|
gov.noaa.ngdc.stp.solar:solar-features_solar-features_solar-radioScientific Data Stewardship provided by the National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce.20121014Solar RadioScientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in the radiowave spectrum reveal characteristics of the corona and upper chromosphere in terms of altitude profile for the local plasma temperature, density and magnetic field. Typically, the lower the frequency then the higher the height of origin. The frequency, like the solar electron density, decreases uniformly outwards with 245 MHz originating high in the corona whereas 15,400 MHz originates in the low corona. Radio bursts are associated with solar flares. The delay at Earth of the different radio frequencies during burst events is due to the outward movement of the source. Bursts can have temperatures of 10xE12 degrees Kelvin. Large bursts last 10 to 20 minutes on average. Longer radio noise storms of persistent and variable high levels of radiation originate in sunspot groups, areas of large, intense magnetic fields. These storms are strongly circularly polarized due to the intense magnetic fields. The microwave wavelength 2800 MHz daily radio flux correlates highly with the daily sunspot number and the two databases are used interchangeably. The 2800 MHz, or 10.7 cm, responds to the same conditions that produce changes in the visible and X-ray wavelengths. Schmahl and Kundu (1995) find that the solar radio fluxes in the spectral range 1000-9400 MHz correlate well with the total solar irradiance. The intermediate frequencies (at 2800 and 3750 MHz) are produced mainly by free-free gyroresonance emission from sunspot structures, while 1000 and 9400 MHz flux are produced mainly by free-free processes from structures associated with plages. They can distinguish plage-associated emission from spot-associated emission in the time series of microwave flux, both contributing opposing effects on the total solar irradiance.The NGDC Solar and Terrestrial Physics (STP) division provides scientific data stewardship of solar-terrestrial datasets in compliance with NOAA Administrative Order (NAO) 212-15, "Management of Environmental and Geospatial Data and Information", dated 04 Nov 10. Scientific Data Stewardship includes the Archive, Access, and Assessment (AAA) of operational and related solar and space environmental datasets.1955070120101124Unknownannually-18018090-90NASA/GCMD Earth Science Keywords; Olsen, L.M., G. Major, K. Shein, J. Scialdone, R. Vogel, S. Leicester, H. Weir, S. Ritz, T. Stevens, M. Meaux, C.Solomon, R. Bilodeau, M. Holland, T. Northcutt, R. A. Restrepo, 2007 . NASA/Global Change Master Directory (GCMD) Earth Science Keywords. Version 6.0.0.0.0.Sun-Earth Interactions > Solar Activity > Solar Active RegionsSun-Earth Interactions > Solar Activity > Solar ImageryNASA/GCMD Location Keywords; Olsen, L.M., G. Major, K. Shein, J. Scialdone, R. Vogel, S. Leicester, H. Weir, S. Ritz, T. Stevens, M. Meaux, C.Solomon, R. Bilodeau, M. Holland, T. Northcutt, R. A. Restrepo, 2007 . NASA/Global Change Master Directory (GCMD) Earth Science Keywords. Version 6.0.0.0.0.Space > Solar Region > ChromosphereRestriction Code: otherRestrictions; DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of CommerceDr William Denigphysical and mailingNOAA/NESDIS/NGDC E/GC2 325 BroadwayBoulderColorado80305-3337(303) 497-6323solar.ngdc@noaa.govUnknown 20130218William DenigDOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commercemailing and physical325 BroadwayBoulderColorado80305-3337303 497-6323solar.ngdc@noaa.govContent Standard for Digital Geospatial Metadata: Extensions for Remote Sensing MetadataFGDC-STD-012-2002
|