National Geophysical Data Center (NGDC), NOAA Satellite and Information Service

View Metadata As: Get Data, FAQ, HTML, 19139 XML
Assess Metadata For: Completeness, DOI Readiness, CSW Readiness, Components

2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Hoh River Watershed, Washington (Delivery 1)

browse graphicThis kmz file shows the extent of coverage for the 2012 PSLC Hoh River Watershed lidar data set.
Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Hoh River watershed survey area for the Puget Sound LiDAR Consortium and the Hoh Tribe Department of Natural Resources. This data set covers approximately 181 square miles. Due to spring snow on the ground WSI was unable to acquire data for the complete survey during the initial flights in April and will return to finish acquisition at a later date. Delivery 1 of the survey area was collected on April 14th, 15th, 17th, 19th, 20th and 21st. The LiDAR survey utilized both a Leica ALS60 and a Leica ALS50-II sensor in a Cessna Caravan 208B.All areas were surveyed with an opposing flight line side-lap of =60% (=100% overlap) to reduce laser shadowing and increase surface laser painting. The Leica laser systems allow up to four range measurements (returns) per pulse, and all discernible laser returns were processed for the output dataset. This Lidar survey acheived a nominal point spacing of 8.4 points per square meter.

Cite this dataset when used as a source.

Search and Download
    Distribution Formats
    • LAZ
    Distributor DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
    Point of Contact Diana Martinez
    Puget Sound Lidar Consortium (PSLC)
    206-971-3052
    dmartinez@psrc.org
    Associated Resources
    • Lidar Dataset Supplemental Information
    Originator
    • DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
    Originator
    • Diana Martinez
      Puget Sound Lidar Consortium (PSLC)
    Originator
    • Hoh Tribe Department of Natural Resources
    Publisher
    • DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
    Date(s)
    • publication: 2013-06-01
    Data Presentation Form: Digital image
    Dataset Progress Status Complete
    Data Update Frequency: As needed
    Purpose: The LAS files can be used to create DEMs and also to extract topographic data in software that does not support raster data. Other surface features can also be extracted with custom applications. LiDAR data has a wide range of uses such as earthquake hazard studies, hydrologic modeling, forestry, coastal engineering, roadway and pipeline engineering, flood plain mapping, wetland studies, geologic studies and a variety of analytical and cartographic projects.
    Use Limitations
    • These data depict the elevations at the time of the survey and are only accurate for that time. Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. Any conclusions drawn from analysis of this information are not the responsibility of NOAA or any of its partners. These data are NOT to be used for navigational purposes.
    Time Period: 2012-04-14  to  2012-04-21
    Spatial Reference System: urn:ogc:def:crs:EPSG::4269 Ellipsoid in Meters
    Spatial Bounding Box Coordinates:
    N: 47.874280
    S: 47.590862
    E: -124.124998
    W: -124.519909
    Spatial Coverage Map:
    Themes
    • Topography/Bathymetry
    • Elevation
    • Model
    • LiDAR
    • LAZ
    • Remote Sensing
    Places
    • US
    • Washington
    • Jefferson County
    • Hoh River
    Use Constraints No constraint information available
    Fees Fee information not available.
    Lineage Statement Lineage statement not available.
    Processor
    • DOC/NOAA/NOS/CSC > Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
    • DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Processing Steps
    • 1. Resolved kinematic corrections for aircraft position data using kinematic aircraft GPS and static ground GPS data. Software: Waypoint GPS v.8.10, Trimble Business Center 2.6 2. Developed a smoothed best estimate of trajectory (SBET) file that blends post-processed aircraft position with attitude data. Sensor head position and attitude were calculated throughout the survey. The SBET data were used extensively for laser point processing. Software: IPAS TC v.3.1 3. Calculated laser point position by associating SBET position to each laser point return time, scan angle, intensity, etc. Created raw laser point cloud data for the entire survey in *.las (ASPRS v. 1.2) format. Data were then converted to orthometric elevations (NAVD88) by applying a Geoid03 correction. Software: ALS Post Processing Software v.2.74, Corpscon 6 4. Imported raw laser points into manageable blocks (less than 500 MB) to perform manual relative accuracy calibration and filter for pits/birds. Ground points were then classified for individual flight lines (to be used for relative accuracy testing and calibration). Software: TerraScan v.12.004 5. Using ground classified points per each flight line, the relative accuracy was tested. Automated line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift. Calibrations were performed on ground classified points from paired flight lines. Every flight line was used for relative accuracy calibration. Software: TerraMatch v.12.001 6. Position and attitude data were imported. Resulting data were classified as ground and non-ground points. Statistical absolute accuracy was assessed via direct comparisons of ground classified points to ground RTK survey data. Software: TerraScan v.12.004, TerraModeler v.12.002 7. Bare Earth models were created as a triangulated surface and exported as ArcInfo ASCII grids at a 3?foot pixel resolution. Highest Hit models were created for any class at 3-foot grid spacing and exported as ArcInfo ASCII grids. Software: TerraScan v.12.004, ArcMap v.10.0, TerraModeler v.12.002 8. Intensity images were created as Geo TIFFs and mosaicked to the final delineation. Software: TerraScan v.12.004, ArcMap v.10.0, TerraModeler v.12.002
    • The NOAA Coastal Services Center (CSC) downloaded topographic files in .LAZ format from PSLC's website. The files contained lidar elevation and intensity measurements. The data were received in Washington State Plane South Zone 4602, NAD83 coordinates and were vertically referenced to NAVD88 using the Geoid03 model. The vertical units of the data were feet. CSC performed the following processing for data storage and Digital Coast provisioning purposes: 1. The topographic las files were converted from orthometric (NAVD88) heights to ellipsoidal heights using Geoid03. 2. The topographic las files were converted from a Projected Coordinate System (WA SP South) to a Geographic Coordinate system (NAD83). 3. The topographic las files' vertical units were converted from feet to meters. 4. The topographic las files' horizontal units were converted from feet to decimal degrees.
    • The NOAA National Geophysical Data Center (NGDC) received lidar data files via ftp transfer from the NOAA Coastal Services Center. The data are currently being served via NOAA CSC Digital Coast at http://www.csc.noaa.gov/digitalcoast/. The data can be used to re-populate the system. The data are archived in LAS or LAZ format. The LAS format is an industry standard for LiDAR data developed by the American Society of Photogrammetry and Remote Sensing (ASPRS); LAZ is a loseless compressed version of LAS developed by Martin Isenburg (http://www.laszip.org/). The data are exclusively in geographic coordinates (either NAD83 or ITRF94). The data are referenced vertically to the ellipsoid (either GRS80 or ITRF94), allowing for the ability to apply the most up to date geoid model when transforming to orthometric heights.

    Metadata Last Modified: 2013-06-28

    For questions about the information on this page, please email: mike.sutherland@noaa.gov