ISO Table View Alternate Views: Get Data, FAQ, ISO Rubric, DOI Rubric, CSW, HTML, Components, XML

Metadata Identifier: gov.noaa.csc.maps:wa2004_pslc_piercecounty_m2532

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 2004 Puget Sound Lidar Consortium (PSLC) Topographic Bare-Earth Lidar: Pierce County, WA Terrapoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The project area covers approximately 814 square miles of western Pierce County. A majority of the data was collected between January 21st and March 08, 2004. Two small areas were reflown during spring 2005.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 2004 Puget Sound Lidar Consortium (PSLC) Topographic Bare-Earth Lidar: Pierce County, WA
  • 2013-08-01
1 None
    1 North American Datum 1983
    • 2007-01-19
    1 none
      Top

      CI_Series

      none found
      Top

      CI_ResponsibleParty

      Count Component Individual Organization Position Email Role Linkage
      1 resourceProvider http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269
      1 NOAA CSC (originator) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov originator
      1 NOAA CSC (publisher) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov publisher
      1 NOAA CSC(distributor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov distributor
      1 NOAA CSC (processor) DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce csc.info@noaa.gov processor
      1 Diana Martinez Puget Sound Regional Council Senior GIS Analyst dmartinez@psrc.org pointOfContact
      1 EPSG Registry European Petroleum Survey Group publisher http://www.epsg-registry.org/
      1 Mike Sutherland(author) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov author
      1 Mike Sutherland Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov distributor
      1 Mike Sutherland (processor) Mike Sutherland DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce mike.sutherland@noaa.gov processor
      1 Puget Sound Lidar Consortium (PSLC) originator
      Top

      CI_OnlineResource

      Count Component Linkage Name Description Function
      1 http://www.epsg-registry.org/ European Petroleum Survey Group Geodetic Parameter Registry Registry that accesses the EPSG Geodetic Parameter Dataset, which is a structured dataset of Coordinate Reference Systems and Coordinate Transformations. search
      1 http://www.epsg-registry.org/export.htm?gml=urn:ogc:def:crs:EPSG::4269 NAD83 Link to Geographic Markup Language (GML) description of reference system. information
      Top

      MD_Identifier or RS_Identifier

      Count Component Code
      1 Ellipsoid in Meters
      1 urn:ogc:def:crs:EPSG::4269
      Top

      EX_Extent

      Bounding Box Temporal Extent
      Count Component Description West East North South Start End
      1 -122.696132 -121.910870 47.321118 46.743235 2004-01-24 2004-03-08
      Top

      EX_GeographicBoundingBox

      Count Component West East North South
      1 -122.696132 -121.910870 47.321118 46.743235
      Top

      EX_TemporalExtent

      Count Component Start End
      1 2004-01-24 2004-03-08
      Top

      MD_Format

      Count Component Name Version specification
      1 LAZ
      Top

      MD_Medium

      none found
      Top

      MD_Constraints

      Count Component Use Limitation
      1 Lidar Use Limitation These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
      Top

      MD_ReferenceSystem

      Count Component Code Authority Title
      1 Ellipsoid Ellipsoid in Meters
      1 NAD83 urn:ogc:def:crs:EPSG::4269 North American Datum 1983
      Top

      MD_GridSpatialRepresentation

      none found
      Top

      MD_Georeferenceable or MI_Georeferenceable

      none found
      Top

      MD_Georectified or MI_Georectified

      none found
      Top

      MD_Dimension

      none found
      Top

      MD_CoverageDescription or MI_CoverageDescription

      none found
      Top

      MD_Band or MI_Band

      none found
      Top

      MI_RangeElementDescription

      none found
      Top

      MD_AggregateInformation

      none found
      Top

      LE_Source or LI_Source

      none found
      Top

      LE_ProcessStep or LI_ProcessStep

      Count Component DateTime Description
      1 2004-01-01T00:00:00 Acquisition. Lidar data were collected in leaf-off conditions (approximately 1 November - 1 April) from a fixed-wing aircraft flying at a nominal height of 1,000 meters above ground surface. Aircraft position was monitored by differential GPS, using a ground station tied into the local geodetic framework. Aircraft orientation was monitored by an inertial measurement unit. Scan angle and distance to target were measured with a scanning laser rangefinder. Scanning was via a rotating 12-facet pyramidal mirror; the laser was pulsed at 30+ KHz, and for most missions the laser was defocussed to illuminate a 0.9m-diameter spot on the ground. The rangefinder recorded up to 4 returns per pulse. Flying height and airspeed were chosen to result in on-ground pulse spacing of about 1.5 m in the along-swath and across-swath directions. Most areas were covered by two swaths, resulting in a nominal pulse density of about 1 per square meter.
      1 2004-01-01T00:00:00 Processing. GPS, IMU, and rangefinder data were processed to obtain XYZ coordinates of surveyed points. For data acquired after January, 2003 (NW Snohomish, Mt Rainier, Darrington, and central Pierce projects), survey data from areas of swath overlap were analysed to obtain best-fit in-situ calibration parameters that minimize misfit between overlapping swaths. This reduces vertical inconsistency between overlappoing swaths by about one-half. Heights were translated from ellipsoidal to orthometric (NAVD88) datums via GEOID99
      1 2004-01-01T00:00:00 Post-processing. Return points were then classified semi-automatically as ground (and water), not-ground (vegetation and structures) and blunder. For 2000 and 2001 data, the despike virtual deforestation algorithm described by Haugerud and Harding (2001) was used. After 2001, TerraPoint shifted to Terrascan software, which includes additional classification algorithms, allows for greater intervention by a human operator, and generally produces better bare-earth surface models.
      1 2004-01-01T00:00:00 ASCII file generation The X,Y,Z values of the ground returns were exported into ASCII files. These were divided into USGS quarter quads (3.25 minute by 3.25 minute).
      1 2004-01-01T00:00:00 Breakng down ASCII files TerraPoint shipped data in USGS quarter-quads (3.25 minute by 3.25 minute). To reduce the file size and make them more user friendly, each quarter quad files was further broken down into 25 smaller tiles.
      1 2013-08-01T00:00:00 The NOAA Coastal Services Center (CSC) received topographic files in ASCII .txt format. The files contained lidar elevation measurements only. The data were received in Washington State Plane North Zone 4601, NAD83 coordinates and were vertically referenced to NAVD88 using the Geoid99 model. The vertical units of the data were feet. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The parsed ASCII .txt files were converted to LAS version 1.2 using LAStools' txt2las tool. 2. The topographic las files' classifications off all points were changed from Class 0 (Never Classified) to Class 2 (Ground). 3. The topographic las files were converted from orthometric (NAVD88) heights to ellipsoidal heights using Geoid99. 4. The topographic las files were converted from a Projected Coordinate System (WA SP North) to a Geographic Coordinate system (NAD 83). 5. The topographic las files' vertical units were converted from feet to meters. 6. The topographic las files' horizontal units were converted from feet to decimal degrees. 7. The data were converted to LAZ format.
      1 2013-10-17T00:00:00 The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.
      Top

      MI_Operation

      none found
      Top

      MI_Platform

      none found
      Top

      MI_Instrument

      none found
      Top