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City size distributions, defined on the basis of population, are often described by power laws. Zipf's Law states
that the exponent of the power law for rank-size distributions of cities is near −1. Verification of power law
scaling for city size distributions at continental and global scales is complicated by small sample sizes,
inappropriate estimation techniques, inconsistent definitions of urban extent and variations in the accuracy
and spatial resolution of census administrative units. We attempt to circumvent some of these complications
by using a continuous spatial proxy for anthropogenic development and treat it as a spatial complement to
population distribution. We quantify the linearity and exponent of the rank-size distribution of spatially
contiguous patches of stable night light over a range of brightnesses corresponding to different intensities of
development. Temporally stable night lights, as measured by the Defense Meteorological Satellite Program-
Operational Line Scanner (DMSP-OLS), provide a unique proxy for anthropogenic development. Brightness
and spatial extent of emitted light are correlated to population density (Sutton et al., 2001), built area density
(Elvidge et al., 2007c) and economic activity (Doll et al., 2006; Henderson et al., 2009) at global scales and
within specific countries. Using a variable brightness threshold to derive spatial extent of developed land area
eliminates the complication of administrative definitions of urban extent and makes it possible to test Zipf's
Law in the spatial dimension for a wide range of anthropogenic development. Higher brightness thresholds
generally correspond to more intense development while lower thresholds extend the lighted area to include
smaller settlements and less intensively developed peri-urban and agricultural areas. Using both Ordinary
Least Squares (OLS) and Maximum Likelihood Estimation (MLE) to estimate power law linearity and
exponent of the resulting rank-size distributions across a range of upper tail cutoffs, we consistently find
statistically significant exponents in the range −0.95 to −1.11 with an abrupt transition to very large,
extensively connected, spatial networks of development near the low light detection limit of the sensor. This
range of exponents and transition are observed at both continental and global scales. The results suggest that
Zipf's Law also holds for spatial extent of anthropogenic development across a range of intensities at both
continental and global scales. The implication is that the dynamics of urban growth and development may be
represented as spatial phase transitions when the spatial extent and intensity of development are treated as
continuous variables rather than discrete entities.

© 2010 Published by Elsevier Inc.

1. Introduction

Understanding of urban growth processes is challenged by the
large number of variables known to influence these processes. Despite
the need for large sample sizes, most comparative studies of urban
growth use only a subset of the world's cities and many studies focus
on a single city or small number of cities for specific time intervals.
Almost all of these studies rely on administratively defined clusters of
population. Understanding of the processes is further complicated by
the lack of any widely accepted and consistent definition of what

constitutes a city or urban area (UnitedNations, 2008). In spite of these
challenges, some consistency has been observed in the size distribu-
tion of populations of cities. (Auerbach, 1913) observed that the size
distribution for cities can often be described as a power law in which
the number of cities with population greater than N is inversely
proportional to N. Zipf (1949) noted that the exponent of the power
law is also close to −1 for the frequency of usage of words and
postulated a universal principal of least effort on the basis of these
observations. The special case of a power law distribution with an
exponent of −1 is generally referred to as Zipf's Law and has been
tested repeatedly by economists, geographers, urbanists and physi-
cists. Gabaix (1999) states “Zipf's law for cities is one of the most
conspicuous empirical facts in economics—or in the social sciences
generally. The importance of this law is that, given very strong
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empirical support, it constitutes a minimum criterion of admissibility
for any model of local growth or any model of cities”.

Despite considerable research on Zipf's Law for cities, and
numerous proposed explanations, there appears to be no consensus
on the cause or even the generality of the law. The power law is used
to describe only the upper tail of the distribution with varying criteria
used for selecting a lower cutoff. While there have been challenges to
the validity of Zipf's Law (e.g. Gan et al., 2006; Nitsch, 2005),
numerous examples have been found for city size distributions within
specific countries over the past 100 years in which the law appears to
hold remarkably well (see Gabaix et al., 2004 and Pumain, 2004) for
summaries). However, the exponent appears to vary from country to
country (e.g. Pumain and Moriconi-Ebrard, 1997), and even within
the same country over time (Guérin-Pace, 1995; Overman and
Ioannides, 2001). To complicate matters further, the value of the
exponent depends on the method of estimation (Rosen and Resnick,
1980; Soo, 2005). An underlying cause of many of these discrepancies
is the difficulty of mapping human population. The purpose of this
analysis is to explore a spatial complement to population distribution
and to quantify some characteristics of the size distribution of human
settlements at continental to global scales on the basis of a continuum
of intensity of development (as defined below). This analysis tests the
spatial manifestation of Zipf's law using an alternative measure of
urbanness—nighttime lights. We use the concept of a continuum of
anthropogenic development to avoid arbitrary definitions of urban
land cover and to represent varying degrees of spatial connectivity
among cities and other types of anthropogenic land cover.

2. Urban population and spatial extent

Much of the debate about the existence and generality of Zipf's Law
seems to arise from two confounding factors related to how cities are
defined and measured. The lack of a consistent definition of a city
makes it difficult to compare size distributions between different
countries (e.g. Pumain, 2004) because census enumerations depend
on the administrative boundaries defined for each city and different
countries have different, and often multiple, criteria for urban
administrative boundaries.1 The same factor confounds global analy-
ses because inconsistency in definition precludes simple aggregation
of tabular census data from different countries. A second confounding
factor arises in the measurement of city size in terms of population.2

Although administrative units are defined on the basis of spatial
boundaries, the enumerations are implicitly aspatial because they
discretize what are often spatially contiguous populated areas.
Furthermore, cities can be defined according to different criteria—
such as the population size, population density of functional criteria
such as capitol cities or whether a given fraction of the labor force in
engaged in non-agricultural activities. Remarkably, across time and
place, the number of inhabitants has been a much more difficult
criterion to measure consistently than one might imagine. As a result,
there is no existing globally spatially-delineated population time-
series for urban areas (Balk, 2009).

In fact, the idea of defining a city as a discrete entity with fixed
boundaries may be fundamentally flawed because so many of the
factors that characterize the form and function of human settlement
patterns and dynamics are temporally variable over spatial gradients
at some range of scales—such as, population density, housing density,

road density, energy consumption, economic activity and output,
emission and pollutant output. The fractal nature of urban develop-
ment (Batty and Longley, 1994) combined with ubiquitous gradients
in spatial density or intensity of development makes it difficult, and
perhaps misleading, to define cities as discrete entities with fixed
boundaries. Rather than considering the city as a single discrete entity
defined in terms of inhabitants within an administrative boundary,
we consider multiple spatial extents of anthropogenic land surface
modification defined on the basis of varying degrees or intensities of
development.

Human settlement patterns and, more generally, land surface
modification can be represented as continuous spatial variation in
intensity of development or degree of modification. A continuous
depiction accommodates gradients while still allowing for sharp
discontinuities observed in many cases (e.g. coastlines). A spatially
and temporally continuous measure of the "degree of urbanness"
provides a more general representation of many spatial and temporal
processes while avoiding potential errors of omission and commission
that inevitably result from discretization. Continuous variates also
allow for the construction of different application-specific metrics
frommeasurable quantities (e.g. those mentioned above) without the
need to define a single discrete boundary separating urban from non-
urban.

Numerous studies have attempted to elude the problem of urban
definition by aggregating spatially adjacent population counts (see
Pumain, 2006) but relatively few studies have attempted to investigate
Zipf's Law in terms of area or spatial extent of anthropogenic land use—
either within individual countries or aggregated to global scales. A
recent study by (Rozenfeld et al., 2008) used spatially aggregated
census data to demonstrate that urban agglomerations in the U.S.A.
and Great Britain can be accurately described by Zipf's Law in terms of
both population and area. Their results suggest that the exponent is
sensitive to the scale length of the aggregation. At finer spatial scales
(Fragkias and Seto, 2009) used satellite-derived urban extents of
several cities in southern China to quantify temporal evolution of rank-
size distributions revealing oscillations related to birth and spatial
coalescence of settlements through time. Together these studies
illustrate a spatial dimension to Zipf's Law that is often implied in
studies using population data but rarely addressed explicitly.

As an alternative to discrete, population-based definitions of
urban extent we consider a continuous, spatially explicit metric for
anthropogenic land surface modification—analogous to population
density—and investigate the effects of discretizing the metric at
different levels or degrees of modification. Discretizing by imposing a
threshold on the intensity of development results in a spatially
segmented binary image with contiguous patches of developed area
against an undeveloped (or less developed) background. Different
thresholds result in different spatial distributions of developed area
with different degrees of connectivity. Treating the size distribution of
contiguous segments resulting from each threshold as a distinct
depiction of anthropogenically modified or developed land area, we
quantify the degree to which the spatial extent and distribution of
human habitation and land surface modification can be described by a
power law and how the parameters of the power law depend on the
level of discretization.

3. Anthropogenic land use and night light

It is important to emphasize the difference between population
counts and developed land area. Although night light brightness
and population density are correlated at high levels, the relationship
is less direct at the lowest brightness levels. In part, this is a result
of overglow (discussed below) but also because of the variety of
different sources that contribute to the lowest levels of detectable light.
In this study we use satellite-derived observations of stable anthropo-
genic light as an indication of varying degrees of development

1 National statistical offices not only vary in the census and administrative boundary
that they collect, but also what they release, with the latter often being far more coarse
than the former.

2 In addition to variations in census accuracy and detail from country to country,
most census enumerations quantify where people sleep rather than where they work
and interact during the day.
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and human habitation. What we refer to here as intensity of de-
velopment corresponds to both the fractional area of the pixel occupied
by human constructed surfaces and the brightness at which it is
lit. The brightest pixels observed generally correspond to fully de-
veloped mixed use urban areas with near total outdoor illumination.
Less brightly lit pixels may correspond to lower built area density
with dimmer outdoor lighting throughout or to a small number of
discrete lighted areas with somewhat brighter lighting. Pixels at the
lowest brightness levels may correspond to a still wider variety of
sources ranging from vehicle headlights, leakage from dwellings and
still lower numbers of lighted outdoor areas within the instantaneous
field of view of the pixel. The lowest detectable light levels may also
result from the phenomenon of “overglow” discussed below. The
comparisons in the next section illustrate the distinction between
brightly lit urban centers and more dimly lit peri-urban and rural
areas. The implications of this diversity of sources are considered in
the discussion.

The Defense Meteorological Satellite Program Operational Line
Scanner (DMSP-OLS) has been imaging night lights since the early

1970s (Croft, 1973). The more recent digital data have been used to
produce annual global composites of temporally stable nighttime
lights from 1992 to 2008 (Elvidge et al., 2001). The DMSP-OLS visible
band was designed to detect moonlit clouds at night. It uses a
photomultiplier tube to intensify the visible band signal by a million
fold. This enables the detection of both moonlit clouds and lighting
present at the Earth's surface. NGDChasdeveloped procedures tomake
cloud-free annual composites of the nighttime visible band DMSP-OLS
data (Elvidge et al., 2001). The result is a set of composite images in
which each30 arc second (~1 kmat the equator) pixel gives the annual
average brightness level in units of 6 bit digital numbers (DN) spanning
the range0 to 63. Additional procedures are used to remove ephemeral
lights (mostly fires) and background noise to produce gridded stable
lights products. The data are available for download from: http://www.
ngdc.noaa.gov/dmsp/downloadV4composites.html (access 2 August,
2010).

Night lights are known to overestimate the spatial extent of
development at the periphery of settlements (Elvidge et al., 1997).
Imhoff et al. (1997) proposed the use of a low light threshold of 89%

Fig. 1. a,b Urban–rural land cover gradients in reflected and emitted lights. Landsat 5 false color composites (left column) circa 2008 show developed, agricultural and undeveloped
land cover. Homogeneous green areas are agriculture while the dark pink, purple and gray areas are generally associated with mixtures of SWIR-bright building materials and deep
shadow characteristic of more intensive development. Stable night light brightness (center column) for 2008 ranges from dim low DN values (purple to cyan) to brighter (green to
red) and saturated (white). Unlighted areas (black) are undeveloped. Day–night composites (right column) combine Landsat and night lights to illustrate consistencies in land cover
and night light brightness. Superimposed night light brightness (red) on upper (green) and lower (blue) bounding estimates of built up extent show high density built environments
(white) associated with bright night lights while agriculture and low density rural land cover are associated with lower light levels (DNb~20).
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(applied to frequency of detection rather than brightness) to reduce
the effects of overglow and shrink the spatial extent of the lighted area
to better match the administrative extent of three U.S. cities. In a
comparison of Landsat and night lights for 16 cities worldwide, Small
et al. (2005) showed that differences in urban form and intensity of
lighting (discussed below) preclude the use of a single threshold for
all cities and that thresholding at the high levels proposed by Imhoff
et al. (1997) results in the complete attenuation of large numbers of
smaller settlements. Comparisons of stable light with 30 m resolution
Landsat imagery on a wide variety of population density gradients
indicates that average brightness increases with increasing spatial
density of Shortwave Infrared reflectance and shadow associated with
constructed surfaces (Small et al., 2005) as well as actual maps of
impervious surfaces (Elvidge et al., 2007a,b,c). Example comparisons
in Fig. 1 illustrate the spatial correspondence of dim lights (DNb~12)
with agricultural and low population density land use while average
brightness increases with both settlement size and intensity of
development along urban–rural gradients. The spatial extent of the
overglow is usually greater than the extent of high density impervious
surface but it does not generally extend into areas that are completely
undeveloped—except along coastlines. Comparisons with higher
resolution images (see: www.LDEO.columbia.edu/~small/NightDay)
indicate that the dimly lit areas with DNb~12 almost always contain
some indication of anthropogenic land cover (e.g. agriculture), even

when not coincident with high spatial densities of impervious surface
typically associated with urban development. We discuss the im-
plications of overglow and other artifacts below.

Brightness of stable lights is also correlatedwithpopulationdensity
at global scales (Sutton et al., 1997, 2001) although comparisons with
census data are subject to the same complications discussed above.
Despite these caveats, night lights offer a consistent global measure of
the spatial extent of human habitation, development and intensity of
economic activity. While brightness and spatial extent of night lights
depend on a variety of socioeconomic and cultural factors (Elvidge
et al., 2009), at global scales night lights provide a unique indicator of
the distribution of human habitation and intensity of anthropogenic
land use. As such, night lights provide a means to quantify the size,
number and spatial extent of human settlements worldwide thereby
allowing Zipf's Law to be tested using a proxy that is both independent
of and complementary to the population counts used in previous
studies. To our knowledge, only the analysis of Decker et al. (2007) has
used night lights to test Zipf's Law—but found power law exponents
between−0.73 and−0.89 and better fit by lognormal distributions. In
contrast to Decker et al. (2007), we use a new, reprocessed and
intercalibrated version of the night lights and we quantify the size
distribution of contiguously lighted areas for different low light
thresholds corresponding to different degrees of economic activity or
development along urban–rural gradients.

Fig. 1 (continued).
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4. Power law scaling of continuous fields

In this analysis, we avoid the problem of defining a discrete urban
area by treating the intensity and corresponding spatial extent of
development as a variable given by the average brightness of stable
night light. This allows us to test Zipf's Law for developed land area at
both global and regional scales for a range of different levels of urban
development by varying the low light threshold designating the
spatial extent of contiguous development. A benefit of this approach
lies in its ability to quantify changes in spatial connectivity associated
with different levels of development. As the low light threshold is
increased from dim to bright the spatial extent of each segment
(spatially contiguous patch) of developed land area shrinks and the
overall size distribution changes as large agglomerations bound
together by dimmer lights fragment and the smallest, dimmest lights
are attenuated as they are exceeded by the threshold. The degree to
which the resulting segment size distribution conforms to a power
law can be used to quantify these changes in the distribution of
spatially contiguous patches of developed land area for different
thresholds defining different degrees of development. The change in
the exponent, misfit and optimal lower tail cutoff with increasing low
light threshold quantify the degree to which each corresponding
segment size distribution conforms to a power law in general and
Zipf's Law specifically. This provides a general approach to quantifying
the aggregate spatial structure of a continuous field in terms of spatial
connectivity, number and size distribution of local maxima.

Rather than treat the power law exponent as a single canonical
metric, we acknowledge its potential sensitivity to how the quantity

(e.g. city size) is defined and treat the defining criterion (e.g. low light
threshold) as a variable to characterize the sensitivity of the size
distribution. We calculate the size distribution of spatially contiguous
lighted areas above each brightness threshold by segmenting the
global composite mean brightness image for 2008 on the basis of
spatial connectivity of each 1 km equal area pixel to its four cardinal
near neighbors. The result is a set of spatially contiguous patches of
land area exceeding the threshold brightness. We then calculate the
total area of each distinct contiguous lighted segment and tabulate
the size distribution for all segments (contiguous patches) for DN
thresholds of 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 40 and 60. Because
the resulting segments or contiguous patches of lighted area are
increasingly diverse aggregations of brightly lighted urban cores,
dimly lit rural areas and intermediate brightness suburban gradients
we refer to the discrete patches as either segments or agglomerations,
depending on the context.

The dependence of global agglomeration size distribution on low
light brightness threshold is illustrated in Fig. 2. The inset area-
brightness histogram (upper right) shows that the majority of lighted
area on Earth is dimly lit (DNb20) so small changes in the low light
threshold can result in large changes in lighted area. As the threshold
is increased the combined effects of fragmentation and attenuation
are apparent in the rank-size distributions (center). As shown,
increasing the DN threshold from 3 (blue) to 8 (green) to 12 (red)
diminishes the slope of the distribution (exponent of the power law)
and reduces the size difference between the largest and smallest
agglomerations. Higher thresholds from 20 to 40 to 60 (i.e., compare
the magenta and black lines, respectively) increase the curvature of

Fig. 2. Effect of low light thresholding on rank-size distribution of spatially contiguous lighted areas. Upper inset histogram shows most stable lights are relatively dim (low DN).
Increasing the low light threshold from 3 to 60 attenuates smaller lights while fragmenting larger agglomerations connected by dimmer regions. This results in increasing curvature
of the rank–size distributions. Lower inset histograms sum the total area of all lights within each size bin illustrating the net effect of attenuation and fragmentation for increasing
brightness threshold. Note the nearly uniform distribution of total area over 3 orders of magnitude in size for the DN=8 threshold while the lower DN threshold results in increasing
dominance of the largest agglomerations.
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the distribution—both diminishing the slope of the upper tail while
drastically increasing the slope of the lower tail. Visually, the
distributions resulting from low light thresholds are considerably
more linear (down to sizes of a few tens of square kilometers) than
those associated with the high thresholds that eliminate large areas of
less developed land. The consequences of increasing the low light
threshold are also apparent in the total integrated areas for different
size classes of agglomeration. Rather than count the number of
spatially contiguous agglomerations for different size range, the inset
area-size histograms count the total area of each size range. The effect
of increasing low light threshold in this case is to reduce the total area
of both the largest and smallest agglomerations by fragmentation and
attenuation respectively. Note however that the total area is nearly
uniform across 3 orders of magnitude in size for a threshold of DN=8
while the total area actually increases with size for the lowest
threshold of DN=3. The threshold of DN=8 corresponds to a
transition where the size distribution goes from being dominated by
medium size (102 to 104 km2) areas at higher thresholds to being
strongly dominated by the largest size areas for lower thresholds. This
has profound implications as discussed below.

Several previous analyses of city population size distributions (e.g.
Rosen and Resnick, 1980; Soo, 2005) and other purported power laws
(e.g. Newman, 2005; Clauset et al., 2009) indicate that the estimate of
the exponent can be sensitive to biases inherent in the method of
estimation. In this study we use both Ordinary Least Squares (OLS) on
Log10 transformed rank and size (km2) as well as the Maximum
Likelihood Estimate (MLE) for a power law distribution of segment
sizes. Although the OLS approach is, by far, the more commonly used
method for estimation of Zipf exponents, it suffers from a number of
shortcomings as a means of quantifying and testing the power law
hypothesis (Clauset et al., 2009; Newman, 2005; Sornette, 2003). We
use OLS merely for intuitive illustration and comparison with more
statistically sound estimates of the power law exponent, optimal size
cutoff, uncertainty and goodness offit derived using theMLE and semi-
parametric bootstrap approach described by Clauset et al. (2009).

A comparison of OLS estimates for three different low light DN
thresholds illustrates some interesting changes in the rank-size
distribution associated with different thresholds. Each column in
Fig. 3 illustrates the effect of varying rank cutoff size on the value of
the Zipf exponent (slope of the rank-size distribution) and linearity

Fig. 3. Effect of increasing the number of agglomerations included in the upper tail of the rank-size distribution on the estimated slope and RMS misfit of the OLS estimate for
different DN thresholds. Linear fits (top row) based on the upper tail cutoff rank with minimum RMS misfit (red) differ from those based on all agglomerations (black). For all DN
thresholds RMSmisfit diminishes until the large number of small agglomerations in the lower tail overwhelms the linear upper tail (2nd row). Hill plots show the dependence of the
slope estimate on the number of agglomerations from the upper tail used in the estimate (3rd row). Trajectories of RMS misfit and slope for increasing number of agglomerations
from the upper tail of the rank-size distribution all show misfit minima near the Zipf exponent (−1) before diverging as the lower tail is included in the estimate.
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(Root Mean Square (RMS) misfit of the line to the data) for three
different DN thresholds. In each case, both the slope and misfit are
sensitive to the size cutoff used to define the upper tail of the
distribution. For each DN threshold the RMS misfit diminishes with
increasing cutoff rank (2nd row) through a series of local minima
before abruptly increasing. This increase in misfit occurs at the point
where the lower tail begins to exert greater influence on the exponent
than the upper tail and the curvature evident in the lower tail causes
abrupt increases in misfit. Similarly, the Hill plots showing the
dependence of the exponent on the cutoff rank (3rd row) reveal a
steady progression of the exponent toward −1 before diverging to
steeper, more negative slopes as the lower tail assumes dominance of
thefit near the same cutoff rankwhere themisfit blows up. Plotting the
simultaneous trajectory of misfit and exponent for increasing cutoff
rank (bottom row) illustrates the simultaneous convergence of both
slope and linearity of the upper tail to the optimal cutoff where the
lower tail begins to corrupt the fit. Note that the optimal slope is
approached frombelow for the lower DN threshold and from above for
the higher while the intermediate threshold of DN=8 converges to a
slope near −1 for cutoff ranks well under 100 and remains relatively
stable until diverging for cutoff ranks greater than 10,000. The top row
compares the rank-size distributions for different thresholds to both
the optimal (minimum misfit preceding lower tail divergence) OLS
linear fit (red line) and to the OLS fit to the entire sample population
(black). Note the transition in the nature of themisfit of the uppermost
tail—from exceeding the linear prediction (DN=3) to matching it
(DN=8) to under estimating it (DN=20).

5. Results

While the OLS approach is illustrative, it suffers from several
shortcomings and biases (Clauset et al., 2009; Newman, 2005;
Sornette, 2003). We therefore also use the MLE and semi-parametric
bootstrap approach proposed by Clauset et al. (2009) to estimate the
power law exponent and associated uncertainty, optimal rank cutoff
for the upper tail and the goodness of fit for the suite of DN thresholds
given above. This method is analogous to the OLS misfit optimization
described above except that the power lawexponent is estimated from
the size distribution directly using theMaximum Likelihood estimator
for each successive rank cutoff. The optimal slope estimate is that
associated with the cutoff that minimizes the Kolmogorov–Smirnov
(KS) statistic for the maximum difference between observed and
Monte Carlo simulated power law distributions (Clauset et al., 2009).
Goodness of fit is also determined using the KS statistic in a semi-
parametric bootstrap algorithm that provides a statistical measure of
plausibility for the power law hypothesis. For this goodness of fit test a
p-value greater than 0.1 is considered indicative of a plausible fit
(Clauset et al., 2009). For consistency and simplicity we transform
the power law exponent (e) to the equivalent rank-size slope (s) as
s=1/(e−1) (Li, 2002). Fig. 4 shows very similar dependence of
the power law exponent and rank-size slope for the MLE and OLS
estimates (respectively). In both cases DN thresholds greater than ~12
yield relatively consistent slopesN−1 but slopes increase abruptly as
the threshold is reduced to DN=3. This corresponds to a transition
from distributions dominated by medium–large segments to increas-
ingly connected distributions dominated by the very largest segments.
The uncertainties (error bars) on the slope estimates and the
goodness-of-fit statistic (p-values in italics) do not provide strong
support for a power law distribution for DN thresholds N20 but 10 of
12 estimates for DN thresholds b20 are well-bounded with plausible
goodness of fit. Both OLS and MLE estimates of the exponent show a
rather abrupt transition frommore uniform distributions at higher DN
thresholds to steeper slopes and more uneven, large-segment-
dominated distributions at lower DN thresholds.

The transition in exponent is also observed at continental scales for
subsets of the global distribution. To investigate the robustness of the

transition in distribution at sub-global scales we divide the study area
longitudinally along natural boundaries to avoid intersecting any
spatial network of settlements. North, Central and South America are
geographically isolated from Eurasia and Africa. Europe, western Asia,
Arabia and Africa are longitudinally divisible from eastern Asia along a
sinusoidal projection meridian intersecting the equator at 60°E. The
purpose of the spatial subsetting is merely to verify the stability of the
exponent and the transition observed in the global distribution—not to
illustrate themyriad cultural, historical and socioeconomic differences
between these regions. A more detailed analysis of country and
regional scale distributions is the focus of a separate study. However,
in spite of the many differences in urban structure and evolution, it
is remarkable that the range and variation of the exponents are so
similar at continental and global scales. The inset plots of slope versus
threshold in Fig. 4 show analogous (but not identical) exponent
transitions for three longitudinal subregions corresponding to the
Americas (west), Europe, Africa and theMiddle East (central) and Asia
and Australia (east). All three subregions show abrupt transitionswith
decreasing DN threshold from shallower slopes (N−1) with more
uniform size distributions to steeper slopes withmore large-segment-
dominated distributions. As in the case of the global analysis, the
estimates for DN thresholds N20 have larger uncertainties and much
lower p-values than those for DNb20. We note that the p-values
merely indicate that the power law is a statistically plausible
description of the data—not that it is necessarily the only, or even
best, distribution that describes the data.

The transitions of the exponents through the Zipf case (−1) with
decreasing DN threshold are manifest differently in the fits of the
power law to the rank-size distribution for each subregion and for the
global distribution. The examples given in Fig. 5 show cumulative
probability distributions and the corresponding best fit power laws
(fromMLE) for DN thresholds of 3 and 12 aswell as the threshold with
themost Zipf-like (nearest−1) distribution (DN=6, 7 or 8) for each of
the three subregions and for the global dataset. In each longitudinal

Fig. 4. Effect of low light thresholding on the slope of the rank-size distribution (or power
law exponent). Reducing thresholds results in increasing coalescence of agglomerations
as rank-size slope increases rapidly below DN=12. Slope estimates from Ordinary
Least Squares (OLS) in Log–Log space and Maximum Likelihood Estimation (MLE) of the
power law exponent show the same progression and comparable slopes. Uncertainty
bounds (bars) indicate transition across the Zipf exponent (−1) while P values greater
than 0.1 (in italics) indicate plausible goodness of fit. Separate analyses of longitudinal
subregions (inset) show similar progression with decreasing DN threshold.
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Fig. 5. a: Cumulative distribution functions and maximum likelihood power law fits for 3 low light thresholds spanning the Zipf exponent for the western longitudinal subset
containing the Americas. Blue, green and red points correspond to DN thresholds of 3, 7 and 12 respectively. Inset maps show the segment size distribution of the DN=8 threshold
for the entire region (lower) and east-central North America (upper). The largest agglomeration is considerably larger than predicted by the power law for both DN thresholds 8 and
3 but the rest of the distribution is well fit. b: Cumulative distribution functions andmaximum likelihood power law fits for 3 low light thresholds spanning the Zipf exponent for the
central longitudinal subset containing Europe, Africa, Arabia and western Asia. Blue, green and red points correspond to DN thresholds of 3, 7 and 12 respectively. Inset maps show
the segment size distribution of the DN=8 threshold for the entire region (lower) and western Europe and N. Africa (upper). The largest agglomeration is considerably larger than
predicted by the power law for DN thresholds 8 but the rest of the distribution is well fit. For the DN 3 and 12 thresholds the entire upper tail diverges from the linear prediction. c:
Cumulative distribution functions and maximum likelihood power law fits for 3 low light thresholds spanning the Zipf exponent for the eastern longitudinal subset containing Asia
and Oceania. Blue, green and red points correspond to DN thresholds of 3, 7 and 12 respectively. Inset maps show the segment size distribution of the DN=6 threshold for the entire
region (lower) and east Asia (upper). The largest agglomeration (northern India/Pakistan) is well predicted by the power law for DN threshold 6 but the rest of the upper tail is larger
than predicted. d: Cumulative distribution functions and maximum likelihood power law fits for 3 low light thresholds spanning the Zipf exponent for the global light distribution.
The DN=8 threshold (green & dash) corresponds to a MLE estimated exponent of −1.00 and has a smaller misfit than any of the three longitudinal subregions.
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subregion, the majority of the contiguous lighted agglomerations are
associated with a single geographic region (or several regions in the
case of Asia). The distribution for the Americas is dominated by the
settlement network of eastern North America while the settlements in
western North America and Central and South America contribute
relatively little to the overall distribution. The same is true for Europe
in comparison to the Middle East and Africa. Asia differs in the
presence of at least five distinct regions containing settlement net-
works that combine to dominate the distribution. However, almost all
the lighted area in Asia is concentrated in southern and eastern Asia.

The nature of the transition of each longitudinal subregion through
the Zipf exponent with decreasing DN threshold differs in both
the sensitivity of the slope (exponent) and the fit of the uppermost
tail to the best fit power law. The transitions, along with the fits to
the distributions are illustrated in Fig. 5. For each plot, we show
distributions and best fit power laws for low (DN=3), high (DN=12)
and transitional (DN=7) thresholds. For each region, an inset map
also shows the spatial segmentation associated with the threshold
immediately preceeding the transition to extensive regional connec-
tivity. A common transitional threshold is used for comparison among
plots while regionally specific thresholds are used on the maps to
illustrate the spatial form of the transition. For the Americas (Fig. 5a),
the exponent of the best fit power law changes considerably with DN
threshold although reasonable agreement between estimate and
observation is obtained for all but the single largest agglomeration
for each DN threshold. The inset maps show spatially contiguous
lighted areas, color coded logarithmically by segment size, for the
Zipf case with exponent closest to−1. North America is dominated by
the contiguous agglomeration containing the Northeast Corridor
and Great Lakes regions of the U.S.A and Canada. This spatial network
is approximately five times the size predicted by the power law.

The distributions for Europe/Africa/Middle East (Fig. 5b) are very
different from the Americas showing very little change in the best fit
exponent but pronounced disparities in the fit of the upper tail to the
power law. The DN threshold of 12 results in significant overestimate
of the probability with even greater underestimation for the DN
threshold of 3 while the Zipf case is well fit except for the single
largest agglomeraton spanning western Europe from northern
Germany to southern Italy. This spatial network is approximately
three times the size predicted by the power law.

The distributions for Asia and Oceania (Fig. 5c) show a similar
insensitivity of exponent to DN threshold with pronounced over and
underestimation in the upper tail for lower and higher DN thresholds
respectively. However the distributions for Asia differ from those
of the central region in that the Zipf case is also not well fit in the
uppermost tail. Approximately 30 agglomerations larger than
~104 km2 are noticeably larger than predicted by the power law—

although the largest agglomeration (northern India and Pakistan) fits
the prediction very closely. Asia also differs from the other two
longitudinal subsets in that its Zipf case contains several very large
spatial agglomerations whereas the Americas and EurAfrica each
contain only one. While the deviations of the largest agglomerations
from the best fit power law are interesting, they do not detract from
the excellent fits of the distributions to the power law. For any finite
sample size the greatest deviations of observation from prediction are
associated with the most extreme events (Sornette, 2003).

Interestingly, the combined global distribution (Fig. 5d) shows
both greater sensitivity of the estimated exponent to DN threshold
and noticeably better agreement between power law and observation
in the upper tail. While there are a few prominent overestimations for
DN=3, the Zipf case (DN=7) gives excellent agreement between
model and observation. Note that in each longitudinal subregion the
optimal rank cutoff corresponds to lighted segment areas consider-
ably smaller than 100 km2 while for the global distribution the
optimal rank cutoff is a bit larger than 100 km2

. In every case, the
power law provides a statistically plausible fit to the observed data for

sample sizes greater than 10,000 segments spanning more than four
orders of magnitude in each dimension suggesting that Zipf's Law
provides at least as plausible a description of developed land area as it
does for population count in prior studies. However, there are some
important differences between these results and those of previous
studies and these differences have implications.

6. Implications and conclusions

Zipf's Law holds for a wide range of developed land areas at both
continental and global scales. The size distributions of agglomerations
for the longitudinal subregions and the global aggregation are all well
fit by power laws overmore than four orders ofmagnitude in rank and
size and all show similar transition of power law exponent with low
light threshold. For the global distribution Maximum Likelihood
estimates of the exponent range from −0.96 to −1.11 with plausible
goodness of fit and uncertainty estimates clearly distinguishing a
transition across the Zipf exponent of −1 with increasing low light
threshold. Our results differ from those of Decker et al. (2007) because
we are using a fundamentally different night light dataset. Decker et
al. (2007) used an early 1994–95 version of the light data which did
not benefit from numerous advances in processing developed by
NGDC since 2000. The lower slopes found by Decker et al. (2007) are
consistent with the higher detection limit of the older dataset which
would reduce the connectivity at low light levels. For comparison, the
analogous MLE estimate (using exactly the same method) of the
power law exponent obtained by Clauset et al. (2009) for populations
of U.S. cities in 2000 gives a rank-size slope of −0.73. We obtain a
nearly identical value (−0.73) using the same MLE approach for a
compilation of 19,032 global census counts used as the input to the
Gridded Population of theWorld v.1 global population map (Tobler et
al., 1997) . In both cases we attribute the lower slope of the population
data to both the fragmented nature of the administrative units and to
the relatively small fraction of the upper tail that yields the minimum
misfit while excluding the lognormal lower tail that would tend to
pull the slope higher. The estimates of population used in GPW
version 1 are known to be far coarser than the true distribution (Balk
and Yetman, 2004). However, both these population datasets
designate cities on the basis of administrative boundaries thereby
limiting potential size and contiguity with surrounding settlements.
The implication is that Zipf's Law better explains spatial networks of
settlements of varying size and density than it does discretized "cities"
alone. Whatever underlying processes are responsible for the power
law distribution, the processes clearly apply to spatial networks of
varying types of anthropogenic land surface modification—not just
"urban" areas.

Zipf's Law for developed land area extends beyond the scale of
individual cities to much larger spatial networks of more intensely
developed cities connected by less intensely developed suburban, peri-
urban and rural areas. For the longitudinal subregions and the global
aggregation, the closest agreement with the Zipf case (exponent
of −1) spans more than four orders of magnitude in settlement size
from small individual citiesb100 km2 to large spatial networksN
1,000,000 km2 of lighted land area encompassing a variety of different
forms of anthropogenic modification. These spatial networks of
development become vastly larger as the low light threshold dimin-
ishes to levels associated with peripheral and isolated settlements as
well as less intensely developed interstitial regions. Yet these very
large spatial networks still maintain a power law distribution with
slopes near−1.While these very low levels of light are also associated
with the peripheral overglow of larger settlements, the overglow
generally encompasses areas with some anthropogenic modification.
The increasing slope of the rank-size distribution indicates that the
emergence of fewer, larger, interconnected agglomerations accounts
for more total land area than smaller, more isolated and less ex-
tensively networked developments. This is in strong contrast to higher
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thresholds where medium size networks and smaller isolated
settlements account for most of the intensively developed land area.
The implication is that Berry's concept of systems of cities (Berry,
1964) is manifest spatially through networks of development of
varying intensity as implied by the notion of hierarchical systems as
proposed by Pumain (Pumain, 2004, 2006) The size distributions of
spatial agglomerations at all levels of development show a progression
of connectivity that is dependent on the intensity of development.
Across this range, the distribution is well fit by power laws with
exponents very near −1. Recent and renewed attention to defining,
measuring and understanding the socioeconomic characteristics of
agglomerations (WorldBank, 2009; Glaser, 2010) is an important
direction for understanding our future urban world.

Zipf's Law for developed land area is driven by the connectivity of
localized regions of concentrated development. At continental to global
scales the distributions of developed land areas are dominated by a
few corridors of intense, space-filling development—in contrast to
vast undeveloped areas containing few smaller isolated settlements or
no significant development at all (e.g. ice sheets and deserts). These
corridors of development, sometimes referred to as mega-regions,
account for most of the formal economic activity on Earth (Florida et
al., 2008). Most enumerated land area on Earth is inhabited at low
population density (~70% areab10 people/km2) (Small and Cohen,
2004)and large rural areas of intermediate population densities (100
to 1000 people/km2) contain only small, isolated lights (Small, 2004).
The interface or gradient between fully developed (e.g. "urban") and
negligibly developed (e.g. "wilderness") is considerably less than it
would be if this network were more extensively fragmented so that
the distribution were dominated by smaller, less connected, more
isolated settlements having even greater interface exposure. Howev-
er, the interface exposure of the existing spatial network is far larger
than it would be if the developed land area were more agglomerated
rather than spatially networked. The limiting case for agglomeration
would be a single giant circular settlement with minimum perimeter/
area ratio. The implication is that anthropogenic development is a
spatially networked phenomenon occurring across a wide range of
spatial scales—but that the configuration of the network in any given
location is influenced by multiple processes subject to geophysical,
environmental, biological, evolutionary, cultural, economic and
political constraints. The predictability of the size distribution does
not necessarily imply the predictability of spatial configuration of the
network at all (or even any) points. However, scholars of the spatial
economy (Fujita et al., 2001) may be well positioned to leverage this
knowledge.

Anthropogenic land cover development is consistentwith the notion of
a spatial phase transition from more isolated to more interconnected
development patterns. The abrupt transition of the power law exponent
with decreasing DN threshold is analogous to the transition observed
in scaling exponents of percolation models (e.g. Stanley et al., 1999;
Zallen, 1998; Newman, 2005). As in the case of percolation, the
pronounced increase in the slope of the rank-size distribution
corresponds to the increased spatial connectivity of the network of
agglomerations as smaller patches become connected to form larger
interconnected networks. This is the process responsible for the
enormous size of the network bound by the lower light thresholds
(DNb~8). If the process(es) of land cover development occur by some
combination of isolated nucleation, edge expansion and intensification
of previously developed land then some component of the growth and
intensification process would follow a progression analogous to the
spatial growth that results from lowering the brightness threshold.
The concomitant increase in spatial extent would result in the
transition in size distribution indicated by the abrupt decrease in the
power law exponent. This is analogous to the abrupt increase in
connectivity observed at critical points of spatial phase transitions. The
concept of spatial phase transitions has been used to describe forest
succession (Milne et al., 1996) and other ecological processes (Milne,

1998) and the concept of correlated percolation has been used
to describe urban growth processes (Makse et al., 1995, 1998) with
very encouraging results. Extending the concept of the spatial phase
transition to include other forms of anthropogenic land cover
modification and extending the spatial dimension to continental
scales is consistent with the well-known fractal nature of urban
development (Batty and Longley, 1986, 1994), the fractal nature of
percolation processes (see e.g. Mandelbrot, 1982; Stanley et al., 1999)
and the scale invariance associatedwithmany other growth processes
(see e.g. Stanley and Ostrowsky, 1986) and critical phenomena (see
e.g. Sornette, 2003). Combining the percolation process with the
notion of a continuum of land cover development provides a means
representing the component of urban growth, andmore generally land
cover change, that proceeds by intensification of previously developed
land area. The foundations for this concept are not new (see e.g. Batty
and Longley, 1994) but, to our knowledge, have not been shown to
operate at continental to global scales as implied by the distribution of
lighted areas.

Anthropogenic light may provide a viable means for mapping the
spatial extent and intensity of development worldwide. The DMSP-OLS
was not designed for the purpose of mapping human settlements.
Because the DMSP-OLS achieves a million fold amplification of the
visible light level it enables the detection of sparse lighting located
within large ground footprints of the individual pixels. One of the
consequences of this extremely low detection limit and coarse spatial
resolution is the detection of extensive areas of dim lighting in what
are largely rural environments. The sources of this diffuse light are far
smaller than the pixel footprint but their aggregate emission is
detected nonetheless. This limits the size of the smallest detectable
discrete objects but reveals their presence within the Instantaneous
Field Of View of the pixel. This phenomena may account for the
breakdown in the power law relationship in the lower tail of the
distribution—along with differences in electrification (discussed
below). Preliminary results of analyses of higher resolution popula-
tion data and models suggest that the power law can be extended to
finer spatial scales (Small et al., 2010). This could be verified using
higher spatial resolution nighttime lights imagery. The potential for
observing nighttime lights at moderate spatial resolution (~50 m)
from space has been demonstrated with astronaut photography
acquired from the International Space Station (Pettit, 2010). Elvidge
et al. (2007a,b) have defined a Nightsat mission concept that would be
capable of acquiring moderate resolution (50 m) color imagery of
nighttime lights worldwide. Such data could be used to precisely map
the location and morphology of sparse development worldwide.

It is important to note that the depiction of anthropogenic de-
velopment in terms of light emission is far from perfect. The problem
of overglow is well known. In addition to overglow, the night light
data also contain some bright lights associated with gas flaring from
oil production facilities (Elvidge et al., 2009). Another important
consideration is the omission of settlements undetected by light
emission. Much of subsaharan Africa is densely populated but not
detected in the night lights. In spite of all these caveats, the rank-size
distributions of lighted area across a wide range of brightness
thresholds and at different spatial scales are consistently well fit by
power laws with exponents very close to −1. Regardless of whether
night lights depict population, economic activity, land cover modifi-
cation or merely stable emitted light, the spatial distributions
conforms to Zipf's Law more closely than most published studies
using population data (Nitsch, 2005) and does so at global to
continental scales. While the fit is certainly helped by the larger
sample size (35,000 to 55,000 agglomerations for DNb12) of the light
data, the large sample size would also provide stronger basis for
rejection of Zipf's Law if it were spurious as suggested by some
authors (e.g. Gan et al., 2006; Nitsch, 2005). Analogous analyses of
global population density data (Small et al., 2010) yield results
consistent with those reported here—despite the fact that population
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density networks are different from those depicted by the lights.
These preliminary analyses of population density and urban land
cover with night lights reveal both consistencies and differences
between spatially contiguous areas defined on the basis of night light,
land cover and population density. A detailed comparison between
these related entities is discussed in a separate study. We emphasize
again that night lights provide a spatial analogue to population
distribution that is both complementary and very different.

One of the most important caveats to consider when comparing
night lights to population distribution is the importance of electrifi-
cation to the prevalence of outdoor lighting. A recent study by
(Dorelien et al., 2010) finds that urban extents based on night lights
identify the overwhelming majority of highly electrified localities as
measured from household questionaires in Demographic and Health
Surveys. Recent analyses by (Doll and Pachauri, in press) indicate that
large, dispersed rural populations inmanydeveloping countries do not
have access to electricity and are therefore not represented in the night
light data. This underscores the necessity to emphasize the distinction
between population numbers and the varying area and intensity of
land surfacemodification represented by different brightness levels of
night light. While the two quantities may be correlated in areas that
are brightly lit, the correlation says nothing about the large numbers of
people living in areas where outdoor lighting detectable from space is
either unavailable, unaffordable or not a cultural priority.

In summary, this analysis provides evidence supporting Zipf's law
not only for cities but for larger, more inclusive spatial networks of
urban and non-urban development. The results suggest a number of
potential benefits should future studies of urbanization and land cover
change embrace the notion of an urban continuum—one that includes
small and large settlements as well as other types of land cover
modification like agriculture that connect settlements in the form of
spatial networks. The results further highlight the importance of
integrating physical and social models of urban processes. To our
knowledge, Zipf's law has not been used to forecast specific urban
growth scenarios, but these findings suggest that spatial models of
growth, and those that specifically acknowledge agglomerations and
networks, may have predictive value.
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