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Short Version 
 
Data: quiet night-time Ørsted, Champ spanning 1999.2-2004.6 and observatory hourly 
means spanning 1999.0-2003.3. To improve the secular variation estimates for 2005.0-
2010.0, predictions based on application of linear prediction filters to long series of 
observatory annual means were also used. 
 
Parent model: internal degree 36, quadratic dependence on time up to degree8, linear 
dependence on time up to degree 12, external degree 2 with linear dependence on time, 
annual and semi-annual variations, Dst dependence for degree 1 terms. Additionally for 
the external field non-zonal degree 1 coefficients in the Geocentric Equatorial Inertial 
reference frame with annual variations and IMF By dependence. 
 
Final models: Final models were based on extrapolations of truncated parent model to 
2005.0 for the main field and to 2007.5 for the secular variation. This latter set of 
coefficients were then used to generate a synthetic dataset at Earth’s surface and this was 
augmented with long term predictions at the observatories, to produce the final secular 
variation model at 2007.5. 

Long Version 

1. Introduction 
The BGS candidates for the IGRF-10 were built in two stages. In the first stage a 
magnetic field model (the “parent model”) was constructed from satellite and observatory 
data selected between 1999.0 and 2004.58. This model was then extrapolated forward in 
time to derive a main field model for 2005.0 and a secular variation model for 2007.5. 
Truncating this main field model provides the BGS main field candidate for IGRF-10. 
The secular variation component of the model was however only used to synthesize data 
on a grid on the Earth’s surface and this synthetic data set was combined with secular 
variation data linearly predicted using long time series data from observatories. The BGS 
secular variation model candidate for 2005.0 to 2010.0 was then estimated by least 
squares fit of these two data sets. 
 



The following sections describe the data selection, model parameterisation, data 
weighting and model estimation. The final section describes how the IGRF candidate 
models were extracted from the “parent model”.  
 

2. Data selection 
 

Satellite data 
All available Ørsted and Champ scalar and vector data were utilized. Data were selected 
20s apart, using Kp ≤  1+ , |Bx|, |By| ≤  10 nT and 0≤  Bz ≤ 6 nT, a maximum solar wind 
speed of 450 km/s and, up to July 2004, Dst index values in the range -20nT to 0nT. No 
real-time Dst indices were used at any point in the model. Data with Kp > 1+ in the 
previous three hour interval before the acquisition time and with 0<Dst or Dst < -20 nT in 
the hour before the acquisition time were not used. Contamination by the magnetic field 
generated in the ionosphere was minimised by choosing only night-side data between 
23:00 and 05:00 local time. Only vector data were selected in the geomagnetic latitude 
range -55° to 55°. Otherwise, at higher latitudes only scalar data were selected using the 
further constraint of maximum polar cap (PC) index ≤  0.2 (chosen by examining rms fit 
to data as a function of maximum PC). After 2003.0 the maximum solar wind speed limit 
was allowed to increase to 550 km/s in order to select enough data as a result of the 
higher wind speed average for that year. 
 
Ørsted and Champ data up to the end of September 2004 and June 2004 respectively 
were downloaded but the local-time selection criterion limited the span of Ørsted data at 
2004.3. The span of Champ data was limited at 2004.35 by the attitude corrections 
available (Maus, personal communication).  We note that the distributions in time of the 
Ørsted satellite data, and to a lesser extent the Champ data, have gaps in them due to the 
local-time selection criterion. 

Observatory hourly mean data 
Hourly mean vector data at 151 geomagnetic observatories were selected. Any measured 
discontinuities were applied to these data, and any other identifiable discontinuities 
resulted in the observatory series being split so that separate biases can be solved for in 
the model. The selection criteria were similar to those for satellite data: Kp ≤  1+, 0≤  Bz, 
Dst index values in the range -15nT to 0nT and local time between 23:00 and 05:00. The 
distribution in time of observatory data stops at 2004.0 but is more even than for satellite 
data. 
 
In an attempt to minimise the noise level due to currents flowing in and above the polar 
ionosphere, vector data from observatories at geomagnetic latitudes outside the range  
[ -55°; 55°] were projected onto the direction of a predefined magnetic field model. The 
advantage of using projected data over total intensity data is that a linear relationship is 
maintained between the observatory offsets (introduced to account for part of the local 
crustal field) and data.  



Observatory secular variation data 
Prediction of secular variation to 2010.0 was made using linear predictor filters applied to 
159 series of first differences of observatory annual means in X, Y and Z (Macmillan and 
Quinn, 2000).  The time intervals covered by observatory time series are long compared 
to the time interval of data used in the “parent model” with some data extending back into 
the 19th century. Linear prediction is successful at extrapolating signals that are smooth and 
oscillatory, though not necessarily periodic, and tests have shown that when predicting more 
than about 3 years ahead, this method is better that linear regression applied to recent first 
differences. The time series from 159 observatories were prepared using the file of annual 
means maintained by BGS, taking account of any jumps and gaps in the data, and 
discounting certain early parts of records where the noise levels are particularly high. The 
data for use in the final secular-variation model were averages of the predictions for 2005.0-
2010.0 and were assigned uncertainties that reflected the past success of prediction for the 
data series in question. Data from 29 observatories which had time series too short for the 
application of linear prediction filters were also used by computing average secular-
variation estimates and assuming that these did not change with time. 
 

3. Model parameterisation 
 
Away from its sources, the magnetic field B is a potential field and therefore can be 
written as the negative gradient of a potential ( ) ( )trVtr ,,,,,, ϕθϕθ −∇=B . This potential 
can be expanded in terms of spherical harmonics: 
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where a  (6371.2 km) is the Earth’s reference radius, ),,( rϕθ  are spherical coordinates in 
a geocentric reference frame (GEO), )(cosP θm

l  are the Schmidt semi-normalized 
Legendre functions, and ))(),(( thtg m

l
m
l  and ))(),(( tstq m

l
m
l  are the time-dependent Gauss 

coefficients describing internal and external sources respectively. We have used 
36=li and 2=le  as the truncation level of the internal and external fields respectively. 

This maximum internal degree is high and we believe that out estimates of the Gauss 
coefficients are robust at least up to degree 20. 
 
The internal Gauss coefficients from degree 1 to 8 are assumed to have a quadratic 
dependence on time:  
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where the time is given in decimal year and 0t  is the reference date of the model 
(2002.0). From degree 9 up to 12 a linear dependence on time of the internal Gauss 



coefficients is assumed, and, for higher degrees, the internal Gauss coefficients are 
constant with time. The external Gauss coefficients have a linear dependence on time. 
 
Other authors (Sabaka et al., 2002, Olsen 2002) have shown that both external and 
internal degree 1 and 2 Gauss coefficients have a seasonal variation. The same seasonal 
parameterisation is used here. Let )(~

1 tg m  be the parts of the )(1 tg m coefficients that 
account for these seasonal variations, then: 
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 Similar representations are used for )(1 thm , )(1 tq m , )(1 ts m  and for degree 2 internal and 
external Gauss coefficients. 
 
A Dstdependence for the degree 1 Gauss coefficients is introduced to represent the 
variability of the magnetospheric ring current. We used the internal/external Dst 
separation due to Maus (2004), when available, otherwise a fixed ratio of 0.27 (Langel 
and Estes, 1985) between the external Dst dependence and the associated internal 
induced contribution was assumed. 
 
With the above parameterisation, large-scale external fields perpendicular to the Earth 
rotation axis cannot be modelled as potential fields due to the rotation of the geocentric 
reference frame (GEO) relative to the Sun-Earth axis, and also due to the processing 
technique applied to the observatory data to synthesize the Dst index. Evidence of the 
contribution of these fields to the near-Earth geomagnetic field has been shown in Lesur 
et al. (2004), where a magnetic signal that correlates well with the Y component of 
Interplanetary Magnetic Field (By) is presented. These contributions can however be 
modelled in a reference frame that is not rotating with a 24-hour periodicity relative to 
the Sun-Earth axis. The Geocentric Equatorial Inertial reference frame (GEI) is one such 
coordinate system. This system is (to the first order) fixed with respect to the distant 
stars, its Z-axis is along the Earth rotation axis and its X-axis is pointing towards the first 
point of Aries (Hapgood, 1992). In GEI the Sun-Earth axis rotates with a yearly 
periodicity. In this system of coordinates we define a potential field for the perpendicular 
component: 
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where ),,( rϕθ  are the spherical coordinates in GEI. We define the time behaviour of 
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1 tq gei as: 

 
))(2sin()B  ())(2cos()B  ()( 0y

1
1,1

1
1,10y

1
1,1

1
1,1

1
1 ttqqttqqtq i

s
c

s
i

c
c

c
gei −++−+= ππ  

 
and similarly for )(1

1 ts gei .  
 



Finally, the data set contains observatory data and we have to introduce offsets at each 
observatory to take into account the field, mainly generated in the crust, which cannot be 
described by our model. At an observatory, the magnetic field B is: 
 
( ) ( ) ),,(,,,,,, rtrVtr ϕθϕθϕθ OB +−∇=                                                                           (4) 

 
where the offset vector ),,( rϕθO  is constant in time. Therefore, there are three new 
parameters per observatory in the geomagnetic latitude range -55° to 55°. Outside this 
range, the data we use are projections of the measured magnetic field onto a priori 
directions. In these cases, only one parameter is introduced per observatory to account for 
the crustal offset into this same a priori direction. 
 

4. Data weighting, attitude errors and covariance matrix 
 
The standard deviations (SDs) associated with both satellite and observatory data were 
defined as: 

))cos(1(0 zad z ++= σσ                                                                                                    (5) 
where za  is the zenith angle of the sun, the factor nT3=zd for satellite scalar data and 
20 nT for observatory projected data. Otherwise zd  is set to 0 nT and 0σ to 2 nT for all 
vector data. The dependence relative to the zenith angle was introduced to account for the 
noise level due to the increased conductivity of the sun-lit ionosphere.  
 
As in Holme (2000) and Olsen (2002), we account for the anisotropy in the attitude 
accuracy of Ørsted vector data by estimating off-diagonal elements of the data covariance 
matrix.  
 
No further selection or decimation of the data was introduced to deal with the high data 
density at high latitudes. Instead, the data values were multiplied by weights. The 
spherical surface was divided in roughly equal-area cells whose size at the equator was 5° 
in latitude and longitude. For a data point in a given cell, a weight was calculated as the 
ratio of the average number of data in non-empty cells to the number of data in that cell. 
These weights were computed independently for observatory and satellite data. To 
introduce these weights into our parameter estimation scheme, their inverses were put in 
diagonal weight matrices that left and right multiplied the covariance matrix. 
 
Let dC be the data covariance matrix multiplied by the weight matrices above. This 
matrix is real and symmetric and therefore it can be reduced to a real diagonal matrix by 
orthogonal rotation: 

AS)(SAC 1t −= t
d                                                                                                              (6) 

where the superscript t denotes the transpose and the superscript -1 the inverse, S is a real 
diagonal matrix whose elements are the inverse of the weighted SDs and A is the inverse 
of the rotation matrix. (The notation used is consistent with that of Olsen (2002)). 
 



5. Model estimation 
 
We estimated the model parameters by fitting the data using a classic least-squares 
approach. For this application the iterative process can be written as: 
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where the superscript i denotes the ith iterate, p is the model vector (i.e. the model 
parameters), )G( p is the forward non-linear function used to calculate the predicted 
values d from a model p , obsd is the data vector and G  is the pn×  matrix associated 
with the equations of condition ( n : number of data values; p number of model 
parameters):  
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The linear system is solved using eigenvalue/eigenvector decomposition. The problem 
can be regularised by removing the very small eigenvalues and their associated 
eigenvectors, but that proved unnecessary in this case. 
 
The number of data, mean and the rms misfits to the data for the resulting model are 
given in Table 1. 
 
Table 1: Mean and rms misfit to the data set for the parent model (nT) 

Component N mean rms 
X satellite 60,931 0.49 6.45 
Y satellite 60,931 0.27 5.80 
Z satellite 60,931 -0.27 5.00 
F Satellite 14,004 -2.25 6.75 
X observatory 75,652 0.00 5.39 
Y observatory 75,652 0.00 4.65 
Z observatory 75,652 0.00 3.54 
F observatory 35,653 0.57 18.71

 
 
where the X, Y and Z components are oriented North, East and down respectively and N 
is the number of data values.  



 

6. Extrapolation to 2005.0 and 2007.5 
 
The model resulting from the above process is valid only from 1999.0 to 2004.35 and 
therefore has to be extrapolated forward in time. The coefficients for the main field 
model at 2005.0 and secular variation model at 2007.5 were calculated using Equations 2. 
However for this extrapolation, the m

l
m
l hg &&  and  coefficients for degree 11 and above as 

well as the m
l

m
l hg &&&&  and  for degree 7 and above, were set to zero.  

 
The resulting main field model was then truncated to degree 13 to produce the main field 
candidate for the IGRF-10.  The secular variation model was used to produce a synthetic 
data set on a 6371.2 km radius sphere, composed of vector data located at the centre of 
equal-area cells whose size at the equator was 5° in latitude and longitude. This data set, 
comprising 1654 vector values, was then augmented by the secular variation predictions 
from 188 observatories. Each data was weighted by the inverse of its estimated 
uncertainty. The synthetic data were down-weighted because the formal standard 
deviations of the underlying model Gauss coefficients are known to be too small (Lowes 
and Olsen, 2004) but they were on average given higher weights in the final model than 
the observatory secular variation values. A spherical harmonic model of the secular 
variation with maximum degree 10 was then fitted to these data and truncated to degree 8 
to produce the BGS secular variation candidate model for the IGRF-10. 
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