Metadata Identifier: gov.noaa.ngdc.mgg.photos:G01208

Aggregation Info | Bands | Citations | Constraints | Coverage Descriptions | Dimensions | Extents | Formats | Geographic Bounding Box
Georectified Information | Georeferenceable Information | Identifiers | Instruments | Mediums | OnlineResources | Operations
Platforms | Process Steps | Range Elements | Reference Systems | Responsible Parties | Series | Sources | Spatial Grids | Temporal Extents

MD_DataIdentification

Count Component Title Abstract
1 Environmental Hazards and Mud Volcanoes in Romania Romania, an eastern European country, is severely affected by a variety of natural hazards. These include frequent earthquakes, floods, landslides, soil erosion, and drought all of which have major social and economic impacts. Thus, there is a long tradition of study of these hazards by scientific researchers in Romania. This set of slides includes examples of landslides, rockfalls,sheet erosion, and mudflows. Romania has an area of 237,500 km2 and a great variety of geologic regions. Two-thirds of the country consists of hills, tablelands, and mountains of the Carpathian arch. The climate is dominantly temperate-continental and vegetation and soils vary widely with altitude. Altitude ranges from sea level to 2,544 meters above sea level at the highest point of the Romanian Carpathians. Romania's population in 1992 was 22.76 million inhabitants, or an average density of 95.8 people per square kilometer. The Vrancea Seismic Region of the southeastern part of the Carpathian Mountains is the most active subcrustal earthquake province of Europe. The region is characterized by high seismicity, with about three major earthquakes greater than magnitude (M) 7.0 occurring every century. The best studied earthquake of recent times occurred March 4, 1977, and had a magnitude of 7.2. This earthquake caused the death of 1,570 people, and destroyed 33,000 buildings. In addition to earthquakes, torrential rains are responsible for catastrophic floods, massive landslides, and major soil erosion. Mass movements are a significant hazard in the hilly and mountainous regions, particularly those underlain by flysch deposits. These deposits are complexes of folded and faulted sedimentary rocks containing marls, clays, shales, sandstones, and conglomerates. The distribution of mass movements in these deposits is controlled by various climatic, tectonic, and lithologic factors influenced by different land-management practices. There are significant regional differences among types of mass movements, the quantities of materials delivered from the slopes into adjacent stream channels, and risks to various human activities. In the Subcarpathians, formed predominantly of folded and faulted molasse deposits, slopes may be highly unstable. The instability is most frequently manifested by shallow (sheet) slides, landslides of medium depth, and mudflows typically 300-700 meters in length. The areas most affected by these features lie within the Curvature Subcarpathians in the Vrancea Seismic Region. In the Eastern Carpathians, formed predominantly of Cretaceous and Paleocene flysch deposits, periglacial or immediate postglacial colluvial materials are major sources of mass movements. These deposits generally range from 10 to 30 meters in depth, and landslides within them arecommonly activated or reactivated by regional deepening of the valley network in the long term, or deforestation practices by people. Because oftheir association with stream valleys, these landslides often affect towns, communication lines, and roads, and may partially or totally block valleys when they move. In the Moldlavian Plateau, the areas most affected by landslides occur on slopes built up of alternations of marls and clays, with intercalations of conglomerates and sandstones. In the Transylvanian Plateau deep landslides called "glimee" are commonly triggered by heavy rains. In the alpine belt of the Carpathian mountains, the most common mass movements are rockfalls and rock avalanches. These processes are mostcommon in the crystalline rocks on the steep slopes of glacial cirques and valleys. Sheet and gully erosion affect most of the hilly and mountainous regions of Romania. Agricultural lands on slopes steeper than 5% represent 42% ofthese regions and contribute to the bulk of sheet and gully erosion. About 20% of the agricultural lands are affected by high to very high erosionrates of 8-16 T/HA/year; 19% are subject to more moderate rates of 2-8 T/HA/Year; and about 3% are classified as slightly eroded. Highest erosion risks occur in the Curvature Subcarpathians, the Getic Subcarpathians, the north of the Getic Plateau, the central part of the Moldavian Plateau, and the west of the Translvanian Plateau. In these regions, large areas are affected by gully erosion which contributes to making about 5,000 ha/year unfit for the cultivation of crops. There is a corresponding loss of 30 million tons of soil per year. Factors related to gully erosion include poorly consolidated rocks, intense rainfall, and poor land-use practices. Mud volcanoes occur along active fault lines in the Curvature Subcarpathians, and are related to groundwater circulation under pressure.Mud volcanoes commonly are activated and reactivated during strong earthquakes. The largest mud volcanoes are located in the Berca Anticline Depression, a region rich in oil deposits. Upward movement of ground waterand oil there formed large, circular mud volcano plateaus 60-70 meters high with diameters of 200-300 meters. Within these plateaus, there are active and extinct mud volcano cones about one to three meters high. Because of the unusual formations, the region is protected from development and is a preserve for some of Romania's spectacular natural features.
Top

SV_Identification

none found
Top

CI_Citation

Count Component Title Date Citation Identifier
1 Container Packet ID
    1 Environmental Hazards and Mud Volcanoes in Romania
      1994
    Document
    1 Getty Thesaurus of Geographic Names
      1 GCMD Data Center Keywords Global Change Master Directory (GCMD) Data Center Keywords
        2020-01-09
      1 GCMD Project Keywords Global Change Master Directory (GCMD) Project Keywords
        2020-01-09
      1 INFOTERRA Keyword Thesaurus
        1 NASA/GCMD Earth Science Keywords
          Top

          CI_Series

          none found
          Top

          CI_ResponsibleParty

          Count Component Individual Organization Position Email Role Linkage
          1 NCEI User Services (distributor) DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce User Services ngdc.info@noaa.gov distributor
          1 DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (comp) originator
          2 GCMD Landing Page NASA Goddard Space Flight Center, Earth Science Data and Information System custodian https://www.earthdata.nasa.gov/learn/find-data/idn/gcmd-keywords
          3 Hazards Data Manager (pointOfContact) NOAA National Centers for Environmental Information Hazards Data Manager haz.info@noaa.gov pointOfContact
          1 NCEI (publisher) NOAA National Centers for Environmental Information publisher
          1 Anna Milan NOAA National Centers for Environmental Information Metadata Specialist editor
          1 National Geophysical Data Center publisher
          Top

          CI_OnlineResource

          Count Component Linkage Name Description Function
          2 https://www.earthdata.nasa.gov/learn/find-data/idn/gcmd-keywords Global Change Master Directory (GCMD) Keywords The information provided on this page seeks to define how the GCMD Keywords are structured, used and accessed. It also provides information on how users can participate in the further development of the keywords. information
          1 https://www.ngdc.noaa.gov/hazard/
          1 https://www.ngdc.noaa.gov/hazardimages/
          Top

          MD_Identifier or RS_Identifier

          Count Component Code
          1 Document
          1 G01143
          Top

          EX_Extent

          Bounding Box Temporal Extent
          Count Component Description West East North South Start End
          1 24 27 48 46.3 1975-07-00 1982-06-00
          Top

          EX_GeographicBoundingBox

          Count Component West East North South
          1 24 27 48 46.3
          Top

          EX_TemporalExtent

          Count Component Start End
          1 1975-07-00 1982-06-00
          Top

          MD_Format

          Count Component Name Version specification
          1 TIFF
          Top

          MD_Medium

          Count Component Name mediumFormat mediumNote
          1 cdRom iso9660
          Top

          MD_Constraints

          Count Component Use Limitation
          Top

          MD_ReferenceSystem

          none found
          Top

          MD_GridSpatialRepresentation

          none found
          Top

          MD_Georeferenceable or MI_Georeferenceable

          none found
          Top

          MD_Georectified or MI_Georectified

          none found
          Top

          MD_Dimension

          none found
          Top

          MD_CoverageDescription or MI_CoverageDescription

          none found
          Top

          MD_Band or MI_Band

          none found
          Top

          MI_RangeElementDescription

          none found
          Top

          MD_AggregateInformation

          Count Component Title Code Association Type Code
          1 G01143 largerWorkCitation
          Top

          LE_Source or LI_Source

          none found
          Top

          LE_ProcessStep or LI_ProcessStep

          Count Component DateTime Description
          1 2015-04-22T00:00:00 NOAA created the National Centers for Environmental Information (NCEI) by merging NOAA's National Climatic Data Center (NCDC), National Geophysical Data Center (NGDC), and National Oceanographic Data Center (NODC), including the National Coastal Data Development Center (NCDDC), per the Consolidated and Further Continuing Appropriations Act, 2015, Public Law 113-235. NCEI launched publicly on April 22, 2015.
          Top

          MI_Operation

          none found
          Top

          MI_Platform

          none found
          Top

          MI_Instrument

          none found
          Top