National Geophysical Data Center (NGDC), NOAA Satellite and Information Service

View Metadata As: Get Data, FAQ, HTML, 19139 XML
Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components

2009-2010 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: USGS Wenas Valley

browse graphicThis kmz file shows the extent of coverage for the 2009-2010 PSLC/USGS Wenas Valley, WA lidar data set.
The dataset encompasses portions of Wenas Valley in Kitittas and Yakima Counties, Washington. The bare earth digital elevation models (DEMs) represent the earth's surface with all vegetation and human-made structures removed. The bare earth DEMs were derived from LiDAR data using TIN processing of the ground point returns. Some elevation values have been interpolated across areas in the ground model where there is no elevation data (e.g. over dense vegetation). The DEM grid cell size is 3-ft. The projection is NAD83 (HARN) Washington State Plane, South. The elevation units are in U.S. Survey Feet. Watershed Sciences, Inc. collected the LiDAR and created this data set for the Puget Sound LiDAR Consortium. Watershed Sciences, Inc. (WS) initially collected 37,969 acres of Light Detection and Ranging (LiDAR) data of the Wenas Valley area of interest (AOI) in Kittitas and Yakima Counties, WA on October 28th, 2009. This data was delivered on November 21st, 2009. After the AOI was clear of snow, the remaining 110,255 acres were collected on March 22nd and from June 12th to June 16th, 2010. The total deliverable area including a 100 m buffer is 148,224 acres.

Cite this dataset when used as a source.

Search and Download
    Distribution Formats
    • LAZ
    Distributor DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
    Point of Contact Diana Martinez
    Puget Sound Lidar Consortium (PSLC)
    206-971-3052
    dmartinez@psrc.org
    Associated Resources
    • Lidar Dataset Supplemental Information
    Originator
    • DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
    Originator
    • Diana Martinez
      Puget Sound Lidar Consortium (PSLC)
    Publisher
    • DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
    Date(s)
    • publication: 2013-11-18
    Data Presentation Form: Digital image
    Dataset Progress Status Complete
    Data Update Frequency: As needed
    Purpose: Provide high resolution terrain elevation and land cover elevation data.
    Use Limitations
    • These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
    Time Period: 2009-11-21  to  2010-06-16
    Spatial Reference System: urn:ogc:def:crs:EPSG::4269 Ellipsoid in Meters
    Spatial Bounding Box Coordinates:
    N: 46.90926281
    S: 46.71685056
    E: -120.5481886
    W: -120.9799304
    Spatial Coverage Map:
    Themes
    • Topography
    • Elevation
    • Model
    • LiDAR
    • LAZ
    • LAS
    • Remote Sensing
    Places
    • US
    • Washington
    • Kittitas County
    • Yakima County
    Use Constraints No constraint information available
    Fees Fee information not available.
    Lineage Statement Lineage statement not available.
    Processor
    • DOC/NOAA/NOS/OCM > Office for Coastal Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
    • DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Processing Steps
    • Acquisition. The LiDAR data was collected on October 28th, 2009, March 22, 2010 and June 12th-16th, 2010. The survey used both the Leica ALS50 Pase II and ALS 60 laser systems mounted in a Cessna Caravan 208. Near nadir scan angles were used to increase penetration of vegetation to ground surfaces. Ground level GPS and aircraft IMU were collected during the flight.
    • 1. Flight lines and data were reviewed to ensure complete coverage of the study area and positional accuracy of the laser points. 2. Laser point return coordinates were computed using ALS Post Processor software, IPAS Pro GPS/INS software, and Waypoint GPS, based on independent data from the LiDAR system, IMU, and aircraft. 3. The raw LiDAR file was assembled into flight lines per return with each point having an associated x, y, and z coordinate. 4. Visual inspection of swath to swath laser point consistencies within the study area were used to perform manual refinements of system alignment. 5. Custom algorithms were designed to evaluate points between adjacent flight lines. Automated system alignment was computed based upon randomly selected swath to swath accuracy measurements that consider elevation, slope, and intensities. Specifically, refinement in the combination of system pitch, roll and yaw offset parameters optimize internal consistency. 6. Noise (e.g., pits and birds) was filtered using ALS postprocessing software, based on known elevation ranges and included the removal of any cycle slips. 7. Using TerraScan and Microstation, ground classifications utilized custom settings appropriate to the study area. 8. The corrected and filtered return points were compared to the RTK ground survey points collected to verify the vertical and horizontal accuracies. 9. Points were output as laser points, TINed and GRIDed surfaces
    • The NOAA Coastal Services Center (CSC) downloaded topographic files in text format from PSLC's website. The files contained lidar easting, northing, elevation, intensity, return number, class, scan angle and GPS time measurements. The data were received in Washington State Plane South Zone 4601, NAD83 coordinates and were vertically referenced to NAVD88 using the Geoid03 model. The vertical units of the data were feet. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The All-Return ASCII txt files were parsed to LAS files. 2. The All-Return ASCII files were converted from txt format to las format using LASTools' txt2las tool and reclassified to fit the CSC class list, N=1 (unclassified), G=2 (ground). 3. The las files were converted from orthometric (NAVD88) heights to ellipsoidal heights using Geoid03. 4. The las files' vertical units were converted from feet to meters, removing bad elevations. 5. The las files were converted from a Projected Coordinate System (WA SP South) to a Geographic Coordinate system (NAD83) 6. The las files' horizontal units were converted from feet to decimal degrees. 7. The data were converted to LAZ format.
    • The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.

    Metadata Last Modified: 2013-11-26

    For questions about the information on this page, please email: mike.sutherland@noaa.gov