandardOrderProcess)
                orderingInstructions:  The National Geophysical Data Center serves as the archive for this LIDAR dataset. NGDC should only be contacted for the data if it cannot be obtained from NOAA Coastal Services Center.
return to top
    dataQualityInfo:  (DQ_DataQuality)
        scope:  (DQ_Scope)
            level:  (MD_ScopeCode) dataset
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Vertical Positional Accuracy Report
            evaluationMethodDescription:  Deliverables were tested by for both vertical and horizontal accuracy. The vertical unit of the data file is in meters with 2-decimal point precision. The Quincy collection has a a lower vertical accuracy value then what is listed here. For detailed information, please see the Vertical Accuracy Reports listed in the Supplemental_Information section above.
            result:
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Vertical Positional Accuracy
            measureDescription:  Fundamental Vertical Accuracy (FVA) equal to 95th Percentile Confidence Level (RMSE[z] x 1.9600) calculated in open terrain. Reported in meters.
            result:  (DQ_QuantitativeResult)
                valueUnit:
                  BaseUnit:
                    identifier:  meters
                    unitsSystem:
                value:
                  Record:  0.166
        report:  (DQ_CompletenessCommission)
            evaluationMethodDescription:  Survey data have been checked for completeness, points have been collected in correct vegetation units, and distributed throughout the AOI. The terrain data have been checked for completeness against AOI polygons. No gaps as defined by FEMA Procedural Memo No. 61 are known to exist within the dataset. Positional accuracy was calculated for all functional areas.
            result:
        report:  (DQ_ConceptualConsistency)
            measureDescription:  Survey data have been confirmed to be in proper units, coordinate systems and format. The terrain data have been confirmed as complete LAS format data files. Header files are in proper LAS format with content as specified by FEMA Procedural Memo No. 61.
            result:
        lineage:  (LI_Lineage)
            processStep:  (LE_ProcessStep)
                description:  GPS based surveys were utilized to support both processing and testing of LiDAR data within FEMA designated Areas of Interest (AOIs). Geographically distinct ground points were surveyed using GPS technology throughout the AOIs to provide support for three distinct tasks. Task 1 was to provide Vertical Ground Control to support the aerial acquisition and subsequent bare earth model processing. To accomplish this, survey-grade Trimble R-8 GPS receivers were used to collect a series of control points located on open areas, free of excessive or significant slope, and at least 5 meters away from any significant terrain break. Most if not all control points were collected at street/road intersections on bare level pavement. Task 2 was to collect Fundamental Vertical Accuracy (FVA) checkpoints to evaluate the initial quality of the collected point cloud and to ensure that the collected data was satisfactory for further processing to meet FEMA specifications. The FVA points were collected in identical fashion to the Vertical Ground Control Points, but segregated from the point pool to ensure independent quality testing without prior knowledge of FVA locations by the aerial vendor. Task 3 was to collect Consolidated Vertical Accuracy CVA) checkpoints to allow vertical testing of the bare-earth processed LiDAR data in different classes of land cover, including: Open (pavement, open dirt, short grass), High Grass and Crops, Brush and Low Trees, Forest, Urban. CVA points were collected in similar fashion as Control and FVA points with emphasis on establishing point locations within the predominant land cover classes within each AOI or Functional AOI Group. In order to successfully collect the Forest land cover class, it was necessary to establish a Backsight and Initial Point with the R8 receiver, and then employ a Nikon Total Station to observe a retroreflective prism stationed under tree canopy. This was necessary due to the reduced GPS performance and degradation of signal under tree canopy. The R-8 receivers were equipped with cellular modems to receive real-time correction signals from the Keystone Precision Virtual Reference Station (VRS) network encompassing the Region 1 AOIs. Use of the VRS network allowed rapid collection times (~3 minutes/point) at 2.54 cm (1 inch) initial accuracy. All points collected were below the 8cm specification for testing 24cm, Highest category LiDAR data. To ensure valid in-field collections, an NGS monument with suitable vertical reporting was measured using the same equipment and procedures used for Control, FVA and CVA points on a daily basis. The measurement was compared to the NGS published values to ensure that the GPS collection schema was producing valid data and as a physical proof point of quality of collection. Those monument measurements are summarized in the Accuracy report included in the data delivered to FEMA. In order to meet FEMA budgetary requirements, AOIs were consolidated into Functional Groups: if AOIs were contiguous, they were treated as one large AOI to allow collection of 20 FVA points and 15 additional CVA points across the group of AOIs. 20 FVA points are necessary to allow testing to CE95 ? 1 point out of 20 may fail vertical testing and still allow the entire dataset to meet 95% accuracy requirements. In similar fashion, 20 CVA points are necessary to test to CE95 as discussed above. 15 CVA points were collected per AOI or per Functional Group with the intention at the outset that 5 of the collected FVAs would perform double ?duty as Open-class CVA points, to total 20 CVAs per AOI or Functional Group. The Functional Groups are as follows: Narragansett/Charles/Blackstone(northeast), Nashua, Blackstone(north and west), Quinnipiac, Quincy/Suffolk (while included as part of the FEMA Charles AOI, was physically separated from the Charles AOI polygon and treated as an independent functional area). The following software packages and utilities were used to control the GPS receiver in the field during data collection, and then ingest and export the collected GPS data for all points: Trimble Survey Controller, Trimble Pathfinder Office. The following software utilities were used to translate the collected Latitude/Longitude Decimal Degree HAE GPS data for all points into Latitude/Longitude Degrees/Minutes/Seconds for checking the collected monument data against the published NGS Datasheet Lat/Long DMS values and into UTM NAD83 Northings/Eastings: U.S. Army Corps of Engineers CorpsCon, National Geodetic Survey Geoid09NAVD88. MSL values were determined using the most recent NGS-approved geoid model to generate geoid separation values for each Lat/Long coordinate pair. In this fashion, Orthometric heights were determined for each Control, FVA and CVA point by subtracting the generated Geoid Separation value from the Ellipsoidal Height (HAE) for publication and use as MSL NAVD88(09).
                dateTime:
                  DateTime:  2011-01-01T00:00:00
            processStep:  (LE_ProcessStep)
                description:  Applanix software was used in the post processing of the airborne GPS and inertial data that is critical to the positioning and orientation of the sensor during all flights. POSPac MMS provides the smoothed best estimate of trajectory (SBET) that is necessary for Optech's post processor to develop the point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional collection of all returns from all laser pulses as determined from the aerial mission. Optech?s DASHMap software and Leica?s ALS Post Processor software were used to create the Raw LIDAR Flight Line strips. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the above ground features are removed from the data set. The GeoCue and TerraScan software packages are then used for the automated data classification. Project specific macros are created to classify the ground and to remove the side overlap between parallel flight lines. LAS Class 2 (Ground) is used to check the surveyed control points against the Triangulated LIDAR surface. Any bias is then removed using macro functionality within TerraScan. Unclassified Point Cloud tiles are then created using TerraScan macro functionality. These tiles are populated within GeoCue to ensure correct LAS versioning and LAS Header information. LAS Class 2 is used to check the independent QC points against the Triangulated LiDAR surface. If RMSE is not within guidelines TerraScan software is utilitzed to remove any bias, and the check is performed again.
                dateTime:
                  DateTime:  2011-01-01T00:00:00
            processStep:  (LE_ProcessStep)
                description:  The NOAA Coastal Services Center (CSC) received the topographic files in LAS V1.2 format. The files contained lidar elevation measurements, classifications, intensity data, return information, GPS time and scan angle. The data were received in NAD83 UTM Zone 19N and were vertically referenced to NAVD88 using the Geoid09 model. The vertical units of the data were meters. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. All Class 11 points were changed to Class 12 (Overlap) 2. The topographic las files' global encoding bit was set to '1' to reflect the use of Adjusted Standard GPS Time. 3. The topographic las files were converted from a Projected Coordinate System (UTM19N) to Geographic coordinates (NAD83). 4. The topographic las files' horizontal units were converted from meters to decimal degrees. 5. The topographic las files were converted from orthometric (NAVD88) heights to ellipsoidal heights using Geoid09. 6. The data were converted to LAZ format.
                dateTime:
                  DateTime:  2013-09-01T00:00:00
                processor:  (CI_ResponsibleParty)
                    organisationName:  DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  843-740-1200
                        address:  (CI_Address)
                            deliveryPoint:  2234 South Hobson Ave.
                            city:  Charleston
                            administrativeArea:  SC
                            postalCode:  29405-2413
                            electronicMailAddress:  csc.info@noaa.gov
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
                dateTime:
                  DateTime:  2013-10-17T00:00:00
                processor:  (CI_ResponsibleParty)
                    individualName:  Mike Sutherland
                    organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  303-497-6120
                            facsimile:  303-497-6513
                        address:  (CI_Address)
                            deliveryPoint:  NOAA/NESDIS/NGDC E/GC1 325 Broadway
                            city:  Boulder
                            administrativeArea:  CO
                            postalCode:  80305-3328
                            country:  USA
                            electronicMailAddress:  mike.sutherland@noaa.gov
                        hoursOfService:  7:30am-5:00pm Mountain
                    role:  (CI_RoleCode) processor
return to top
    metadataMaintenance:  (MD_MaintenanceInformation)
        maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) annually
        dateOfNextUpdate:  2014-10-17
        maintenanceNote:  This metadata was automatically generated from the FGDC Content Standards for Digital Geospatial Metadata standard (version FGDC-STD-001-1998) using the 2013-01-04 version of the FGDC RSE to ISO 19115-2 for LiDAR transform.
        maintenanceNote:  Translated from FGDC 2013-10-17T11:36:47.938-06:00