

Riometers and Solar proton events

Donald Danskin
ddanskin@NRCan.gc.ca
Natural Resources Canada

Presented by <u>Juan Rodriguez</u> for SEP intercalibration workshop, Boulder, Apr 11, 2014

Introduction

- •The Canadian Riometer array is a partnership between the University of Calgary and Natural Resources Canada.
- •Enhanced levels of ~10 MeV protons can cause absorption of radio waves in the D region (~60 90 km) of the ionosphere.
- •Absorption caused by protons are highly asymmetric, with an intensification in the sunlit ionosphere as compared with dark period.
- •Data from the Canadian riometer network and GOES satellites are used to evaluate how much absorption.

How a riometer works

Riometer Equipment

Antenna

Computer and Riometer

Data sampler

What does a Riometer measure?

Ionospheric absorption (in the D region ~90 km)

- Auroral absorption
- Solar radio noise bursts
- X-ray induced absorption
- Polar cap absorption (solar protons)

Typical riometer frequencies are 30.0, 38.2, and ~50 MHz.

Canadian Riometer Array

Quiet day curve

Galactic noise variation over a sidereal day

PCA monitoring

Abs, dB

Taloyoak

Dec 6, 2006 event

Shaded areas are daytime periods

PCA day-night effect Oct 28, 2003

ACE energetic protons

We thank the ACE
EPAM instrument team
and the ACE Science
Center for providing the
ACE data.

GOES protons

P1	Corrected protons: 0.8 - 4 MeV
P2	Corrected protons: 4 - 9 MeV
P3	Corrected protons: 9 - 15 MeV
P4	Corrected protons: 15 - 40 MeV
P5	Corrected protons: 40 - 80 MeV

We thanks the National Geophysical Data Center for the GOES data. http://spidr.ngdc.noaa.gov/spidr/index.jsp

Polar Cap Absorption

Conclusion

- Riometer data has been collected since ~1990 under CANOPUS.
- NRCan riometers were install after 2006
- A new website will be available for accessing absorption values
- For further information/ clarification / data send email to: ddanskin@NRCan.gc.ca

Canadian Riometer Array is funded in part by the Canadian Space Agency through Go-Canada grants. E. Spanswick is the principal investigators for the Go-Riometer part of the array, D. Danskin manages the NRCan riometers.

