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Preparation and Supporting Data of the New Bathymetry

This poster is the third in a series of five depicting the bathymetry of the Great Lakes - the other two being Lake Michigan (1996) 
and Lake Erie (1998).   Preparation of Lake Erie and Lake Ontario bathymetry was a collaborative effort between scientists at 
the NOAA National Geophysical Data Center (NGDC), the NOAA Great Lakes Environmental Research Laboratory, the Canadian 
Hydrographic Service, the University of Colorado Cooperative Institute for Research in Environmental Sciences, and the University 
of Michigan Cooperative Institute for Limnology and Ecosystems Research.  A CD-ROM containing Lake Ontario bathymetry, with 
formats compatible with various computing systems and geographic information systems, includes screen imagery and a summary 
of geomorphology.

The entire historic hydrographic sounding data base from the U.S. and Canada, originally collected for nautical charting purposes, 
was used to create a complete and accurate representation of Lake Ontario bathymetry.  The U.S. data primarily came from the 
NOS Hydrographic Survey Data, U.S. Coastal Waters CD-ROM Set (Version 4.0, Data Announcement 98-MGG-03) referred to 
as the NOS -digital- data in the map below.  This and other bathymetric sounding data collected by the U.S. National Ocean 
Service's (NOS) Coast Survey and the U. S. Army Corps of Engineers was employed to construct bathymetric contours at 1 
meter intervals from 1-10 meters depth and 2 meter intervals at depths greater than 10 meters.  Compilation scales ranged from 
1:10,000 to 1:50,000.  Bathymetric sounding data collected by the Canadian Hydrographic Service (CHS) were employed to 
construct bathymetric contours at 1 meter intervals and compilation scales ranging from 1:1,000 to 1:30,000.  Digitization of the 
	 	 bathymetric contours, merging of the bathymetric contour data sets, poster construction, and 
	 	 preparation of a CD-ROM, were accomplished at the NGDC.  Multibeam bathymetric data 
	 	 collected by the University of New Brunswick's Ocean Mapping Group (UNB-OMG), with 
	 	 support of the Geological Survey of Canada (GSC) and the CHS, were kindly made available 
	 	 in gridded form.  In the two areas where multibeam bathymetric data were available, no other 
	 	 bathymetric data were used in the compilations.  In some areas all available Canadian and U. S. 
bathymetric sounding data, collected at different times on different survey expeditions, were used to derive the contours.

The U.S. coastline used was primarily the GLERL Medium Resolution Vector Shoreline dataset (Lee, 1998).  Where needed for 
more coverage, the NOS Medium Resolution Vector Shoreline for the Conterminous U.S. (1994) dataset was used.  Coastlines 
from the CHS bathymetric sounding data field sheets were used to complete the Canadian coastline.

As seen in the diagram below, the density of data varies greatly from one region to another.  The areas with 650 meters track 
spacing or more contain low data density, and areas with track spacing of 300 meters or less contain high data density.  The 
multibeam bathymetric data are of very high data density, and the NOS nautical chart data have very low data density.  More 
data in the present low data density areas would not only better verify existing contours but also show more details of bottom 
topography (as illustrated on the main map if high data density and low data density areas are compared).

	 	 	 	 	 	 	 	 	 	 	 	 Basin Bathymetry of Lake Ontario

	 	 	 	 	 	 	 	 New bathymetry has revealed the presence of a small basin between the Mississauga and Rochester Basins and we have given it 
	 	 	 	 	 	 the new name, Genesee Basin.  The four axial basins, separated by three ridges, occupying the floor of Lake Ontario are from west to east the Niagara, 
	 	 	 	 Mississauga, Genesee, and Rochester Basins.  North of the Niagara River mouth and to the west, in the subtly defined Niagara Basin (which barely exhibits topographic 
	 	 	 closure), the deep axis of the lake is about midway between north and south shores.  Farther east, the axial depths of the other three basins lie well toward the southern edge of 
	 	 the lake, giving the lake a distinct asymmetry in its north-south profile.  This asymmetry is related to the bedrock configuration underneath the lake floor, and its differential resistance to glacial 
	 erosion (Hutchinson, et al., 1993).  Gently southward dipping, erosion-susceptible shales and redbeds of the Middle and Upper Ordovician Utica Formation, Lorraine Group (Blue Mountain and Georgian Bay
 Formations in Ontario), and Queenston Formation, overlie southward-dipping erosion-resistant limestones of the Middle Ordovician Trenton Group (Cobourg and Lindsay Formations in Ontario).

Ledges and Channels in the Mississauga Basin

In the deep axis of the Mississauga Basin from 146-182 meters depth, there are several ledges of a few meters relief, 
separated by scarplets that trend north to south.  These features step down from west to east toward the deepest 
point in the basin.  Although the origin of the ledges is not known, they might have formed on the eroded edges 
of a succession of gently dipping strata which are characterized by bed-to-bed variation in resistance to erosion.  
Rudimentary valleys and channels of only a few meters relief are superimposed on the ledges 
and appear to represent a drainage pattern. Formation of the ledges could have been 
the result of the erosional action of Wisconsin glaciation and/or subglacial meltwater floods, 
acting against the differential resistance to erosion and layered aspect of the 
sedimentary strata (probably Trenton Limestone; Sanford and Baer, 1981) 
underlying the lake floor.   

Lake Margin Topography

Around the perimeter of the lakefloor, the high energy of water circulation has evidently prevented the deposition of postglacial 
muds, except in sheltered areas (Thomas et al., 1972).  Strongly linear bathymetric features displaying the imprint of 
glaciation, or of exhumation of bedrock topography and structure, occur at intervals along almost all of the 
lakeshore.  Study of bottom sediment types off the western lakeshore between Niagara and Oshawa 
revealed that extensive areas of exposed bedrock, boulder pavement, sand deposits, and glacial 
drift occur here (Rukavina, 1969; Rukavina, 1976).  Apparently in most areas around the lake 
perimeter, Quaternary sediments are relatively thin or absent, and bedrock exposures are 
common, possibly reflecting the effects of subglacial erosion and subsequent abrasion 
by lacustrine waves and currents.

Small Rounded Basin at Charity Shoal

A small equidimensional circular depression 1000 meters in 
diameter, with a continuous encircling rim, coincides with the 
feature referred to as Charity Shoal on nautical charts.  An 
elongated ridge extends southwest from the feature, resembling 
the tail of a crag-and-tail feature common to some drumlin fields.  
The basin is slightly deeper than 18 meters and the rim rises to 
depths of 2-6 meters.  The origin of the feature remains unknown.  
Although a sinkhole in the limestone terrane is a possibility, an 
origin related to a meteor crater, that was subsequently glaciated, 
seems more likely.  Aeromagnetic mapping by the Geological 
Survey of Canada revealed a negative magnetic anomaly over 
Charity Shoal, which is a characteristic feature of simple impact 
craters (Pilkington and Grieve, 1992).

	 	 	 Scotch Bonnet and Point Petre Ridges

	 	 	 Seismic sections show that the Scotch Bonnet and Point Petre Ridges 
	 	     are underlain by bedrock highs; at one location the Scotch Bonnet Ridge is 
	 	  bounded on the northwest by a 25 meters escarpment (Anderson and Lewis, 
	      1975; Forsyth, et al., 1994).  Valleys also interpreted as bedrock features extend 
	 NE-SW, paralleling the two main ridges and lying between and adjacent to these 
   ridges (Hutchinson, et al., 1993).  These features are lineated in the same direction as 
faults and bedrock lineations occurring to the northeast in Ontario in the distinct NE-SW 
fabric of the Grenville basement rocks (Forsyth, et al, 1994).  The Scotch Bonnet Ridge 
lies on the northward extension of the Clarendon-Lynden Fault system in New York 
(Hutchinson, et al., 1979).  A channel (Scotch Bonnet Gap) which breaches the 
Scotch Bonnet Ridge connects the Mississauga and Genesee Basins near 
the deep axis of the lake.  Deep connections also occur between the 
Niagara and Mississauga Basins and the Genesee and 
Rochester Basins (Genesee Gap).

West and East Kingston, Galloo, and Stony Basins

Several small shallow basins with intervening ridges occur 
in the northeastern extremity of Lake Ontario, all having 
depths of generally less than 40 meters.  The bathymetry 
exhibits a preferred orientation of NE-SW, and appears to be largely a 
water-covered extension of the topography occurring northeast of the lake.  
The basins were probably produced by glaciation followed by some 
  sedimentary infilling and topographic smoothing.  Bedrock, consisting of	
	 	 	 	 	 	       Ordovician limestones and 
	 	 	 	 	 	       shales, lies at or near the 
	 	 	 	 	 	      surface beneath the ridges 
	 	 	 	 	 	        and shoals separating the 
	 	 	 	 	 	          basins. (Sly and Prior, 1984).

Duck-Galloo Ridge, Simcoe Island Channel, 
Saint Lawrence Channel, and Black River Channel

At the southern rim of the East Kingston, Galloo, and Stony Basins 
there occurs a series of broad low ridges which individually trend 
NE-SW, but which coalesce to form a complex ridge extending 
from the west near Prince Edward Point, Ontario to the east near
Stony Point, New York.  This feature has a relief ranging from 20-30 
meters and is asymmetrical, with steep northeast facing scarps, 
and gently sloping surfaces facing southwest toward the main basin 
of Lake Ontario.  The cuesta features seen here are gently rounded 
to flat on top, and several are capped by islands, the principal of 
which are Main Duck, Galloo, and Stony Islands.  The Simcoe Island, 
Saint Lawrence, and Black River Channels are incised through the 
Duck-Galloo Ridge and extend NE-SW across the above mentioned 
basins.  All three channels broaden out at the southern margin of the 
Duck-Galloo Ridge.  This was probably the location of the Lake 
Ontario shoreline in early postglacial time, and the three channels 
were probably the main outflow channels for the lake at this time 
(Anderson and Lewis, 1985).

Sculptured Parallel Ridges in the Rochester Basin

A series of distinct NE-SW ridges occupy the floor of Lake Ontario's deepest basin, 
the Rochester Basin.  These ridges, having a relief of 15-25 meters and a natural 
spacing of 250-1000 meters, are remarkable in their linear aspect and uniform width.  
Most have relatively flat tops with steep side slopes, some of which are steeper to 
the northwest, others to the southeast, and some are symmetrical in cross-profile.  
Seismic and sediment core data suggest that many of the ridges coincide with the 
underlying relief of glacial landforms beneath the lake sediment (Hutchinson, et al., 
1993).  Resemblance exists between these features and grooved topography occurring 
in onshore drumlin fields north of the lake, as noted by Lewis (1997).  Some of the 
Rochester Basin ridges are also abruptly truncated on their rounded northeastern 
ends, opposing the direction of ice advance, a distinct feature observed in drumlin 
fields.  An alternate interpretation has been proposed for the ridges, namely, that the 
side slopes of the ridges have resulted from faulting (Thomas, et al., 1993).  The 
parallel ridges of the Rochester Basin trace an arc from NE-SW to nearly east-west, 
which suggests they were formed by subglacial flow following the changing trend of 
the southern side of the basin, as if flow was deflected westward by the massive bulk 
of the Allegheny Plateau to the south. The relative roles of ice and meltwater floods 
in forming these ridges is a topic of continuing research. 
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