

SEP Calibration Results

REPT analysis & preliminary inter-calibration: Jan 2014 SEP events

A. N. Jaynes¹ --- allison.jaynes@lasp.colorado.edu
 D. N. Baker¹, X. Li¹, S. G. Kanekal²
 ¹LASP CU-Boulder, ²NASA Goddard

REPT protons			
Bin	Center energy	Low bound	High bound
0	21.25 MeV	18.5 MeV	24.0 MeV
1	27.6 MeV	24.0 MeV	31.2 MeV
2	35.9 MeV	31.2 MeV	40.6 MeV
3	46.7 MeV	40.6 MeV	52.8 MeV
4	60.7 MeV	52.8 MeV	68.6 MeV
5	78.9 MeV	68.6 MeV	89.2 MeV
6	102.6 MeV _(integral)	89.2 MeV	*** MeV
7	208.0 MeV _(integral)	116.0 MeV	*** MeV

- Identical instruments on both Van Allen Probes satellites
- Excellent differential proton measurements for a full 19 months
- Several SEP events seen, though none have been very strong
- Jan 2014 best event so far

REPT instrument – SEP events

REPT A & B > 18.5 MeV Protons

January 2014 SEPs

- Flare eruption on 06 Jan 2014
- Caused the smaller SEP that lasted for a short time

SDO STEREO – 06 Jan 2014 SEP

- X1-class flare erupted on 07 Jan from "giant sunspot" – along with associated coronal mass ejection (the CME that wasn't)
- Larger SEP event that persisted for several days
- More intense and harder spectrum

SOHO LASCO – 08 Jan 2014 SEP

REPT-A & ACE

- ACE Solar Isotope Spectrometer (SIS) measures protons for E > 10 MeV and E > 30 MeV
- False integral channels for REPT to create analogous energy range
- ACE located at L1 point (~230 R_E)
- Expect higher counts at L1 than at RBSP within the magnetosphere
- REPT measurements are indeed lower at apogee (L~6.3) than at ACE (L1)
- GCR 'background' can easily be seen in REPT data (more later)
- (B s/c looks the same)

- REPT measurements higher on average than GOES at GEO at peak of SEP – probably due to s/c location
- Clear East-West anisotropy seen in GOES [*Rodriguez et al.*, 2010]
- Expect REPT to match more closely with Eastward-looking

REPT-A & GOES 13

REPT-A & GOES 13

REPT-A & POES NOAA 18

- Lowest energies agree very well!
- REPT/POES = 0.96 at peak intensity
- Higher energy is off more, but energy ranges are less similar at this steeper part of the spectrum
- REPT/POES = 1.4
- POES cts/s were converted to flux using method in SEM-2 Appendix F for an angular distribution common to solar particle events (Case 2)

REPT PHA data analysis

- REPT began to receive increased PHA data rate in July 2013 with re-allocated telemetry
- Effort led by Richard Selesnick (AFRL) to analyze raw PHAs for calibration purposes
- Energy spectrum near apogee of proton measurements, binned into equal width energy "channels" (histogram) compared to onboard binned differential proton measurements (asterisks)
- Left plot uses current geometric factor (one for entire detector stack)
- Right plot assumes high energy cross-cutters and uses adjusted (higher) geometric factor for E>200 MeV
- Resulting high-energy background is consistent with galactic cosmic ray (GCR) intensity of ~10⁻⁴ /(cm² s sr MeV)

◇ REPT solar proton measurements show good agreement with both GOES and ACE during SEP events
◇ Factor of 0.5 *higher* than GOES at peak of SEP
◇ Factor of 0.3 *lower* than ACE at peak of SEP
◇ Factor of <u>0.04</u> *lower* than POES at peak of SEP
◇ REPT team has undertaken extensive efforts to calibrate and characterize the instrument response, as well as cross-calibrate with other measurements on the Van Allen Probes payloads
◇ This presentation represents just a broad overview of inter-cal possibilities, and will hopefully serve as starting point for more detailed analysis

REPT-A & GOES 15

Solar Energetic Proton events

- Sometimes useful for determining if a CME is Earth-directed since arrival time is much faster than the associated electrons
- Flux seen at Earth will increase over several hours, then decay back to background over days

- Protons can be accelerated to very high energies due to solar eruptions
- Follow IMF lines to Earth
- Can reach Earth within a few hours of leaving the Sun
- Enter the magnetosphere and precipitate at the poles, causing problems for Earth-orbiting spacecraft and high-latitude airplane traffic

SOHO LASCO – 08 Jan 2014 SEP