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Abstract: One emerging application of night-time light imagery focuses on estimating 
levels of access to electricity globally (Doll & Pachauri, 2010; Elvidge et al., 2010). A 
central consideration of such studies is the population density which can be 
consistently detected from night-time light imagery. Whilst numerous studies have 
addressed the relationship to light and population statistics in order to predict 
population, the use of spatially explicit population databases allows for a more 
detailed description of these relationships. This paper reports the variation of different 
detection profiles of two publically available gridded population datasets. These are 
disaggregated by region to reveal a vast contrast in what we may assume to be 
observable population in different parts of the world. A dynamic trend emerges with 
respect to levels of development with the most developed nations hypothesized to be 
the theoretical minimum observable population density. Beyond contributing to the 
analysis of areas of the world without access to electricity, more fundamentally, this 
analysis addresses a basic question about night-time lights and how it relates to 
population globally and in particular the relative merits of two commonly used 
population databases. 
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1. Introduction  

One of the most intuitive uses of night-time light satellite imagery is to use it as a proxy for 

the location of human population. The global coverage of anthropogenic light emissions presents 

an image of human activity which has a great visual impact to both lay and professional 

observers. As a measure of development it is striking both in what it shows and what is absent. 

Comparing the spatial distribution of light emissions to that of human population reveals the 

short comings of using night-time lights as an absolute proxy for the location of human 

settlements. Large parts of the developing world remain without access to electricity despite 

sizable populations. Nonetheless studies have shown the utility of night-time lights to be a 

descriptor of urban location and urban population (Sutton et al., 2001). More recently, studies 

have focused on whether night-time light imagery can be used to assess levels of access to 

electricity (Doll and Pachauri, 2010; Elvidge et al., 2010). An obstacle in undertaking such 

studies is that an appreciation or estimate of the level of population which goes undetected is 

helpful to interpret the results. Given the very wide range of levels of development and use of 

lighting across the world, this study seeks understand what level of population can be detected in 

different regions of the world. Furthermore, this paper assesses the difference between datasets 

of residential and ambient population. Residential population is what traditionally has always 

been recorded in national censuses. It essentially records where people live. Whilst this has 

advantages in many areas, not least data collection, it is less useful in certain applications of 

demography which require information on where people may actually be during the day. This is 

termed ambient population and refers to, for example, the population of downtown areas during 

the day or other loci which experience diurnal fluctuations. It has applications in many areas 

such as disaster management: what is the exposed population when an earthquake strikes during 

the mid-morning? 

 

Ambient population is decidedly more difficult to estimate because it relies on a number of 

factors such as the density of transport networks to transport people into an area (itself a location 

of ambient population), the available building stock to accommodate the influx of people into an 

area and so on. Sutton et al. (2003) describes a number of approaches to model this distribution 

which they characterize as a temporally averaged measure of population density taking into 

account where people sleep, work, eat and so on. 

 

Whilst studies have taken statistical data and compared night-lights at various administrative 

levels from national to local to pixel (Sutton et al., 2001; 1997), a pixel by pixel analysis is 
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decidedly more difficult owing in part to the uncertainties present in the night-time lights dataset 

and the fact that light emissions are not solely a function of population and are in fact strongly 

dependent on economic activity (Raupach et al., 2010). This study does not concern itself with 

the pixel to pixel correspondence but rather takes a broader approach to understand what is the 

likelihood of a pixel appearing lit at a given population density and given the wide range of 

economic development across the world, what is the magnitude of the difference in the 

relationship between light intensity and population density by region.  Such information is useful 

not only from the standpoint of understanding the characteristics of night-time light data from the 

DMSP-OLS sensor but also the difference between the two population datasets considered in this 

study.  

 

2. Approach  

Using the spatial analysis functions in ArcGIS, DMSP-OLS night-time light imagery was 

overlaid with two spatially explicit population datasets. The two population datasets used in this 

study are both publicly available but differ slightly in their methodology. In this sense they are 

not directly comparable for analyzing the change in population detection in a given region over 

time but rather to highlight the differences within a region between residential and ambient 

population. The regional definitions used for this study is a 11 region political-economic 

classification from the International Institute for Applied Systems Analysis precise details of 

which can be found here (IIASA, 2006). 

 

2.1. Description of datasets used in the study 

2.1.1. DMSP-OLS Night-time lights 

The night-time light satellite imagery comes from the current latest public release of the 

annual stable lights composite (version 4) of the Defense Meteorological Satellite Program’s 

Operational Linescan System (DMSP-OLS) the National Oceanic and Atmospheric 

Administration’s National Geophysical Data Center (NOAA-NGDC, 2010). The stable lights 

dataset is an annual composite of numerous night-time scenes taken throughout the year of 

production. DMSP-OLS was originally conceived as a meteorological satellite designed to 

observe clouds at night. Over time it has been realized that it also observes a number of other 

human activities through surface light emissions under cloud free conditions. The sensor itself 

has a resolution of 2.7km with two bands one in the visible-near infrared (0.4-1.1µm) and the 

other in the thermal band (10.5-12.6µm).  
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The combined used of these bands allows detailed description of light emissions to be 

produced. Taking data from scenes of low lunar illumination and using the thermal band to 

distinguish clouds from surface lights, a complex mosaic of images is sequentially built which, 

using a sequence of geolocation and compositing algorithms are processed to produce a seamless 

image which records the average digital number (DN) of consistently present (stable) lights 

throughout the year at 30arc-second resolution (~1km at the equator). A full description of the 

sensor characteristics and processing algorithms can be found in Elvidge et al (1997; 2001). As 

new satellites are launched to replace the old sensors, there may be more than one dataset 

available for any given year. Currently there are 30 datasets of annual composited data available 

for the years 1992-2009. For this study, the composites from the F14 sensor for 2000 and the 

F16’s 2008 product were used to match the years of the corresponding population dataset.  

 

There are a number of known issues with the DMSP-OLS night-time lights dataset, 

knowledge of which is helpful when interpreting results. Firstly is that due to the spatial 

configuration of the sensor, the dataset tend to overestimate the aerial contribution of light. This 

can happen in two ways. One is due to the coarse resolution and high sensitivity of the sensor, 

light can be detected from feint sources which may not cover the entire pixel. Secondly, pixels 

that appear to be lit may not have a light source due to atmospheric scattering from adjacent 

pixels. This is termed overglow The high sensitivity of the sensor combined with the low 

dynamic range leads to a second issue, that of sensor saturation. It is often the case that over 

bright urban areas, the maximum DN value (63) is reached. Whilst techniques to help overcome 

this have been discussed (Elvidge et al., 1999; Small et al., 2005) these are not applied to the 

stable lights dataset used in this study. 

 

2.1.2. CIESIN GRUMP & LandScan Population datasets 

The two population datasets used are both gridded at 30-arc second resolution. The first is the 

Global Rural Urban Mapping Project (GRUMP) from the Center for International Earth Science 

Information Network (CIESIN) (CIESIN et al, 2004). This population dataset takes 2000 census 

data from 1 million administrative units to produce a global gridded population data product. It is 

further enhanced by using a global database of urban settlements to model urban-rural population 

and then weighting population to urban areas. This database is largely derived from an earlier 

version of the night-time lights dataset (1994-95) but is augmented with data from the Digital 

Chart of the World and tactical pilotage charts in order cover areas which may not appear in 

night-time light imagery. In these cases a delimitation of urban area is achieved by using the 
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population data to derive an areal extent based on an allometric growth function. The urban 

settlements layer is used give larger weight to urban areas than rural areas when population is 

allocated to each cell. Whilst this may not have a noticeable effect in areas where the urban 

settlement is larger than the administrative area, it will be significant where urban areas intersect 

or lie within administrative units. In doing so, it aims to achieve a more accurate representation 

of population than through census areas alone.  

 

The LandScan (LandScan, 2008) population dataset refers to global population from 2008 and 

is the product of a more complicated data input stream. Previous versions also relied on night-

time light imagery but it was determined that the nighttime lights were more representative of 

economic activity (Bhaduri et al., 2002) and has subsequently been replaced with a suite of 

ancillary land cover data. In addition to the census population and administrative area statistics, 

data on land-cover data, slope, elevation, road networks, urban boundaries and other populated 

points as well as coastlines are all combined to produce a population probability grid which maps 

the likelihood of population appearing in a cell. Further modifications to this coefficient are 

made by analyzing high-resolution imagery to assess factors like building density and settlement 

patterns in urban areas (ORNL, 2010). This leads to what is known as ‘ambient population’. The 

product is a more precise representation of population based on a calculation of the likelihood of 

population appearing in a cell based on a weighted combination of the aforementioned factors. 

 

As a point of note, the accuracy either relative or absolute of either dataset is unknown and 

despite the enhanced precision of the LandScan dataset, no assessment of accuracy is claimed or 

acknowledged for either dataset. Indeed it is not the purpose of this study to determine which 

dataset is better or more accurate but merely to assess the characteristics of each dataset with 

respect to night-time light imagery.  

 

2.2. Methodology  

Initially we consider the ratio of areas which are unlit to lit as a measure of the likelihood of 

population detection. This is done by using a binary mask to exclude lit areas and then, for each 

region, obtaining the population density profile (i.e. for unlit areas). This is then compared to the 

population density profile of the entire scene to get the proportion of unlit pixels in each 

population density class. When plotted out together a series of detection profiles are generated 

for each region, which describes the how light detection varies with population density for each 

dataset. We expect to see that different regions will exhibit different profiles and this should fit 

with a simple conceptual model that more developed regions have higher levels of light detection 
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for a given population density (i.e. low ratio of unlit:lit cells). These profiles are arranged by 

regional groups and shown in Figures 1-3. 

 

The analysis then moves on to describe the relationship between population density and light 

intensity. This part of the analysis deals with the population density within lit regions of the 

world. In essence, the first part of the analysis determined the population density profile in areas 

with no light (DN=0). Clearly, similar population density profiles exist for each DN value. The 

second part of the analysis condenses these profiles into a representative single population 

density value for each DN value by calculating the weighted average of population density in for 

each DN value. The weighted average of population density (PopD) for any given DN value was 

calculated according to the equation (1). The two graphs showing DN vs. average population 

density for LandScan and GRUMP datasets are shown in Figure 4. 

 

 

 

(1) 

Where: PopDi = Population density of value i 

  Cells = the number of cells in a given population density class  

 

Taken together, these two analyses build a comprehensive overview of the regional 

differences in population detection in both lit and unlit areas disaggregated by regions of the 

world. 

 

 

3. Results 

3.1. Population density profiles in unlit areas  

The graphs presented in this section plot the relationship between unlit cells and population 

density. This variation of population detection in unlit areas is constructed for each of the 11 

regions defined in the study. These are presented here grouped according to general levels of 

development. Figure 1 shows the relationship for the North American, Pacific OECD, Western 

and Eastern Europe. This first three in the group represents the most economically developed set 

of countries and their profile in unlit areas is that of sharp decline in unlit areas, such that only 

around 10% of cells are in unlit areas at 30persons.km-2. The decline is sharpest for North 

America where both datasets show consistent detection (> 95%) at this population density. 
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Figure 1. Population density detection profile for four regions. Clockwise from top 

left: NAM – North America; PAO – Pacific OECD; EEU – Eastern Europe; WEU 

Western Europe. 

 

 

Figure 2 shows the result for the least developed regions of the world. Sub-Saharan Africa 

and Pacific Asia display markedly different profiles between the two population datasets. In both 

cases, there is a higher level of cells which are undetected in the LandScan dataset than with the 

GRUMP dataset. Pacific Asia can be seen to be consistently detected at 90% levels from around 

700 persons.km-2 in GRUMP compared to 60% in LandScan, whilst the decline in the proportion 

of unlit cells is much more gradual for sub-Saharan Africa with 35% of cells unlit at 1000 

persons.km-2 in the GRUMP dataset and 75% in LandScan. The profiles are much more similar 

for Latin America both falling with GRUMP again ahead of LandScan but both achieving 80% 

detection at 500 persons.km-2. 

Fr
ac
ti
o
n
 o
f 
u
n
lit
 c
e
lls
 

Population density (0‐500 persons.km2) 



 

198 

 

 

 

Figure 2. Population density detection profile for four regions. Clockwise from top 

left: SAS  – South Asia; AFR  – Sub-Saharan Africa; LAM – Latin America; PAS – 

Pacific Asia.  

 

The final group of regions shown in Figure 3 comprise the Former Soviet Union, Centrally 

Planned Asia and the Middle East-North Africa plus the global average. The Former Soviet 

Union exhibits rapid decrease in unlit cells down to 10% at 200 persons.km-2 for GRUMP with 

LandScan lagging at 40% but converging at 700 persons.km-2. Centrally Planned Asia is the only 

regions where GRUMP displays less coincidence with light than LandScan. LandScan settles at 

70% detection from 450 persons.km-2 onwards, whilst GRUMP dips below that at 750 

persons.km-2 and then declines to similar levels observed in other regions. The Middle East 

region have broadly coincident profiles with greater than 80% from 250 persons.km-2 onwards. 

The bottom right panel in Figure 3 is that of the global composite, where 75% detection can be 

claimed for both datasets from 600 persons.km-2. Whilst GRUMP dips down to less than 10% 

unlit cells as population density increases, globally the figure is twice as high for LandScan. 
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Figure 3. Population density detection profile for four regions. Clockwise from top 

left: FSU – Former Soviet Union; CPA – Centrally Planned Asia;  Global (all 

regions); MEA – Middle East (incl. North Africa). 

 

In summary, there are three main patterns that emerge:  

(i) rapid decline in the fraction of unlit cells to consistently high detection levels.  

(ii) decline in the fraction of unlit cells leveling off at medium levels of detection.  

(iii) decline in the fraction of unlit cells followed by a shallower decline to high levels 

of detection (< 0.2 unlit).  

 

Table 1 summarises the population density by region for 50% and 75% detection levels of 

DMSP-OLS night-time lights. Over the range of development worldwide, there is a 50% chance 

of detection from night-time lights for population densities ranging from 5-811 persons.km-2 for 

the GRUMP dataset and 1-2,184 persons.km-2 for the LandScan dataset and a 75% chance of 

detection for densities ranging from 11-1,611 persons.km-2 in GRUMP and 6-7,150 persons.km-2 

in LandScan. 
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Region  GRUMP 50%  LandScan 50%  GRUMP 75%  LandScan 75% 

NAM  5  1  11  6 

PAO  11  7  25  17 

WEU  14  1  45  15 

EEU  27  2  52  16 

FSU  52  16  97  341 

LAM  55  54  165  316 

MEA  91  49  252  266 

SAS  150  39  1,417  1,308 

GLOBAL  172  80  535  700 

PAS  280  308  522  2,238 

CPA  395  100  767  1,670 

AFR  811  2,184  1,611  7,150 

 

Table 1. Regional Population Density for GRUMP and LandScan population datasets at 50% 

and 75% detection levels of DMSP-OLS imagery.\ 

 

3.2. Mean population density as a function of DN  

This section presents the counterpart analysis of mean population density in lit areas by 

plotting the weighted average of population for the lit DN values up to 63. Here we see the most 

developed regions of the world sharply increase in brightness with relatively small increases in 

population density as indicated by sharp vertical lines on the graphs. By contrast less developed 

regions show more gradual increases in brightness as population density increases. The 

LandScan dataset shows the greatest variation in population density with increasing brightness 

levels with the profile for South Asia especially outstanding. In each case, the average population 

density for the highest DN values are significantly higher due to the saturation of the DMSP-

OLS sensor over bright urban areas, which has the effect of concentrating very high population 

densities in one brightness level. Clustering of profiles is noticeable in both datasets with the 

North American region standing out as having consistently lower population densities et every 

brightness level. For the GRUMP dataset, the other regions follow similar patterns and only 

diverge beyond DN=50.   There are 4 regions however, which follow different paths from the 

outset. Sub Saharan Africa and Pacific Asia have coincident profiles along with South Asia and 

Centrally Planned Asia displaying the greatest increase in population density with brightness. 
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The pattern is similar for LandScan albeit with greater increases in population density at higher 

DN values. The same 4 regions identified for GRUMP follow much more even trajectories with 

South Asia again displaying clear increases in population density per increasing DN with Sub-

Saharan Africa the next region showing the most differentiation. 

 

 

 

Figure 4. Average Population density per DN value for two global gridded 

population datasets. Left panel: CIESIN’s GRUMP. Right panel: LandScan. Source: 

LandScan 2008™, ORNL, UT-Battelle, LLC. 

Sample population densities for the GRUMP dataset at DN values of 0, 10, 25, 40, 50 and 63 

(saturation) are show in Table 2 for comparison. Less developed regions have higher population 

densities for a given DN than more developed regions. That is to say, lower population densities 

are detected earlier in more developed regions of the world as was shown in Figures 1-3. The 

average population density for the regions as a whole is also shown in the last column.  

 

DN 0 10 25 40 50 60 63 average density 

NAM GRUMP  4 29 82 159 251 522 1620 53 

WEU GRUMP 17 107 327 557 762 1449 3355 114 

PAO GRUMP 4 184 467 702 961 1639 4879 126 

MEA GRUMP 16 280 575 910 1027 1297 2771 54 

LAM GRUMP 11 254 502 760 1022 1658 4115 41 
CPA GRUMP  77 796 1422 1762 2200 3639 6800 155 

FSU GRUMP 9 129 467 869 1444 1849 3222 31 

EEU GRUMP 39 137 476 942 1160 2192 3876 109 
AFR GRUMP  28 693 979 1405 1954 2547 3260 40 

SAS GRUMP  153 665 1530 2113 2249 3954 9547 277 
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PAS GRUMP 49 527 914 1288 1794 3441 7439 126 

Table 2. Typical GRUMP population densities found at DN values by region of the world. 

Comparing regions of similar average population density but different development levels 

allows us to see what impact development has on lighting intensity. Broadly speaking, for 

regions of similar average population density, a less developed region has twice the population 

density at saturation (DN=63) than the more developed region.  

4. Discussion 

One reason for the discrepancy between the GRUMP and LandScan datasets is that the 

LandScan data makes use of many more input datasets to the allocate population. Figure 5 shows 

an area over the city of Kano in Nigeria. The lit areas are masked out in white, which are 

observed to increase between the two time periods. The most obvious difference between the two 

datasets is the increased detail of LandScan dataset. Whilst the GRUMP data interpolates 

smoothly within defined administrative regions, the LandScan dataset can be seen to contain a 

lot more information. In particular the LandScan algorithm used to allocate population highlights 

the underlying road network. In areas which have relatively low levels of lighting, this will result 

in population being shifted out of lit areas along transportation networks and increasing the 

proportion of high(er) population density cells that occur outside lit areas, which is what we 

observe for several regions with Pacific Asia (PAS) and Sub-Saharan Africa (AFR) the most 

striking over the long range (0-2,000 persons.km-2). 

 

 

 

Figure 5. Comparison of Population density distribution in unlit areas over Kano, 

Nigeria (AFR). Left panel: CIESIN’s GRUMP 2000. Right panel: LandScan. Source: 

LandScan 2008™, ORNL, UT-Battelle, LLC. 
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Which of the two datasets is the more accurate remains an open question. The more detailed 

and precise representation of population distribution in LandScan should not be taken as a proxy 

for accuracy. However the fact that there are only two regions (South Asia and Pacific Asia) 

where there is a sharp difference in the levels of detected population between the two datasets 

(Figure 2) may reflect the difference in the level and detail of inputs to the LandScan dataset in 

these two regions. As mentioned in the early part of this paper, the overglow issue was not 

directly addresssed in this paper. Nonetheless, we can make some comments as to what the 

impacts of overglow may be on the results for different regions. In highly developed regions 

such as North America and Western Europe overlglow is likely to be responsible for the result of 

high detection levels at low population densities. To illustrate this, the corresponding graph 

shown in the top left panel of Figure 1 for North America is shown in Figure 6 with a threshold 

of DN=12 applied. We observe a large shift of profiles to the right for both datasets with 50% 

detection levels retarded by 50 and 75 persons.km2 for GRUMP and Landscan datasets 

respectively.  

 

 

 

Figure 6. Comparison of unlit fractions with population density with a DN=12 

threshold applied to illustrate a correction of overglow. 

 

The problem of correcting this effect with the imposition of a simple threshold results in the 

attenuation of smaller lights in developing regions. Therefore an adaptive threshold is required to 

properly evaluate this effect. Given that overglow is a more severe effect in areas with high 

levels of electrification, we can assume that this offset is declines in magnitude with declining 

levels of economic development, however the effect could still be significant around large 
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settlements and megacities in the developing world. From the perspective of this study, it is 

considered to be less of an issue in rural areas with relatively high population densities and low 

levels of electrification. Although GRUMP is based in part on an early version of the lights, the 

extent of the 1994-95 stable lights has a far lower spatial extent than the 2000 lights used in this 

analysis, so whilst higher population densities occur than would otherwise be the case, there are 

lit areas which are less directly affected. In fact, it appears that the 1994-95 corresponds closely 

to the DN=12 threshold used in Figure 6 to gauge this effect. 

 

The summary table in Table 2 shows that mean population density in DN=0 areas range from 

4-153 persons.km-2 over the different regions of the world. Taken together with the detection 

rates at different population densities from the first part of the analysis, we start to build a sense 

of how many people we can expect to detect from night-time light imagery across the world. We 

also note that those 4 regions AFR, CPA, SAS, PAS which have the highest population densities 

for any DN values presented are also the same regions which still have around 30% of cells in 

unlit areas at those densities indicating that whilst a weighted average of the whole distribution 

of population densities present at that DN value, it may apply to around 70% of those cells and 

so both elements need to be considered when making assessments as two what one may assume 

is observable. Lower portions of Figure 4 may be disregarded depending on the threshold one 

takes for overglow effects. 

 

 

5. Conclusions  

This paper has taken two widely used and publically available population datasets and 

compared to the night-time light satellite imagery from the DMSP-OLS sensor by region of the 

world. In doing so, a greater understanding is generated on what the relative detection levels of 

population are from the lights according to census based population and modeled ambient 

population. We find that detection rates vary widely over the world. In summary, there are two 

main features of population detection in unlit areas.  

i) In regions where differences exist between the two datasets, LandScan tends to 

have lower rates of detection than GRUMP for a given population density. 

ii) Detection profiles follow one of two patterns: 

a.  A sharp drop to steady (low) levels of the fraction of unlit cells in relation to 

population density.  

b. A more gradual decline, where upon detection becomes constant but not at 

very low levels. 
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Globally, 15% of population is undetected by light emission at 2,000 persons.km-2, thought this 

can be as high as 60% in sub-saharan Africa for the LandScan dataset. Interestingly, LandScan’s 

ambient population is usually less detected than census based GRUMP. Whilst these differences 

are usually small, they are pronounced in sub Saharan Africa and Pacific Asia beyond around 

600 persons.km-2 range. Around 20% of population is still undetected in Sub-Saharan Africa and 

South Asia at 2000 persons.km-2 whereas virtually all but the lowest population density areas are 

detectable from light emissions in OECD countries.  

 

Another way to consider the results is as different stages on the same path of development. 

Whilst one can image regions converging to the same end profile, the precise elements remain 

unclear as there exists a large gap in the figures for both detection and DN-density between 

North America and other highly developed regions. Indeed, given the pace of urbanization and 

changes in the cultural use of light, we may see different patterns emerge altogether. The results 

and analysis presented here not only assists in further studies on mapping electricity access but 

also provide metrics by which development may be tracked over time given the increasing 

availability of both nighttime light satellite data and spatially explicit socio-economic datasets. 

Given that overglow effects were not fully quantified but shown to be potentially significant, 

especially in the developed world, the results presented here should be taken as minimum values 

of population detection. 
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