Text View of ISO 19115/19115-2 Metadata with Links to Guidance on NOAA EDM WikiView Metadata As: Get Data, FAQ, HTML, 19139 XML

Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components
spatialRepresentationInfo
referenceSystemInfo
referenceSystemInfo
identificationInfo
distributionInfo
dataQualityInfo
metadataMaintenance

2012 U.S. Geological Survey Topographic Lidar: Northeast Atlantic Coast Post-Hurricane Sandy
 (MI_Metadata)
    fileIdentifier:  gov.noaa.csc.maps:ne2012_usgs_postsandy_m2488
    language:  eng; USA
    characterSet:  (MD_CharacterSetCode) utf8
    hierarchyLevel:  (MD_ScopeCode) dataset
    contact:  (CI_ResponsibleParty)
        individualName:  Mike Sutherland
        organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
        contactInfo:  (CI_Contact)
            phone:  (CI_Telephone)
                voice:  303-497-6120
                facsimile:  303-497-6513
            address:  (CI_Address)
                deliveryPoint:  NOAA/NESDIS/NGDC E/GC1 325 Broadway
                city:  Boulder
                administrativeArea:  CO
                postalCode:  80305-3328
                country:  USA
                electronicMailAddress:  mike.sutherland@noaa.gov
            hoursOfService:  7:30am-5:00pm Mountain
        role:  (CI_RoleCode) author
    dateStamp:  2013-06-28
    metadataStandardName:  ISO 19115-2 Geographic Information - Metadata - Part 2: Extensions for Imagery and Gridded Data
    metadataStandardVersion:  ISO 19115-2:2009(E)
return to top
    spatialRepresentationInfo:  (MD_VectorSpatialRepresentation)
        geometricObjects:  (MD_GeometricObjects)
            geometricObjectType:  (MD_GeometricObjectTypeCode) point
return to top
    referenceSystemInfo:  (MD_ReferenceSystem)
        referenceSystemIdentifier:  (RS_Identifier)
            authority:  (CI_Citation)
                title:  North American Datum 1983
                alternateTitle:  NAD83
                date:  (CI_Date)
                    date:  2007-01-19
                    dateType:  (CI_DateTypeCode) revision
                citedResponsibleParty:  (CI_ResponsibleParty)
                    organisationName:
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage: http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
                            name:  NAD83
                            description:  Link to Geographic Markup Language (GML) description of reference system.
                            function:  (CI_OnLineFunctionCode) information
                    role:  (CI_RoleCode) resourceProvider
                citedResponsibleParty:  (CI_ResponsibleParty)
                    organisationName:  European Petroleum Survey Group
                    contactInfo:  (CI_Contact)
                        onlineResource:  (CI_OnlineResource)
                            linkage: http://www.epsg-registry.org/
                            name:  European Petroleum Survey Group Geodetic Parameter Registry
                            description:  Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations.
                            function:  (CI_OnLineFunctionCode) search
                    role:  (CI_RoleCode) publisher
            code:  urn:ogc:def:crs:EPSG::4269
return to top
    referenceSystemInfo:  (MD_ReferenceSystem)
        referenceSystemIdentifier:  (RS_Identifier)
            code:  Ellipsoid in Meters
            codeSpace:  Local Vertical Reference
return to top
    identificationInfo:  (MD_DataIdentification)
        citation:  (CI_Citation)
            title:  2012 U.S. Geological Survey Topographic Lidar: Northeast Atlantic Coast Post-Hurricane Sandy
            date:  (CI_Date)
                date:  2013-06-01
                dateType:  (CI_DateTypeCode) publication
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  coastal.info@noaa.gov
                    onlineResource:  (CI_OnlineResource)
                        linkage: http://coast.noaa.gov
                role:  (CI_RoleCode) originator
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DOI/USGS > United States Geological Survey, U.S. Department of the Interior
                role:  (CI_RoleCode) originator
            citedResponsibleParty:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  coastal.info@noaa.gov
                    onlineResource:  (CI_OnlineResource)
                        linkage: http://coast.noaa.gov
                role:  (CI_RoleCode) publisher
            presentationForm:  (CI_PresentationFormCode) imageDigital
        abstract:  Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.
        purpose:  The purpose of this project was to derive mean-high-water shoreline, dune crest (DHIGH) and dune toe (DLOW) elevation for a portion of the Eastern United States coastline following Hurricane Sandy, for use as a management tool and to make these data available to natural-resource managers and research scientists.Processed data products are used by the USGS Coastal and Marine Geology Program's National Assessments of Coastal Change Hazards project to quantify the vulnerability of shorelines to coastal change hazards such as severe storms, sea-level rise, and shoreline erosion and retreat.
        credit:  Acknowledgment of the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, as a data source would be appreciated in products developed from these data, and such acknowledgment as is standard for citation and legal practices. Sharing of new data layers developed directly from these data would also be appreciated by the U.S. Geological Survey staff. Users should be aware that comparisons with other datasets for the same area from other time periods may be inaccurate due to inconsistencies resulting from changes in photo interpretation, mapping conventions, and digital processes over time. These data are not legal documents and are not to be used as such.
        status:  (MD_ProgressCode) completed
        pointOfContact:  (CI_ResponsibleParty)
            organisationName:  United States Geological Survey, St. Petersburg Coastal and Marine Science Center
            contactInfo:  (CI_Contact)
                phone:  (CI_Telephone)
                    voice:  727-803-8747
                address:  (CI_Address)
                    deliveryPoint:  600 Fourth Street South
                    city:  St. Petersburg
                    administrativeArea:  FL
                    postalCode:  33701
                    country:  U.S.
            role:  (CI_RoleCode) pointOfContact
        resourceMaintenance:  (MD_MaintenanceInformation)
            maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) asNeeded
        descriptiveKeywords:  (MD_Keywords)
            keyword:  Topography/Bathymetry
            keyword:  Cessna 206
            keyword:  Cessna 310
            keyword:  Dhigh
            keyword:  Dlow
            keyword:  Digital Elevation Model
            keyword:  DEM
            keyword:  dune crest
            keyword:  dune toe
            keyword:  extratropical cyclone
            keyword:  laser altimetry
            keyword:  lidar
            keyword:  remote sensing
            keyword:  shoreline
            keyword:  LAS
            type:  (MD_KeywordTypeCode) theme
            thesaurusName:  (CI_Citation)
                title:  None
                date:
        descriptiveKeywords:  (MD_Keywords)
            keyword:  United States
            keyword:  Delaware
            keyword:  Maryland
            keyword:  Fire Island
            keyword:  Long Island
            keyword:  New York
            keyword:  North Carolina
            keyword:  Virginia
            keyword:  DelMarVa Peninsula
            keyword:  Suffolk County, New York
            keyword:  Sussex County, Delaware
            keyword:  Worcester County, Maryland
            keyword:  Accomack County, Virginia
            keyword:  Hampton Roads Metropolitan District, Virginia
            keyword:  Currituck County, North Carolina
            keyword:  Dare County, North Carolina
            keyword:  Hyde County, North Carolina
            keyword:  Carteret County, North Carolina
            type:  (MD_KeywordTypeCode) place
            thesaurusName:  (CI_Citation)
                title:  None
                date:
        resourceConstraints:  (MD_Constraints)
            useLimitation:  These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
        resourceConstraints:  (MD_LegalConstraints)
            useLimitation:  While every effort has been made to ensure that these data are accurate and reliable within the limits of the current state of the art, NOAA cannot assume liability for any damages caused by any errors or omissions in the data, nor as a result of the failure of the data to function on a particular system. NOAA makes no warranty, expressed or implied, nor does the fact of distribution constitute such a warranty.
        spatialRepresentationType:  (MD_SpatialRepresentationTypeCode) vector
        language:  eng; USA
        topicCategory:  (MD_TopicCategoryCode) elevation
        extent:  (EX_Extent)
            geographicElement:  (EX_GeographicBoundingBox)
                westBoundLongitude:  -76.680203
                eastBoundLongitude:  -72.703050
                southBoundLatitude:  34.566094
                northBoundLatitude:  40.790453
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimeInstant:
                    timePosition:  2012-11-05
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimePeriod:
                    beginPosition:  2012-11-08
                    endPosition:  2012-11-12
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimeInstant:
                    timePosition:  2012-11-16
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimeInstant:
                    timePosition:  2012-11-26
            temporalElement:  (EX_TemporalExtent)
                extent:
                  TimePeriod:
                    beginPosition:  2012-11-28
                    endPosition:  2012-11-29
        supplementalInformation:  LAS V1.2 (ASPRS Classes 0,1,2,3,4,5,6,7,9,10,12,18)
return to top
    distributionInfo:  (MD_Distribution)
        distributionFormat:  (MD_Format)
            name:  LAZ
            version:
        distributor:  (MD_Distributor)
            distributorContact:  (CI_ResponsibleParty)
                organisationName:  DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  843-740-1200
                    address:  (CI_Address)
                        deliveryPoint:  2234 South Hobson Ave.
                        city:  Charleston
                        administrativeArea:  SC
                        postalCode:  29405-2413
                        electronicMailAddress:  coastal.info@noaa.gov
                    onlineResource:  (CI_OnlineResource)
                        linkage: http://coast.noaa.gov
                role:  (CI_RoleCode) distributor
            distributionOrderProcess:  (MD_StandardOrderProcess)
                orderingInstructions:  The National Geophysical Data Center serves as the archive for this LIDAR data. NGDC should only be contacted for this data if it cannot be obtained from NOAA Coastal Services Center.
        distributor:  (MD_Distributor)
            distributorContact:  (CI_ResponsibleParty)
                individualName:  Mike Sutherland
                organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
                contactInfo:  (CI_Contact)
                    phone:  (CI_Telephone)
                        voice:  303-497-6120
                        facsimile:  303-497-6513
                    address:  (CI_Address)
                        deliveryPoint:  NOAA/NESDIS/NGDC E/GC1 325 Broadway
                        city:  Boulder
                        administrativeArea:  CO
                        postalCode:  80305-3328
                        country:  USA
                        electronicMailAddress:  mike.sutherland@noaa.gov
                    hoursOfService:  7:30am-5:00pm Mountain
                role:  (CI_RoleCode) distributor
            distributionOrderProcess:  (MD_StandardOrderProcess)
                orderingInstructions:  The National Geophysical Data Center serves as the archive for this LIDAR dataset. NGDC should only be contacted for the data if it cannot be obtained from NOAA Coastal Services Center.
return to top
    dataQualityInfo:  (DQ_DataQuality)
        scope:  (DQ_Scope)
            level:  (MD_ScopeCode) dataset
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Horizontal Positional Accuracy Report
            evaluationMethodDescription:  Horizontal accuracy is +/- 0.194 meter at the 95% confidence level.
            result:
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Vertical Positional Accuracy Report
            evaluationMethodDescription:  Lidar file format (LAS) data were compared to survey control points to determine the FVA of the LAS Swath and of the DEM. LAS Swath Fundamental Vertical Accuracy (FVA) Tested 0.147 m (14.7 cm) fundamental vertical accuracy at a 95 percent confidence level, derived according to NSSDA (National Standard for Spatial Data Accuracy), in open terrain using 0.075 m (7.5 cm) (RMSEz x 1.96000), tested against the TIN.
            result:
        report:  (DQ_AbsoluteExternalPositionalAccuracy)
            nameOfMeasure:  Vertical Positional Accuracy
            measureDescription:  RMSEz in meters
            result:  (DQ_QuantitativeResult)
                valueUnit:
                  BaseUnit:
                    identifier:  meters
                    unitsSystem:
                value:
                  Record:  0.147
        report:  (DQ_CompletenessCommission)
            evaluationMethodDescription:  These data span from Long Island, New York to Cape Hatteras, North Carolina. The State of New Jersey data were collected using the EAARL-B sensor and those data will be published separately.
            result:
        report:  (DQ_ConceptualConsistency)
            measureDescription:  Data for Fire Island was visually inspected by Woolpert, Inc. Data for Delaware, Maryland, Virginia, and North Carolina were tested by Photo Science, Inc. for both vertical and horizontal accuracy. Although collected on a tile-by-tile basis, breaklines are merged together to produce a single dataset deliverable. Checks are done to ensure that the data is seamless from one tile to the next before being combined and that breaklines meeting the project requirements have been collected across the entire project area. Combining the breaklines with lidar data to create other deliverables is another check of the data. All data are seamless from one tile to the next, containing no gaps or "no data" areas.
            result:
        lineage:  (LI_Lineage)
            processStep:  (LE_ProcessStep)
                description:  Using an Optech Gemini lidar sensor, 11 flight lines of high-density data, at a nominal pulse spacing (NPS) of 1 meter, were collected by Woolpert along the southern shore of Long Island, New York (approximately 15 square miles). Data Acquisition Height = 3,500 feet Above Ground Level (AGL) - Aircraft Speed = 125 Knots. Multiple returns were recorded for each laser pulse along with an intensity value for each return. A total of one mission was flown on November 5th. Two airborne global positioning system (GPS) base stations were used in support of the lidar data acquisition. Eight ground control points were surveyed through static methods. The GEOID used to reduce satellite-derived elevations to orthometric heights was GEOID96. Data for the task order is referenced to the UTM Zone 18N, North American Datum of 1983 (NAD83), and North American Vertical Datum of 1988 (NAVD88), in meters. Airborne GPS data was differentially processed and integrated with the post-processed inertial measurement unit (IMU) data to derive a smoothed best estimate of trajectory (SBET). The SBET was used to reduce the lidar slant range measurements to a raw reflective surface for each flight line. The coverage was classified to extract a bare earth digital elevation model (DEM) and separate last returns. In addition to the LAS deliverables, one layer of coverage was delivered in the ERDAS Imagine (IMG) Format: bare earth.
                dateTime:
                  DateTime:  2012-11-05T00:00:00
                processor:  (CI_ResponsibleParty)
                    organisationName:  Woolpert, Inc.
                    positionName:  Geospatial Services
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  937 461-5660
                            facsimile:  937 461-0743
                        address:  (CI_Address)
                            deliveryPoint:  4454 Idea Center Blvd.
                            city:  Dayton
                            administrativeArea:  OH
                            postalCode:  45430
                            country:  USA
                        hoursOfService:  M-F, 8:00-5:00 ET
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The lidar calibration and system performance are verified on a periodic basis using Woolpert's calibration range. The calibration range consists of a large building and runway. The edges of the building and control points along the runway have been located using conventional survey methods. Inertial measurement unit (IMU) misalignment angles and horizontal accuracy are calculated by comparing the position of the building edges between opposing flight lines. The scanner scale factor and vertical accuracy are calculated through comparison of lidar data against control points along the runway. Field calibration is performed on all flight lines to refine the IMU misalignment angles. IMU misalignment angles are calculated from the relative displacement of features within the overlap region of adjacent (and opposing) flight lines. The raw lidar data are reduced using the refined misalignment angles.
                dateTime:
                  DateTime:  2012-01-01T00:00:00
                processor:  (CI_ResponsibleParty)
                    organisationName:  Woolpert, Inc.
                    positionName:  Geospatial Services
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  937 461-5660
                            facsimile:  937 461-0743
                        address:  (CI_Address)
                            deliveryPoint:  4454 Idea Center Blvd.
                            city:  Dayton
                            administrativeArea:  OH
                            postalCode:  45430
                            country:  USA
                        hoursOfService:  M-F, 8:00-5:00 ET
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  Once the data acquisition and GPS processing phases are complete, the lidar data were processed immediately by Woolpert to verify the coverage had no voids. The GPS and IMU data were post-processed using differential and Kalman filter algorithms to derive a best estimate of trajectory. The quality of the solution was verified to be consistent with the accuracy requirements of the project.
                dateTime:
                  DateTime:  2012-11-07T00:00:00
                processor:  (CI_ResponsibleParty)
                    organisationName:  Woolpert, Inc.
                    positionName:  Geospatial Services
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  937 461-5660
                            facsimile:  937 461-0743
                        address:  (CI_Address)
                            deliveryPoint:  4454 Idea Center Blvd.
                            city:  Dayton
                            administrativeArea:  OH
                            postalCode:  45430
                            country:  USA
                        hoursOfService:  M-F, 8:00-5:00 ET
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The individual flight lines were inspected by Woolpert to ensure the systematic and residual errors have been identified and removed. Then, the flight lines were compared to adjacent flight lines for any mismatches to obtain a homogenous coverage throughout the project area. The point cloud underwent a classification process to determine bare-earth points and non-ground points utilizing "first and only" as well as "last of many" lidar returns. This process determined Default (Class 1), Ground (Class 2), Noise (Class 7), Water (Class 9), Ignored Ground (Class 10), Overlap Default (Class 17), and Overlap Ground (Class 18) classifications. The bare-earth (Class 2 - Ground) lidar points underwent a manual QA/QC step to verify that artifacts have been removed from the bare-earth surface. The surveyed ground control points are used to perform the accuracy checks and statistical analysis of the lidar dataset.
                dateTime:
                  DateTime:  2012-11-07T00:00:00
                processor:  (CI_ResponsibleParty)
                    organisationName:  Woolpert, Inc.
                    positionName:  Geospatial Services
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  937 461-5660
                            facsimile:  937 461-0743
                        address:  (CI_Address)
                            deliveryPoint:  4454 Idea Center Blvd.
                            city:  Dayton
                            administrativeArea:  OH
                            postalCode:  45430
                            country:  USA
                        hoursOfService:  M-F, 8:00-5:00 ET
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  Photo Science, Inc. located a total of 29 calibration control points used in the post processing of the lidar data. The points were located on relatively flat terrain on surfaces that generally consisted of grass, gravel, or bare earth. Applanix software (PosPAC MMS) was used in the post processing of the airborne GPS and inertial data, which are critical to the positioning and orientation of the sensor during all flights. POSPac MMS provides the smoothed best estimate of trajectory (SBET) that is necessary for the post processor to develop the point cloud from the lidar missions. The point cloud is the mathematical three-dimensional collection of all returns from all laser pulses as determined from the aerial mission. The GEOID used to reduce satellite derived elevations to orthometric heights was GEOID96. Data for the task order is referenced to the UTM Zone 18N, NAD83, and NAVD88, in meters. At this point the data are ready for analysis, classification, and filtering to generate a bare-earth surface model in which the above ground features are removed from the data set. The point cloud was manipulated by the Optech or Leica software; GeoCue, TerraScan, and TerraModeler software were used for the automated data classification, manual cleanup, and bare-earth generation from the data. Project specific macros were used to classify the ground and to remove the side overlap between parallel flight lines. All data were manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. All ground (ASPRS Class 2) lidar data inside of the Lake Pond and Double Line Drain hydro flattening breaklines were then classified to water (ASPRS Class 9) using TerraScan macro functionality. All Lake Pond and Double Line Drain Island features were checked to ensure that the ground (ASPRS Class 2) were reclassified to the correct classification after the automated classification was completed. All overlap data were processed through automated functionality provided by TerraScan to classify the overlapping flight line data to approved classes by USGS. The overlap data were classified to Class 17 (USGS Overlap Default) and Class 18 (USGS Overlap Ground). These classes were created through automated processes only and were not verified for classification accuracy. Data were then run through additional macros to ensure deliverable classification levels matching the ASPRS LAS Version 1.2 Classification structure. GeoCue functionality was then used to ensure correct LAS Versioning. In-house software was used as a final QA/QC check to provide LAS Analysis of the delivered tiles. QA/QC checks were performed on a per tile level to verify final classification metrics and full LAS header information.
                dateTime:
                  DateTime:  2012-01-01T00:00:00
                processor:  (CI_ResponsibleParty)
                    organisationName:  Photo Science, Inc.
                    positionName:  Geospatial Services
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  859 277-8700
                        address:  (CI_Address)
                            deliveryPoint:  4454 Idea Center Blvd.
                            city:  Lexington
                            administrativeArea:  KY
                            postalCode:  40503
                            country:  USA
                        hoursOfService:  M-F, 9:00-5:00 ET
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  All Woolpert, Inc. LAZ files were extracted to LAS and converted to ASCII xyz point files using LASTools las2las.exe. The ASCII point files were then written to netcdf format using MATLAB 8.0.0.783.
                dateTime:
                  DateTime:  2013-02-01T00:00:00
                processor:  (CI_ResponsibleParty)
                    individualName:  Kristin Sopkin
                    organisationName:  Cherokee Nation Technology Solutions, U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
                    positionName:  Data Modeler/Analyst
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  727 803-8747 (x3141)
                        address:  (CI_Address)
                            deliveryPoint:  600 4th Street South
                            city:  St. Petersburg
                            administrativeArea:  FL
                            postalCode:  33701
                            country:  USA
                            electronicMailAddress:  ksopkin@usgs.gov
                        hoursOfService:  M-F, 8:00-4:00 ET
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The NOAA Coastal Services Center (CSC) received topographic files in LAS format. The files contained lidar elevation and intensity measurements. The data were received in UTM Zone 18N coordinates and were vertically referenced to NAVD88 using the Geoid96 model. The vertical units of the data were meters. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The topographic las files were horizontally converted from UTM Zone 18N to Geographic Coordinates. 2. The horizontal units of the data were converted from meters to decimal degrees. 3. The topographic las files were vertically converted from orthometric (NAVD88) heights to ellipsoidal (NAD83) heights. 4. Classes 11 (Unknown), 15 (Unknown) and 17 (Default Overlap) were combined to Class 12 (Overlap). Class 11 points were assigned a User Data value of '1', Class 15 points were assigned a User Data value of '2', and Class 17 points were assigned a User Data value of '3'. 5. The data were converted to LAZ format.
                dateTime:
                  DateTime:  2013-05-01T00:00:00
                processor:  (CI_ResponsibleParty)
                    organisationName:  DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  843-740-1200
                        address:  (CI_Address)
                            deliveryPoint:  2234 South Hobson Ave.
                            city:  Charleston
                            administrativeArea:  SC
                            postalCode:  29405-2413
                            electronicMailAddress:  coastal.info@noaa.gov
                        onlineResource:  (CI_OnlineResource)
                            linkage: http://coast.noaa.gov
                    role:  (CI_RoleCode) processor
            processStep:  (LE_ProcessStep)
                description:  The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
                dateTime:
                  DateTime:  2013-06-28T00:00:00
                processor:  (CI_ResponsibleParty)
                    individualName:  Mike Sutherland
                    organisationName:  DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
                    contactInfo:  (CI_Contact)
                        phone:  (CI_Telephone)
                            voice:  303-497-6120
                            facsimile:  303-497-6513
                        address:  (CI_Address)
                            deliveryPoint:  NOAA/NESDIS/NGDC E/GC1 325 Broadway
                            city:  Boulder
                            administrativeArea:  CO
                            postalCode:  80305-3328
                            country:  USA
                            electronicMailAddress:  mike.sutherland@noaa.gov
                        hoursOfService:  7:30am-5:00pm Mountain
                    role:  (CI_RoleCode) processor
return to top
    metadataMaintenance:  (MD_MaintenanceInformation)
        maintenanceAndUpdateFrequency:  (MD_MaintenanceFrequencyCode) annually
        dateOfNextUpdate:  2014-06-28
        maintenanceNote:  This metadata was automatically generated from the FGDC Content Standards for Digital Geospatial Metadata standard (version FGDC-STD-001-1998) using the 2013-01-04 version of the FGDC RSE to ISO 19115-2 for LiDAR transform.
        maintenanceNote:  Translated from FGDC 2013-06-28T16:15:22.459-06:00