FreeForm

A Flexible System of Format Descriptions for Data Access

Version 3.1

User’s Guide

UNITED STATES DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

National Environmental Satellite, Data, and Information Service
National Geophysical Data Center

Boulder, Colorado 80303 USA

FreeForm
This guide is formatted for simplex printing, i.e., printing on one side of each page. You can choose to print on both sides of each page, but page numbers will always be in the upper right-hand corner and there will be no gutters (extra space on the inside margins).

Also be aware that the document may display and print with some odd spacing.

NOTICE

The information in this publication is subject to change without notice. NOAA reserves the right to
revise this publication and to make changes in the content hereof without obligation of NOAA to no-
tify any person of such revisions or changes.

DISCLAIMER

While every precaution has been taken in the preparation of this publication, NOAA assumes no re-
sponsibility for any errors or omissions that may appear herein. Nor does it assume any liability for
damages resulting from the use of the information contained in this publication.

TRADEMARKS

All brand and product names are trademarks of their respective companies. Mention of a commercial
company or product does not imply endorsement by NOAA or the Department of Commerce. Using
information from this publication concerning proprietary products for publicity or advertising purposes
is not authorized.

Contents B

INTRODUCTION
The Format Problem
Standard Formats
Smart Programs
The FreeForm Solution
The FreeForm System
FreeForm Files
About this Guide
Conventions

QuicK TOUR OF FREEFORM
Writing Format Descriptions
Changing Formats
Viewing Binary Data Files
Creating Summary Files

Generating the Summaries
Interpreting the Summaries

FORMAT DESCRIPTIONS
FreeForm Variable Types
FreeForm File Types
Format Description Files
Format Descriptions

Format Type and Title
Format Descriptors
Variable Descriptions

FREEFORM CONVENTIONS
File Name Conventions
File Name Extensions
File Name Relationships

Determining Input and Output Formats

Locating Format Files
Search Sequence
Case Sensitivity
Command Line Arguments

Specifying Input and Output Files
Specifying Format Description Source
Changing Run-time Parameters

Defining Filters

FORMAT CONVERSION
newform
readfile
Creating a Binary Archive

Simple ASCII to Binary Conversion
Conversion to a More Portable Binary

QR DMWNNNDNE

O WWOWWOWOWWNO®

(=Y

13
15
16
16
16
17
18

19
20
20
20
21
21
22
23
23
23
24
24
25

26
27
27
28
29
31

FreeForm
To access and use the electronic version of this table of contents, display the bookmarks in the overview area.

File Names and Context
“Nonstandard” Data File Names
“Nonstandard” Format Description File Names
Changing ASCII Formats

CONVERSION VARIABLES
Accessing Conversion Functions
Latitude and Longitude Conversions
Degrees, Minutes, and Seconds
Absolute Degrees and Minutes
Date and Time Conversions
Year, Month, Day
Serial Dates

HEADER FORMATS

Header Types
File Headers
Record Headers
Separate Header Files
The dBASE Format

fillhdr

gethdr
Viewing Headers
Changing Header Formats

DATA CHECKING
Generating the Summaries
Interpreting the Summaries

HDF UTILITIES
makehdf
splitdat
pntshow

Extracting Headers and Data
Extracting Data Only

DEVELOPING FREEFORM APPLICATIONS
FreeForm Application Layers
Building an Application

Example Program
Source Code—getll.c
Using getll

APPENDIX A: CONVERSION VARIABLE NAMES
General
Latitude/Longitude
General Lat/Lon
Degrees, Minutes, Seconds

CONTENTS

33
34
35
36

39
40
40
41
42
44
44
45

47
48
48
49
51
52
54
55
55
56

58
59
61

64
65
67
70

70
71

73
74
74
74
75
82

84
85
85
85
86

Geographic Quadrants

Longitude East

Quadrant, Sign
Earthquake Magnitude
Date and Time

APPENDIX B: ERROR HANDLING
Error Messages

APPENDIX C: QUERY SYNTAX
Symbols and Operators—List
Functions—List
Definitions of Terms
Rules
Pre-defined Constants
Operators—with Definitions
Functions—with Definitions
Order of Operations
General Suggestions
Examples

INDEX

CONTENTS

86
86
87
87
88

89
90

91
91
92
94
94
95
95
98
100
101
101

103

Introduction

The FreeForm Data Access System is a flexible system for specifying data formats to facilitate data
access, management, and use. How many data sets have you not examined or used because they were
not in the correct format for your applications? How many others have foregone analysis of your data
for the same reason? FreeForm can save you countless hours of changing the formats of data sets prior
to analyzing them.

The large variety of dataformatsis a primary obstacle in the way of creating flexible data management
and analysis software. FreeForm was conceived, developed, and implemented at the National Geo-
physical Data Center (NGDC) to aleviate the problems that occur when you need to use data sets with
varying native formats or to write format-independent applications.

INTRODUCTION

The Format Problem

Programmers can readily describe aformat for a specific data set, but a compiled application cannot be
used with other data sets until either the data or the program is modified. Two possible methods for
handling datain a variety of formats are to reformat all the data into a standard format or to develop
programs that can read data in many different formats.

Standard Formats

A number of standard formats have been proposed over the years and the specifications for these for-
mats have generally improved. However, standard formats do not enjoy widespread use, which will
probably continue to be the case.

Many scientists have large amounts of data on hand in non-standard formats. Converting to standard
formats is cumbersome and time-consuming. In addition, there are so many standard formats that for-
mat-independent applications are required even if only standard formats are used.

Smart Programs

Software devel opers can create programs that use datain many different formats. This approach has
several advantages:

The programs are flexible enough to alow the introduction of new data formats.
The scientist collecting the datais not forced to conform to any single data format.

The information contained in the original datais not lost through reformatting.

The FreeForm Solution

FreeForm uses a variation on the smart program approach. With FreeForm, you specify formats out-
side application programs by writing text files that describe the formats of your data sets. The applica-
tions then use these format files as they process data. FreeForm-based applications are in effect format-
independent and you do not need to modify the data or the applications.

FreeForm provides a mechanism for data description that is flexible and easy to use. A set of ready-to-
use programs for manipulating awide variety of datain standard and non-standard formats is also
provided. FreeForm lets you concentrate on your specialty rather than trying to figure out how to ac-
cess and manipulate datain multiple formats. Additionally, the application programmer can use Free-
Form libraries and data constructs to devel op format-independent applications.

INTRODUCTION

The FreeForm System

The FreeForm Data Access System comprises a format description mechanism, alibrary of C func-
tions, object-oriented constructs for data structures, and a set of programs (built using the FreeForm li-
brary and data objects) for manipulating data. FreeForm also includes several utilities for use with
HDF files.

There are two types of FreeForm users. Data users and providers create format description files and

run FreeForm programs such as newfor m. Programmers use the FreeForm library and data objects to

write data management and analysis applications.

FreeForm includes the following programs for ac-
cessing and manipulating data in various formats:

L D

newform reformats data

readfile reads binary files

User Interface . .
checkvar creates variable summaries

fillhdr writes maximums and minimums
to a header
lications gethdr displays headers

Developer
Interface

. The FreeForm data objects provide an interface
Data Objects between application and data files.

R

Programmers use the FreeForm library routines
to develop applications.

Format
Descriptions

tion files that FreeForm-based programs use to

correctly access data.
>

INTRODUCTION

| Data users and providers write format descrip-

FreeForm Files

The FreeForm file set includes program files (executables), format description files and data files used
in examples throughout this guide, and electronic copies of this guide. Y ou can download a single self-
extracting compressed file that contains the FreeForm file set from Internet using FTP. To download
the file, your computer must be connected to Internet and support the FTP protocol. The following
procedure assumes you are accessing FTP from the command line.

To download the FreeForm file set:
1. Change to the directory in which you want to put the FreeForm files.
2. From the command line, enter ftp ftp.ngdc.noaa.gov.

3. Loginusing anonymous for the user ID. Use your own e-mail address or name as the pass-
word.

4. Change directory (cd) to Solid_Earth/Access ToolFREEFORM/XXX.
where XXX isthe platform-specific directory:
PCDOS=PC
Unix Sun = SUN
Unix SGI (Silicon Graphics) = SGI

To list the directory contents, enter Is -CF.
5. Transfer the appropriate file (ff31.exe for DOS, FREEFORM 31.XXX.tar.Z for Unix) in bi-

nary mode. Use the image or binary command to set the mode to binary and the get command
to transfer the file. Enter bye to exit FTP.

6. To extract and decompress files on a DOS system, enter ff31. On Unix systems, enter uncom-
pressfile_name, then tar -xf file_name.

To obtain a diskette containing FreeForm files (for DOS systems) or if you have questions, feel free to
contact NGDC:

National Geophysical Data Center
325 Broadway
Boulder, CO 80303-3328

Fax: (303)497-6513
email: info@ngdc.noaa.gov

About this Guide
This guide provides instructions for writing format descriptions, using FreeForm programs, and writing
your own FreeForm-based applications. The content of each chapter is outlined below.

Chapter 1, Introduction (this chapter), introduces the FreeForm Data A ccess System and summarizes
typographic conventions and the contents of this guide.

Chapter 2, Quick Tour of FreeForm, provides a brief introduction to writing format descriptions and
using several of the FreeForm programs.

Chapter 3, Format Descriptions, provides detailed information about writing format descriptions to
facilitate data access.

INTRODUCTION

Chapter 4, FreeForm Conventions, presents FreeForm file name conventions, the search rules for locat-
ing format files, and standard command line arguments for FreeForm programs.

Chapter 5, Format Conversion, shows you how to use the FreeForm program newform to convert data
from one format to another and also how to read the datain a binary file.

Chapter 6, Conversion Variables, discusses FreeForm conversion variables, which let you translate
between a number of representations of space and time values.

Chapter 7, Header Formats, tells you how to use the FreeForm programs fillhdr and gethdr to work
with header formats.

Chapter 8, Data Checking, discusses the FreeForm program checkvar, which you can use to check
data distribution and quality.

Chapter 9, HDF Utilities, covers the three programs you can use with HDF (hierarchical data format)
files. The makehdf program converts binary and ASCI| datafilesto HDF files. The splitdat program
tranglates files with headers and data into indexed HDF files. The pntshow program extracts point data
from HDF files.

Chapter 10, Developing FreeForm Applications, summarizes how to use the FreeForm Data Access
System to build FreeForm-based programs.

Appendix A, Conversion Variable Names, lists the conversion variable names that FreeForm recog-
nizes.

Appendix B, Error Handling, presents a list of common FreeForm error messages.

Appendix C, Query Syntax, lists the operators, symbols, and functions you can use to construct que-
ries.

Conventions

The following typographic conventions are used throughout this guide (except Appendix C).
File names, executable program names, commands, and user input are in boldface.
Emphasized words, book titles, and axis names (e.g., x axis) arein italics.

Code examples, data file contents, and system output areinthi s typef ace .
Key names (e.g., Return) have an initial capital letter.

A position box is used to indicate column position of field valuesin datafiles. It is shown at
the beginning of adatalist in the documentation, but does not appear in the data file itself.

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890

INTRODUCTION

Quick Tour of FreeForm

This chapter provides you a quick introduction to writing format descriptions and using several Free-
Form programs. Y ou will look at a format description file, convert data from one format to another,
read the datain abinary file, and create summary files.

QuicK TOUR

FreeForm
In order to do the examples in this chapter and the rest of this guide, you must download the FreeForm file set via FTP. See the section "FreeForm Files" in chapter 1 for downloading instructions.

Writing Format Descriptions

Y ou can easily create FreeForm format description files that describe the formats of input and output
data and headers. FreeForm-based programs then use these files to correctly access and manipulate
datain various formats. An example format description file is shown and described bel ow.

b For complete information about writing format descriptions, see chapter 3.

latlon.fmt

/ This is the format description file for data files latlon.bin
/ and latlon.dat. Each record in both files contains two fields,
/ latitude and | ongitude.

bi nary_data "binary fornat"
latitude 1 8 double 6
| ongi tude 9 16 double 6

ASCl| data "AsCl| fornat"
latitude 1 10 double 6
[ongi tude 12 22 double 6

Note! You can display latlon.fmt on your screen by changing to the directory containing the Free-
Form example files and using the appropriate command (type, cat, or more).

This format description file contains two format descriptions. The first describes data in the binary data
file latlon.bin and the second describes data in the ASCII datafile latlon.dat (contents shown below).

The binary and ASCI|I variables both have the same names. The binary variables are defined to occupy
8 bytes each (positions 1-8 and 9-16). The ASCII variable| ati t ude occupies 10 bytes (positions 1 to
10) and | ongi t ude occupies 11 bytes (positions 12-22). Both the binary and ASCI| variables are
stored as doubl es because they have more than seven digits and include a decimal point (see the
latlon.dat listing below). The precision of 6 for all the variables indicates that there are six digitsto the
right of the decimal point.

|latlon.dat

1 2 3 4 5 6
12345678901234567890123456789012345678901234567890123456789012345

-47.303545 -176.161101
-0. 928001 0. 777265
-28. 286662 35.591879
12.588231 149. 408117
-83.223548 55. 319598
54.118314 -136. 940570
38.818812 91.411330
-34.577065 30.172129
27. 331551 -155. 233735
11. 624981 -113. 660611
77.652742 -79.177679
77.883119 -77.505502
-65. 864879 -55. 441896
-63. 211962 134.124014
35. 130219 -153. 543091

QuicK TOUR

29.918847 144.804390
-69. 273601 38.875778
-63.002874 36. 356024

35. 086084 -21.643402
-12.966961 62. 152266

Note! You can display latlon.dat on your screen by changing to the directory containing the Free-
Form example files and using the appropriate command (type, cat, or more).

Changing Formats

The FreeForm program newform is used to convert data from one format to another. Format descrip-
tionsfor all the data (input and output) involved in the conversion must be included in aformat de-
scription file.

In this example, you will use newform to convert ASCII datain the input file latlon.dat to binary data
in the output file latlon2.bin. First you need to create a format description file like the following that
describes the data in these two files.

latlon2.fmt

/ This is the format description file for data files |atlon. dat
/ and latlon2.bin. Each record in both files contains two fields,
/ latitude and | ongitude.

ASCl| data "AsCl| fornat"
latitude 1 10 double 6
[ongi tude 12 22 double 6

bi nary_data "binary fornat"
latitude 1 4 long 6
longitude 5 8 long 6

The ASCII and binary variables both have the same names. The ASCII variable | at it ude occupies
10 bytes (positions 1-10) and | ongi t ude occupies 11 bytes (positions 12-22). The ASCI|I variables
are defined to be of type doubl e because they have more than seven digits and include a decimal
point. (See the latlon.dat|listing above.) The binary variables are defined to occupy four bytes each
(positions 1-4 and 5-8) and to be of type | ong. The precision for al is 6.

Note! You can display latlon2.fmt on your screen by changing to the directory containing the Free-
Form example files and using the appropriate command (e.g., type, cat, or more).

To convert the ASCII datain latlon.dat to binary data:
1. Change to the directory that contains the FreeForm example files.
2. Enter the following command:
newform latlon.dat -f latlon2.fmt -o latlon2.bin

This command creates a new binary datafile called latlon2.bin with the 20 latitude and longi-
tude values in latlon.dat stored as binary longs.

P For complete information about using newfor m, seq chapter 5.

QuicK TOUR

Viewing Binary Data Files

The FreeForm Data Access System includes an interactive utility program, readfile, for reading binary
files. You can use readfile to read the binary file latlon2.bin and check that the data are correct.

To read latlon2.bin:

1.
2.
3.

5.

Change to the directory that contains the FreeForm example files.
On the command line, enter readfile latlon2.bin

The data are stored as longs, so enter | to view the first value.
The number - 47303545 , corresponding to the first number in latlon.dat (but with implied
precision, i.e., without a decimal point), should appear.

To check additional numbers, continue to enter | or press Return.
The numbers should correspond to those in latlon.dat.

When you want to quit readfile, enter q.

P For complete information about using readfile, seg chapter 5

Creating Summary Files

The FreeForm-based utility program checkvar creates a summary file for each variable in adatafile, a
list of maximum and minimum values, and a summary of processing activity. A variable summary file
(also called a histogram data file) contains histogram information that shows the variable’ s distribution
in the data file. In this example, you will use checkvar to create a processing summary file and vari-
able summary files for the two variables| atitude and | ongitude inthefilelatlon2.bin.

Generating the Summaries

To create summary filesfor latlon2.bin:

1.
2.

Change to the directory that contains the FreeForm example files.
Enter the following command:
checkvar latlon2.bin -o checkvar.out

A summary of processing information and the maximum and minimum for each variable are
displayed on the screen. The following three files are created:

a checkvar.out recaps processing activity, maximums and minimums
a latitudelst shows distribution of the latitude valuesin latlon2.bin
a longitud.lst shows distribution of the longitude valuesin latlon2.bin
(DOS truncates file names to 8 characters)
longitude.lst (Unix)

To view thefiles, use the appropriate command, i.e., type, cat, or more.

QuicK TOUR

10

Interpreting the Summaries

The three files output by checkvar are shown and discussed below. To remind yourself of the input
values, refer to latlon.dat since it contains the same values as latlon2.bin in ASCII representation.

checkvar .out

Input file: latlon2.bin
No requested precision, Approximte nunber of sorting bins = 100

| nput data formnat (latlon2.fmt)

bi nary_i nput _dat a "binary fornat"

The format contains 2 variables; length is 8.
Qut put data format (latlon2.fmt)

ASC | _out put _data "ASA | format"

The format contains 2 variables; length is 24.

H stogram data precision: 5, Nunber of sorting bins: 20
| atitude: 20 val ues read

m ni nrum -83.223548 found at record 5

maxi num 77.883119 found at record 12

Summary file: latitude.lst

H stogram data precision: 5, Nunber of sorting bins: 20
| ongi tude: 20 val ues read

m ni mum -176.161101 found at record 1

maxi mum 149. 408117 found at record 4

Summary file: |ongitud.|st

The processing summary file checkvar.out first shows the name of the input datafile (I at 1 on2. bi n).
Since precision and a maximum number of bins were not specified on the command line, No r e-
quest ed preci sion and the default value for sorting bins of 100 are shown.

A summary of each format shows the type of format (in thiscase, I nput data format and Qut put
data format) and the name of the format file containing the format descriptions (1 at | on2. fnt de-
scribes both the input and output formats; note that checkvar ignores output formats). Next, you see
the format descriptor as resolved by FreeForm (e.g., bi nary_i nput _data) and the format title (e.g.,
"binary format"). Thenthe number of variablesin arecord and total record length are given; for
ASCII, record length includes the end-of -line character.

A section for each variable processed by checkvar indicates the histogram precision and actual num-
ber of sorting bins. Under some circumstances, the precision of values in the histogram file may be dif-
ferent than the precision you specified on the command line. No precision was specified on the com-
mand line in this case, so the default maximum precision of 5 is used. The second line shows the name
of thevariable (I ati tude and | ongi t ude) and the number of valuesin the datafile for the variable
(20 for both I ati tude and| ongi t ude).

The minimum and maximum values for the variable are shown next (- 83. 223548 isthe minimum
and 77. 883119 isthe maximum valuefor | ati t ude). The maximum and minimum values are given
here with a precision of 6, which is the precision specified in the relevant format description file. The
locations of the maximum and minimum values in the input file are indicated. (- 83. 223548 isthefifth
latitude value in latlon2.bin and 77. 883119 is the twelfth).

Finally, the name of the histogram data (or variable summary) file generated for each variable is given.
The two example histogram files, [atitude. st andlongitud.|st , areshown next.

QuicK TOUR

latitude.lst

- 83.
- 69.
- 65.
-63.
-63.
-47.
- 34.
- 28.
-12.

- 0.
. 62498
. 58823
. 33155
. 91884
. 08608
. 13021
. 81881
. 11831
. 65274
. 88311

The histogram files consist of two columns. The first indicates boundary values for data bins and the

22355
27361
86488
21197
00288
30355
57707
28667
96697
92801

RPRRPRRPRRRRPRRPRRRPRRRERRRRERR

longitud.|st

-176.
- 155.
-153.
-136.
-113.
-79.
-77.
- 55.
-21.

144.
149.

16111
23374
54310
94057
66062
17768
50551
44190
64341

. 77726
. 17212
. 59187
. 35602
. 87577
. 31959
. 15226
. 41133
. 12401

80439
40811

RPRRPRRPRRPRRRPRRPRRRPRRRERRRRRERR

11

second gives the number of data pointsin each bin. The boundary values are determined dynamically
by checkvar and often do not correspond exactly to data values in the input file, even if the checkvar

and datafile precisions are the same.

Thefirst data bin in latitude.lst contains data points in the range -83.22355 (inclusive) to -69.27361
(exclusive). The first bin has one data point, - 83. 223548 (refer to latlon.dat on page 7). The fifth

data bin contains latitude values from -63.00288 (inclusive) to -47.30355 (exclusive); the data point in

the fourth binis-63. 002874 .

P For complete information about using checkvar, .

QuicK TOUR

12

Format Descriptions

Format descriptions define the formats of input and output data and headers. FreeForm provides an
easy-to-use mechanism for describing data. FreeForm programs and FreeForm-based applications that
you develop use these format descriptions to correctly access data. Any datafile used by FreeForm

programs must be described in aformat description file.

FORMAT DESCRIPTIONS

13

FreeForm Variable Types

The data sets you produce and use may contain a variety of variable types. The characteristics of the
types that FreeForm supports are summarized in the table below, which is followed by a description of

each type.

Table 1: Variable Types

Name Minimum Value | Maximum Value | Binary Size Precision
(bytes) (significant
digits)
char *
uchar 0 255 1
short -32,767 32,767 2
ushort 0 65,535 2
long -2,147,483,647 2,147,483,647 4
ulong 0 4,294,967,295 4
float 10% 10% 4 6**
double 10°%" 10°® 8 15**
constant *
initial record length
convert *
* User-specified
** Can vary depending on environment
Note! The sizesin the table are machine-dependent. Those given are for PC-compatible machines and

many Unix workstations.

char

The char variable typeis used for character strings. Variables of thistype, including numerals, are in-
terpreted as characters, not as numbers.

uchar

The uchar (unsigned character) variable type can be used for integers between 0 and 255 (25- 1). Vari-
ables that can be represented by the uchar type (for example: month, day, hour, minute) occur in many
data sets. An advantage of using the uchar typein binary formatsis that only one byte is used for each
variable. Variables of thistype are interpreted as numbers, not characters.

short

A short variable can hold integers between -32,767 and 32,767 (2'- 1). This type can be used for
signed integers with less than 5 digits, or for real numbers with atotal of 4 or fewer digits on both
sides of the decimal point (-99 to 99 with a precision of 2, -999 to 999 with a precision of 1, and so
on).

FORMAT DESCRIPTIONS

14

ushort
A ushort (unsigned short) variable can hold integers between 0 and 65,535 (2*° - 1).

long

A long variable can hold integers between -2,147,483,647 and +2,147,483,647 (2*' - 1). This variable
type is commonly used to represent floating point data as integers, which may be more portable. It can
be used for numbers with 9 or fewer digits with up to 9 digits of precision, for example, latitude or
longitude (-180.000000 to 180.000000).

ulong

The ulong (unsigned long) variable type can be used for integers between 0 and 4,294,967,295
(2%-1).

float, double

Numbers that include explicit decimal points are either float or double depending on the desired num-
ber of digits. A float has a maximum of 6 significant digits, a double has 15 maximum. The extra dig-
its of adouble are useful, for example, for precisely specifying time of day within a month as decimal
days. One second of time is approximately 0.00001 day. The number specifying day (maximum = 31)
can occupy up to 2 digits. A float can therefore only specify decimal days to awhole second
(31.00001 occupies seven digits). A double can, however, be used to track decimal parts of a second
(for example, 31.000001).

constant

FreeForm has two variable types, constant and initial, for sequences of characters (or bytes) that are
the same for all recordsin afile. A constant variable is placed into the output buffer on initialization.
The constant value is the same as the name of the variable. For example, given the variable description
below:

NGDCDATA 1 8 constant O

the string NGDCDATA , which is both the variable name and value, is placed in characters 1-8 of each
output record.

FreeForm recognizes the special constant EQL as an end-of-line character, which is used with multi-
line records. The variable descriptions shown next are for a data record that includes several variables,
the end-of-line character, then several more variables.

year 1 2 short O

. (nore vari abl es)
Iatitude_sec 75 80 float 2
ECL 81 82 constant O
| ongi tude_deg 83 89 float 3
longitude_mn 72 78 float 2

(renmai ning vari abl es)

Thevariable!l ongi t ude_deg startsanew linein the datafile.

FORMAT DESCRIPTIONS

15

initial
The variable type initial can be used when you want to set more than one constant value at atime. It

provides an initialization template for the output record. This template is read from a file with the same
name as the initial variable. For example, suppose you have the following variable description:

seattle.ini 1 80 initial O
Theinitial variableisnamed seatt | e.ini , sotheinitialization template fileseattle.ini isread

and used to initialize the output records. Assume the Seattle template contains the following values,
which are written to an earthquake record:

SEA19 SEA
The other values in the output record are written over this template resulting in a record that looks like
the following:
SEA19 5 -146.34172 -47.39710 1011 SEA 910802
Note! The length of the template file must equal the length of the record in the output format. The file
name and extension are of your choosing.
convert

The convert variable type allows you to access an extensive set of functions for constructing output
variables that do not exist in input files, but can be computed from variables which do. FreeForm can
transparently identify and call conversion functions during the data access process if you use properly
named input and output variables in variable descriptions.

P See chapter 6 for examples and Appendix A|for a complete list of names for conversion variables.

header

Previous versions of FreeForm included header variables. Y ou can now specify header formatsin for-
mat description files.

P For details, see the sectionl “Format Descriptors” [below and al ~-

FreeForm File Types

FreeForm supports binary, ASCII, and dBASE file types. Binary data are stored in a fixed amount of
space with afixed range of values. Thisis avery efficient way to store data, but the files are machine-
readable rather than human-readable. Binary numbers can be integers or floating point numbers.

Numbers and character strings are stored as text stringsin ASCII. The amount of space used to store a
string is variable, with each character occupying one byte.

The dBASE file type, used by the dBASE product, is ASCII text without end-of-line markers.

FORMAT DESCRIPTIONS

16

Format Description Files

Format description files accompany datafiles. A format description file can contain descriptions for
one or more formats. Y ou include descriptions for header, input, and output formats as appropriate.
Format descriptions for more than one file may be included in a single format description file.

An example format description file is shown next. The sections that follow describe each element of a
format description file.

/ This format description file is for P comment lines
/ data files latlon.bin and | atlon. dat.

bi nary data "Default binary fornmat" p format type and title format
latitude 1 4 long 6 P variable description] .
longitude 5 8 long 6 P variable description description
P blank ling(s) to mark the end
of aformat description
ASCl| _data "Default ASO| format" p format type and title format
latitude 1 10 double 6 P variable description] .
| ongitude 12 22 double 6 b variabledescription description
P end of the format description
file

Y ou can include blank lines between format descriptions and comments in aformat description file as
necessary. Optional comment lines begin with a slash (/). FreeForm ignores comments.

Format Descriptions

A format description file comprises one or more format descriptions. A format description consists of a
line specifying the format type and title followed by one or more variable descriptions.

Example:

/ This is an exanple format description
bi nary _data "Default binary formnat" p format type and title
latitude 1 4 long 6 b variabledescription
longitude 5 8 long 6 P variable description

Format Type and Title

A line specifying the format type and title begins aformat description. Format descriptors, for exam-
ple, bi nary_dat a , are used to indicate format type to FreeForm. The format title, for example,
"Default binary format" , briefly describesthe format. It must be surrounded by quotes and fol-
low the format descriptor on the same line. The maximum number of characters for the format titleis
80 including the quotes.

FORMAT DESCRIPTIONS

Format Descriptors

Format descriptors indicate (in the order given) file type, read/write type, and file section. Possible
values for each descriptor component are shown in the following table.

Table 2: Descriptor Components
File Type Read/Write File Section
Type (optional)

ASd | i nput dat a

bi nary out put file_header

dBASE record_header
fil e_header_separ at e*
recor d_header _separ at e*

*The qualifier separ at e indicates there is a header file separate from the data file.

The components of aformat descriptor are separated by underscores (). For example,

ASC | _out put _data

der of descriptorsin aformat description should reflect the order of format typesin the file. For in-

stance, the descriptor ASCI | _fil e_header would be listed in the format description file before

17

indicates that the format description isfor ASCII datain an output file. The or-

ASCl | _dat a . The format descriptors you can use in FreeForm are listed in Table 3.

Table 3: Format Descriptors

XXX out put _dat a

XXX _record_header
XXX record_header _separate

XXX i nput _fil e header

XXX i nput _file header separate
XXX i nput _record_header

XXX i nput _record_header _separate

XXX out put _fil e _header

XXX out put _fil e header separate
XXX _out put _record_header

XXX out put _record_header _separate

Data Header Special
XXX _dat a XXX _fil e_header RETURN *
XXX i nput _dat a XXX file_header separate EQL**

where XXX = ASCl | , bi nary , or dBASE

Example: XXX _data = ASC | _data , bi nary_data , or dBASE dat a

* The RETURN descriptor lets FreeForm skip over end-of-line characters in the data.
** The EQL descriptor isa constant indicating an end-of-line character should be inserted in a

multi-line record.

P For moreinformat

ion about header formats, se¢ chapter 7.

FORMAT DESCRIPTIONS

18

Variable Descriptions

A variable description defines the name, start and end column position, type, and precision for each
variable. The fields in a variable description are separated by white space. Two variable descriptions
are shown below with the fields indicated. Each field is then described.

/ Here are two exanpl e variabl e descri ptions.

[atitude 1 10 doubl e 6
| ongi t ude 12 22 doubl e 6

name—J
start

end

type
precision

Name

The variable name is case-sensitive, up to 63 characters long with no blanks. The variable namesin the
examplearel atitude and| ongitude . If the same variable isincluded in more than one format de-
scription within a format description file, its name must be the same in each format description.

Start Position

The column position where the first character (ASCII) or byte (binary) of avariable value is placed.
Thefirst position is 1, not 0. In the example, the variable | ati t ude is defined to start at position 1
and | ongi tude at 12.

End Position
The column position where the last character (ASCII) or byte (binary) of avariable valueis placed. In
the example, the variable | ati t ude isdefined to end at position 10 and | ongi t ude at 22.

Type
The variable type can be a standard type such as char, float, double, or a special FreeForm type. The
type for both variables in the example is double. See the secti on|“ FreeForm Variable Types’ |for de-

scriptions of supported types.

Precision

Precision defines the number of digits to the right of the decimal point. For float or double variables,
precision only controls the number of digits printed or displayed to the right of the decimal point in an
ASCII representation. The precision for both variables in the exampleis 6.

FORMAT DESCRIPTIONS

19

FreeForm Conventions

File name conventions have been defined for FreeForm. If you follow these conventions, FreeForm
can locate format files through a default search sequence. Using the file name conventions also lets
you reduce the number of arguments on the command line. In addition to standard file names, Free-

Form programs recognize various standard command line arguments.

FREEFORM CONVENTIONS

20

File Name Conventions

Naming conventions have been established for files accessed by FreeForm. Although you are not re-
quired to follow these conventions, using them lets you enter abbreviated commands when you are
using FreeForm-based programs. FreeForm can then automatically execute several operations:

Determination of input and output formats when they are not explicitly identified in the relevant
format descriptions in format files

L ocation of format files when they are not specified on the command line

File Name Extensions

The expected extensions for data files are as follows:
.dat = ASCII, e.g., latlon.dat
.dab = dBASE, eg., latlon.dab
.bin = binary or anything that is not .dat or .dab, e.g., latlon.bin

The expected extension for format description filesis .fmt, e.g., latlon.fmt. Y ou should not use mixed
case extensions for format description files if you want to take advantage of FreeForm’s default search
capabilities. If you explicitly specify the names of format description files on the command line, you
can use mixed case extensions.

Note! Previous versions of FreeForm used variable description files (formerly called format specifica-
tion files) each of which contained variable descriptions for one file. Expected extensions for
these fileswere .afm (ASCII), .bfm (binary), and .dfm (dBASE). Variable descriptions for one
or more files can now be incorporated into a single format description file. It is recommended
that you convert and combine (as appropriate) existing variable description files into format
description files.

File Name Relationships

FreeForm-based programs expect certain relationships between data file and format description file
names as outlined below.

The datafile is named datafile.ext where datafile is the file name of your choosing and ext is the
extension.
Example: latlon.dat

The corresponding format description file should be hamed datafile.fmt.
Example: latlon.fmt

If one format description file is used for multiple datafiles, all with the same extension, the format
description file should be named ext.fmt.
Example: II.fmt isthe format description file for IIdat1.1l, lldat2.1l, and [Idat3.1l.

Again, although not required, it is to your advantage to use these conventions.

FREEFORM CONVENTIONS

21

Note! The expected file names for variable description filesin previous versions of FreeForm were
datafile.afm (ASCII), datafile.ofm (binary), and datafile.dfm (dBASE). It is recommended
that you convert existing variable description files to format description files.

Determining Input and Output Formats

Y ou can optionally include read/write type (i nput or out put) in format descriptors, e.g.,

ASCl | _i nput _data . You may not want to specify the read/write type in some circumstances. For ex-
ample, you may need to translate from native ASCI| to binary, then back to ASCII. ASCII is the input
format in the first translation and the output format in the second translation, vice versafor binary. You
would need to edit the format description file before executing the second translation if you included
read/write type in the format descriptors.

Note! If you use the -ft option, you do not need to edit the format description file. See
| “Specifying Format Description Source” |Iater in this chapter.

If you do not specify read/write type, FreeForm can neverthel ess determine which format in a format
description file is input and which is output as long as you have adhered to FreeForm filenaming con-
ventions.

If the input format is not specified, and
the input data filename extension is .bin, assume binary input.
the input data filename extension is .dab, assume dBA SE input.
the input data filename extension is .dat, assume ASCI| input.
the input data filename extension is anything else, assume binary input.

If the output format is not specified, and
the input format is binary, the output is ASCII or dBASE, whichever isfound first.
the input format is dBASE, the output is ASCII or binary, whichever is found first.
the input format is ASCII, the output is binary or dBASE, whichever isfound first.

Note! The appropriate format descriptions must be in the format description file(s) used by FreeForm
for atrangdlation. If, for example, FreeForm determines the input format is binary and the output
format is ASCII, there must be a format description for each type.

The checkvar program needs only an input format.

Locating Format Files

FreeForm programs use the following search sequence to find aformat file (format or variable de-
scription file) for the data file datafile.ext when the format file name is not explicitly specified on the
command line. In summary, FreeForm searches the directory specified by the GeoVu keyword
format_dir (defined in a equivalence table or in the environment), the current or working directory,
and the data file's home directory. The rules are applied in the order given below until aformat fileis
found or all rules have been exhausted. If the relevant format file does not follow FreeForm conven-
tions for name or location, it should be explicitly specified on the command line.

FREEFORM CONVENTIONS

22

Note! GeoVu is aFreeForm-based application for data access and visualization. FreeForm applica-
tions other than GeoV u use GeoV u keywords.

P For information about equivalence tables, see the GeoVu Tools Reference Guide.

Search Sequence

1. Search the directory given by the GeoVu keyword format_dir for aformat description file
named datafile.fmt.

2. Search the directory given by the GeoVu keyword format_dir for variable description files
named datafile.afm, datafile.bfm, and datafile.dfm.

If the datafile has extension .dat: datafile.afm is used as the input
variable description file
datafile.bfm or datafile.dfm, if datafile.ofm doesn’t
exist, is used as the output variable description file

If the datafile has extension .dab: datafile.dfm is used as the input
variable description file
datafile.afm or datafile.bfm, if datafile.afm doesn't
exist, is used as the output variable description file

If the data file has extension .bin, datafile.ofm is used as the input

extension other than above, variable description file

or no extension: datafile.afm or datafile.dfm, if datafile.afm
doesn’t

exist, is used as the output variable description file

Note! Step 2 isincluded to accommodate variable description files that were created using previous
versions of FreeForm. It is recommended that you convert existing variable description files to
format description files.

3. Search the directory given by the GeoVu keyword format_dir for aformat description file
named ext.fmt.

If the GeoVu keyword format_dir is not found, FreeForm continues the search for aformat file as
follows.

4. Search the current (default) directory for aformat description file named datafile.fmt.

5. Search the current directory for variable description files named datafile.afm, datafile.bfm,
and datafile.dfm. Use the criteriain step 2 for determining input and output format files.

6. Search the current directory for aformat description file named ext.fmt.

If the datafile’'s home directory is not the same as the current directory, FreeForm continues the search
for aformat file with steps 7-9. The datafile's home directory is given by the directory path compo-
nent of the datafile name. If the data file name has no directory path component, the home directory
search is not done.

FREEFORM CONVENTIONS

23

7. Search the datafile’s home directory for aformat description file named datafile.fmt.

8. Search the datafile’s home directory for variable description files named datafile.afm,
datafile.ofm, and datafile.dfm. Use the criteriain step 2 for determining input and output
format files.

9. Search the datafile’s home directory for aformat description file named ext.fmt.

Case Sensitivity

FreeForm adheres to the following rules for case sensitivity (in applicable operating systems) when it
searches for aformat file for the data file datafile.ext.

FreeForm preserves the case of datafile, for example, the default format file for the data file
LATLON.BIN isLATLON.fmt (or LATLON.bfm).

FreeForm searches for aformat file with alower case extension. That is, the format file must have
its extension in lower case no matter what the case of datafile. For example, the default format file
for the datafile LatLon.dat isLatLon.fmt (or LatL on.afm), and TIMEDATE.fmt (or
TIMEDATE.bfm) isthe default format file for TIMEDATE.bin.

In searching for aformat description file of type ext.fmt, FreeForm preserves the case of ext. For
example, for datafilesnamed lldat1.LL, [Idat2.LL, and latlon3.L L, the default format description
fileisLL .fmt.

Command Line Arguments

FreeForm programs can take various command line arguments. The most widely used or standard ar-
guments are discussed in this section. They are used for several different purposes: identifying input
and output files, identifying format files and titles, changing run-time operation parameters, and defin-
ing datafilters.

The only required argument for any FreeForm program is the name of the input file or file to be proc-
essed. All other arguments are optional and can be in any order following the input file name. The
command line of a FreeForm program with the standard arguments has the following form:

application_name input_file [-f format_file] [-if input_format_file] [-of output_format_file]
[-ft "title"] [-ift "title"] [-oft "title"] [-b local_buffer_size]
[-c +/-count] [-v var_file] [-q query_file] [-0 output_file]
Note! To seeasummary of command line usage for a FreeForm program, enter the program’s name
on the command line without any arguments.

Specifying Input and Output Files

input_file
Name of the file to be processed. Following FreeForm naming conventions, the standard exten-
sions for data files are .dat for ASCII format, .bin for binary, and .dab for dBASE.

-0 output_file
Option flag followed by the name of the output file. The standard extensions are the same as for
input files.

FREEFORM CONVENTIONS

24

Specifying Format Description Source

FreeForm offers a number of command line options for specifying the source of the format descrip-
tions that a program must find in order to process data. The proper option or combination of options to
use depends on how you have constructed your format files.

-f format_file
Option flag followed by the name of the format description file describing both input and output
data.

-if input_format_file
Option flag followed by the name of the format description file describing the input data. Also use
this option for an input variable description file written using earlier versions of FreeForm.
-of output_format_file
Option flag followed by the name of the format description file describing the output data. Also
use this option for an output variable description file written using earlier versions of FreeForm.
-ft " title"
Option flag followed by the title (enclosed in quotes) of the format to be used for both input and
output data, in which case there is no reformatting. The title follows format type on the first line of
aformat description in aformat description file.
-ift " title"
Option flag followed by the title (enclosed in quotes) of the desired input format.
-oft " title"
Option flag followed by the title (enclosed in quotes) of the desired output format.
Note! Previous versions of FreeForm used variable description files (.afm, .bfm, .dfm). It is recom-

mended that you convert and combine (as appropriate) existing variable description filesinto
format description files.

The various options available for specifying the source of aformat description offer you a great deal of
flexibility—in naming files, setting up format description files, and on the command line. In using these
options, you need to consider the content of your format description files and how FreeForm will in-
terpret the arguments on the command line.

Changing Run-time Parameters

FreeForm includes three arguments that let you change run-time parameters according to your needs.
One argument lets you specify local buffer size, another indicates the number of records to process,
and the third indicates which variables to process.

-b local_buffer_size
Option flag followed by the size of the memory buffer used to process the data and format files.

Default buffer size is 32,768 bytes; must be < 65,536 bytes (PCs)

Y ou many want to decrease the buffer size if you are running with low memory (on a PC). Keepin
mind that too small a buffer may result in unexpected behavior.

FREEFORM CONVENTIONS

25

-C count

Option flag followed by a number that specifies how many data records at the head or tail of the
file to process.

If count > 0, count records at the beginning of the file are processed.
If count < 0, count records at the tail or end of the file are processed.

-vvar_file

Option flag followed by the name of avariable file. The file contains names of the variablesin the
input data file to be processed by the FreeForm program. Variable namesin var_file can be sepa-
rated by one or more spaces or each name can be on a separate line.

Defining Filters

The query option lets you define data filters via a query file so you can precisely specify which data to
process. The FreeForm program will process only those records meeting the query criteria.

-q query_file

Option flag followed by the name of the file containing query criteria. See|Appendix C|for query
syntax.

FREEFORM CONVENTIONS

26

Format Conversion

The FreeForm utility program newfor m lets you convert data from one format to another. This allows
you to pass data to applications in the format they require. Y ou may also want to create binary archives
for efficient data storage and access. With newform, conversion of ASCII datato binary format is
straightforward. If you wish to read the datain abinary file, you can convert it to ASCII with new-
form, or use the interactive program readfile. Y ou can also convert data from one ASCII format to
another ASCII format with newform.

FORMAT CONVERSION

27

newform

The FreeForm-based program newform is a general tool for changing the format of a datafile. The
only required command line argument, if you use FreeForm naming conventions, is the name of the
input data file. The reformatted data is written to standard output (the screen) unless you specify an
output file. If you reformat to binary, you will generally want to store the output in afile.

Y ou must create aformat description file (or files) with format descriptions for the data files involved
in a conversion before you can use newform to perform the conversion. The standard extension for
format description filesis .fmt. If you do not explicitly specify the format description file on the com-
mand line, which is unnecessary if you use FreeForm naming conventions, newfor m follows the Free-
Form search sequence to find aformat file.

b For details about FreeForm naming conventions and the search sequence, see chapter 4.
The newform command has the following form:

newform input_file[-f format_file] [-if input_format_file] [-of output_format_fil€]
[-ft "title"] [-ift "title"] [-oft "title"] [-b local_buffer_size] [-c +/-count]
[-v var_file] [-q query file] [-0 output_fileg]

P For descriptions of the arguments, see the sectionl “Command Line Arguments” |i n chapter 4.

If you want to convert an ASCII file to abinary file, and you follow the FreeForm naming conven-
tions, the command is simply:

newform datafile.dat -o datafile.bin
where datafile is the file name of your choosing.

Note! If datafiles and format files are not in the current directory or in the same directory, you can
specify the appropriate path name. For example, if the input data file is not in the current direc-
tory, you can enter:

newform /path/datafile.dat -o datafile.bin
To read the data in the resulting binary file, you can reformat back to ASCII using the command:
newfor m datafile.bin -o datafile.ext

or you can use the r eadfile program.

readfile

FreeForm includes r eadfile, a simple interactive binary file reader. The program has one required
command line argument, the name of the file to be read. Y ou do not have to write format descriptions
to use readfile.

The readfile command has the following form:

readfile binary_data file

FORMAT CONVERSION

28

When the program starts, it shows the available options:

ot i ons:

c: char 1 byte character

s: short 2 byte signed integer

I : | ong 4 byte signed integer

f: fl oat 4 byte single-precision floating point
d: doubl e 8 byt e doubl e-precision floating point
uc: uchar 1 byte unsigned integer
us: ushort 2 byte unsi gned integer

ul: ul ong 4 byte unsigned integer

b: Toggl e between "bi g-endi an" and your nachi ne’ s native byte order
p: Set new file position

P: Show present file position and | ength

h: Display this hel p screen

q: Qit

Type option codes to view binary encoded val ues.
Tip: Pressing return repeats the last option.

The options let you interactively read your way through the specified binary file. The first position in
thefileis 0. Y ou must type the character(s) indicating variable type (e.g., us for unsigned short) to
view each value, so you need to know the data types of variablesin the file and the order in which they
occur. If successive variables are of the same type, you can press Return to view each value after the
first of that type.

Y ou can toggle the byte-order switch on and off by typing b. The byte-order option is used to read a
binary datafile that requires byte swapping. Thisis the case when you need cross-platform accessto a
file that is not byte-swapped, for example, if you are on a Unix machine reading data from a CD-ROM
formatted for a PC. When the switch is on, type s or | to swap short or long integers respectively, or
typef or d to swap floats or doubles. The readfile program does not byte swap the file itself (thefileis
unchanged) but byte swaps the data values internally for display purposes only.

To go to another position in the file, type p. Y ou are prompted to enter the new file position in bytes.
If, for example, each value in thefileis 4 bytes long and you type 16, you will be positioned at the first
byte of the fifth value. If you split fields (by not repositioning at the beginning of afield), the results
will probably be garbage. Type P to find out your current position in the file and total file length in
bytes. Type q to exit from readfile.

Y ou can also use an input command file rather than entering commands directly. In that case, the
readfile command has the following form:

readfile binary_data file <input_command_file

Creating a Binary Archive

By storing data filesin binary, you save disk space and make access by applications more efficient. An
ASCII datafile can take two to five times the disk space of a comparable binary datafile. Not only is
there less information in each byte, but extra bytes are needed for decimal points, delimiters, and end-
of-line markers.

FORMAT CONVERSION

29

It isvery easy to create a binary archive using newfor m as the following examples show. The input
datafor these examples are in the ASCI| file latlon.dat (shown below). They consist of 20 random
latitude and longitude values. The size of the file on DOS is 480 bytes—20 lines x (22 characters + 2
end-of-line characters). On a Unix system, the file size is 460.

latlon.dat

-47.303545 -176.161101
- 0. 928001 0. 777265
-28. 286662 35.591879
12. 588231 149. 408117
-83.223548 55. 319598
54. 118314 -136. 940570
38.818812 91.411330
-34.577065 30.172129
27. 331551 -155. 233735
11. 624981 -113. 660611
77.652742 -79.177679
77.883119 -77.505502
-65. 864879 -55.441896
-63. 211962 134.124014
35. 130219 -153. 543091
29.918847 144.804390
-69. 273601 38. 875778
-63.002874 36. 356024
35. 086084 -21.643402
-12. 966961 62. 152266

Simple ASCII to Binary Conversion

In this example, you will use newform to convert the ASCII datafile latlon.dat into the binary file
latlon.bin. The input and output data formats are described in latlon.fmt.

latlon.fmt

/ This is the format description file for data files latlon.bin
/ and latlon.dat. Each record in both files contains two fields,
/ latitude and | ongitude.

bi nary _data "binary fornat"
latitude 1 8 double 6
| ongitude 9 16 double 6

ASC | _data "AsSCl| fornat"
latitude 1 10 double 6
| ongi tude 12 22 double 6

The binary and ASCI|I variables both have the same names. The binary variable | ati t ude occupies
positions 1 to 8 and | ongi t ude occupies positions 9-16. The corresponding ASCI| variables occupy
positions 1-10 and 12-22. Both the binary and ASCI| variables are stored as doubles and have a preci-
sion of 6.

FORMAT CONVERSION

30

Converting to Binary
To convert from an ASCII representation of the numbersin latlon.dat to a binary representation:
1. Change to the directory that contains the FreeForm example files.
2. Enter the following command:
newform latlon.dat -o latlon.bin

Because FreeForm filenaming conventions have been used, newform will locate and use latlon.fmt
for the trandlation. The newform program creates a new data file (effectively a binary archive) called
latlon.bin. The size of the archive filein DOS is 320 bytes—20 lines x 16 bytes, so it is 2/3 the size of
latlon.dat (320 vs. 480 bytes). Additionally, the data do not have to be converted to machine-readable
representation by applications.

There are two methods for checking the datain latlon.bin to make sure they converted correctly. You
can reformat back to ASCII and view the resulting file, or use readfile to read latlon.bin.

Reconverting to Native Format

Use the following newform command to reformat the binary datain latlon.bin to its native ASCI|
format:

newform latlon.bin -o latlon.rf

The ASCII filelatlon.rf matches (but does not overwrite) the original input file latlon.dat. Y ou can
confirm this by using afile comparison utility. The executable diff.com (for DOS) isincluded in the
FreeForm file set and the diff command is generally available on Unix platforms.

To use diff to compare the latlon ASCII files, enter the command:
diff latlon.dat latlon.rf

The output (for DOS), on the same line as the prompt, should be:
Files are effectively identica |I.

Note! The diff utility may detect a difference in other similar cases because FreeForm adds a leading
zero in front of adecimal and interprets ablank asa zero if the field is described as a number.
(A blank described as a character isinterpreted as a blank.)

Reading the Binary File
To use readfile to read the datain latlon.bin:
1. Enter the following command:
readfile latlon.bin

2. Thedataare stored as doubles, so enter d to view each value (or press Return to view each
value after the first).

3. Enter g to quit readfile.

FORMAT CONVERSION

31

Conversion to a More Portable Binary

In this example, you will use newform to reformat the latitude and longitude values in the ASCII data
file latlon.dat into binary longsin the binary file latlon2.bin. The input and output data formats are
described in latlon2.fmt.

latlon2.fmt

/ This is the fornmat description file for data files |atlon. dat
/ and latlon2.bin. Each record in both files contains two fields,
/ latitude and | ongitude.

ASC | _data "AsSCl| fornat"
latitude 1 10 double 6
| ongi tude 12 22 double 6

bi nary _data "binary fornat"
latitude 1 4 long 6
longitude 5 8 long 6

The ASCII and binary variables both have the same names. The ASCII variable| ati t ude occupies
positions 1-10 and | ongi t ude occupies positions 12-22. The ASCI| variables are defined to be of
type doubl e . The binary variables occupy four bytes each (positions 1-4 and 5-8) and are of type

| ong. The precision for all is 6.

Converting to Binary Long

In the previous example, both the ASCII and binary variables were defined to be doubles. Binary
longs, which are 4-byte integers, may be more portable across different platforms than binary doubles
or floats.

To convert the ASCII datain latlon.dat to binary longs:
1. Change to the directory that contains the FreeForm example files.
2. Enter the following command:
newform latlon.dat -f latlon2.fmt -o latlon2.bin

It creates the binary archive file latlon2.bin with the 20 latitude and longitude valuesin
latlon.dat stored as binary longs.

Note! This example duplicates one in chapter 2. If you completed that example, an error message will
indicate that latlon2.bin exists. Y ou can rename, move, or delete the existing file.

The size of the archive file latlon2.bin in DOS is 160 bytes—20 lines x 8 bytes, so it is 1/3 the size of
latlon.dat (160 vs. 480 bytes). Also, the data do not have to be converted to machine representation by
applications. The main tradeoff in achieving savings in space and access time is that although binary
longs are more portable than binary doubles or floats, any binary representation is less portable than
ASCII.

Note! There may be aloss of precision when input data of type double is converted to long.

FORMAT CONVERSION

32

Reading the Binary File
Once again, you can use readfile to check the data in the binary archive you created.
1. Enter the following command:
readfile latlon2.bin

2. Thedataare stored as longs, so enter | to view each value (or press Return to view each value
after the first).

3. Enter q to quit readfile.

If desired, you can enter the commands to r eadfile from an input command file rather than directly
from the command line. The example command file latlon.in is shown next.

latlon.in
[11111p0 I'lPg

The61’'s(l forlong) causethefirst 6 valuesin the file to be displayed. The sequence p0 causes a
return to the top (position 0) of the file. A position number (0) must be followed by a blank space. The
21 ’sdisplay thefirst two values again. The P displays the current file position and length, and g closes
readfile.

If you enter the following command:
readfile latlon2.bin < latlon.in

you should see the following output on the screen:

long: -47303545

long: -176161101

| ong: - 928001

| ong: 777265

long: -28286662

| ong: 35591879

New File Position = 0

long: -47303545

long: -176161101

File Position: 8 File Length: 160

The floating point numbers have been multiplied by 10°, the precision of the long variablesin
latlon2.fmt.

Including a Query

Y ou can use the query option (-q query_file) to specify exactly which records in the datafile
newform should process. The query file contains query criteria. Query syntax is summarized in Ap-
pendix C.

In this example, you will specify a query so that newform will reformat only those value pairsin
latlon.dat where latitude is positive and longitude is negative into the binary file [Iposneg.bin. Thein-
put and output data formats are described in latlon2.fmt.

The query criteria are specified in the following file.

[Iposneg.qry
[latitude] > 0 & [longitude] < O

FORMAT CONVERSION

33

To convert the desired data in latlon.dat to binary and then view the results:
1. Enter the following command:
newform latlon.dat -f latlon2.fmt -q llposneg.qry -o llposneg.bin

The lIposneg.bin file now contains the positive/negative latitude/longitude pairs in binary
form.

2. Toview the data, first convert the datain llposneg.bin back to ASCII format:
newform lIposneg.bin -f latlon2.fmt -o llposneg.dat
3. Enter the appropriate command to display the datain [Iposneg.dat, e.g., use type in DOS:

The following output appears on the screen:

54. 118314 -136. 940570
27. 331551 -155. 233735
11. 624981 -113. 660611
77.652742 -79.177679
77.883119 -77.505502
35. 130219 -153. 543091
35. 086084 -21.643402

Note! Asdemonstrated in the examples above, you can check the datain a binary file either by using
readfile or by converting the data back to ASCII using newform and then viewing it.

File Names and Context

In the preceding examples, the read/write type (i nput or out put) was not included in the format de-
scriptors (ASA | _dat a and bi nary_dat a). FreeForm naming conventions were used, so newform
can determine from the context which format should be used for input and which for output. Consider
the command:

newform latlon.dat -o latlon.bin

Theinput file extension is .dat and the output file extension is .bin. These extensions provide context
indicating that ASCII should be used as the input format and binary should be used as the output for-
mat. The format description file that newform will look for is the file with the same name as the input
file and the extension .fmt, i.e., latlon.fmt.

If you use the following command:
newform latlon.bin

to translate the binary archive latlon.bin back to ASCII, newform identifies the input format as binary
and uses the ASCII format for output. The ASCII data is written to the screen because an output file
was not specified.

P For information about FreeForm file name conventions, -:

FORMAT CONVERSION

34

“Nonstandard” Data File Names

If you are working with data files that do not use FreeForm naming conventions, you need to more
explicitly define the context. For example, the fileslldat1.ll, [Idat2.1l, lldat3.11, [Idat4.ll, and lldat5.11
al have latitude and longitude values in the ASCII format given in the format description file
[Idat.fmt. If you wanted to archive these files in binary format, you could not use a command of the
form used in the previous examples, i.e., newform datafile.dat -o datafile.bin with datafile.fmt asthe
default format description file.

First, the ASCII data files do not have the extension .dat, which identifies them as ASCII files. Sec-
ond, you would need five separate format description files, all with the same content: Ildat1.fmt,
[Idat2.fmt, [Idat3.fmt, lIdat4.fmt, and lldat5.fmt. Creating the format description file Il.fmt solves
both problems.

[l.fmt

/ This is the format description file that describes latlon
/ data in files with the extension .|

ASC | _input _data "ASAI| format for .II latlon data"
latitude 1 10 double 6
| ongi tude 12 22 double 6

bi nary_output_data "binary format for .1l latlon data"
latitude 1 4 long 6
longitude 5 8 long 6

The name used for the format description file, Il.fmt, follows the FreeForm convention that one format
description file can be utilized for multiple data files, all with the same extension, if the format de-
scription file is named ext.fmt. Also, the read/write type (i nput or out put) is made explicit by in-
cluding it in the format descriptors ASCI | _i nput _data and bi nary_out put _dat a . This provides
the context needed for FreeForm programs to determine which format to use for input and which for
output.

Use the following commands to produce binary versions of the ASCII input files:
newform lldat1.Il -o lIbin2.l|
newform lldat2.1l -o lIbin2.l|
newform lldat3.Il -o [Ibin3.lI
newform lldat4.Il -o lIbin4.l|
newform lldat5.11 -o [Ibin5.lI

If you want to convert back to ASCII, you can switch the wordsi nput and out put in the format de-
scription file Il.fmt. Y ou could then use the following commands to convert back to native ASCI|I for-
mat with output written to the screen:

newform Ilbinl.l|
newform Ilbin2.11
newform Ilbin3.11
newform Ilbin4.l|

newfor m I1bin5.11

FORMAT CONVERSION

35

It is also possible to convert back to ASCII without switching the read/write typesi nput and out put
in Il.fmt. Y ou can specify input and output formats by title instead. In this case, you want to use the
output format in II.fmt as the input format and the input format in |l.fmt as the output format. Use the
following command to convert I1bin1.Il back to ASCII:

newform Ilbinl.Il -ift " binary format for .Il latlon data" -oft " ASCII format for .Il latlon data"

Notice that newform reports back the read/write type actually used. Since ASC | _i nput _data was
used as the output format, newform reportsit as ASO | _out put _data .

Now assume that you want to convert the ASCII datafile llvals.asc (not included in the example file
set) to the binary file latlon3.bin, and the input and output data formats are described in latlon.fmt.
The data file names do not provide the context allowing newform to find latlon.fmt by default, so you
must include all file names on the command line:

newfor m llvals.asc -f latlon.fmt -o latlon3.bin

“Nonstandard” Format Description File Names

If you are using aformat description file that does not follow FreeForm file naming conventions, you
must include its name on the command line. Assume that you want to convert the ASCII datafile lat-
lon.dat to the binary file latlon.bin, and the input and output data formats are both described in
llvals.frm (not included in the example file set). The data file names follow FreeForm conventions, but
the name of the format description file does not, so it will not be located through the default search se-
guence. Use the following command to convert to binary:

newform latlon.dat -f [lvals.frm -o latlon.bin

Suppose now that the input format is described in latlon.fmt and the output format in lIvals.frm. Y ou
do not need to explicitly specify the input format description file because it will be located by default,
but you must specify the output format description file name. In this case, the command would be:

newfor m latlon.dat -of llvals.frm -o latlon.bin

Y ou can always unambiguously specify the names of format description files and datafiles, whether or
not their names follow FreeForm conventions. Assume you want to look only at longitude valuesin
latlon.bin and that you want them defined as integers (longs) which are right-justified at column 30.

Y ou will reformat the specified binary datain latlon.bin into ASCII datain longonly.dat and then
view it. Theinput format is found in latlon.fmt, the output format in longonly.fmt.

longonly.fmt

/ This is the format description file for view ng |ongitude as an
/ integer value right-justified at col um 30.

ASCI | _data "ASCl| output format, right-justified at 30"
| ongi tude 20 30 long 6

In this case, you have decided to look at the first 5 longitude values. Use the following command to
unambiguously designate all filesinvolved:

newform latlon.bin -if latlon.fmt -of longonly.fmt -¢ 5 -0 longonly.dat

FORMAT CONVERSION

36

When you view longonly.dat, you should see the following 5 values:

1 2 3 4
1234567890123456789012345678901234567890

-176161101
777265
35591879
149408117
55319598

Changing ASCII Formats

Y ou may encounter situations where a specific ASCII format is required, and your data cannot be used
inits native ASCII format. With newform, you can easily reformat one ASCII format to another. In
this example, you will reformat California earthquake data from one ASCII format to three other
ASCII formats commonly used for such data. The file calif.tap contains data about earthquakes in Cali-
fornia with magnitudes > 5.0 since 1980. The data were initially distributed by NGDC on tape, hence
the .tap extension. The data format is described in eqtape.fmt:

eqtape.fmt

/ This is the format description file for the NGDC .tap format,
/ which is used for data distributed on floppy di sks or tapes.

ASCI | _data ".tap format"
source _code 1 3 char O
century 4 6 short 0O

year 7 8 short O

month 9 10 short O

day 11 12 short O

hour 13 14 short 0

mnute 15 16 short O
second 17 19 short 1
latitude_abs 20 24 long 3
latitude ns 25 25 char 0O

| ongi tude_abs 26 31 long 3
[ongi tude_ew 32 32 char 0
depth 33 35 short O

magni tude_nb 36 38 short 2
MB 39 40 constant O

i sosei snmal 41 43 char 0
intensity 44 44 char 0

The NG&C record check format includes

six flags in characters 45 to 50. These
can be treated as one variable to allow
miltiple flags to be set in a single pass,
or each can be set by itself.

~ Y~~~ ~

ngdc_flags 45 50 char O
di astrophic 45 45 char 0O
tsunam 46 46 char O

sei che 47 47 char 0

vol cani sm 48 48 char 0O
non_tectonic 49 49 char 0
i nfrasonic 50 50 char 0O

FORMAT CONVERSION

37

fe region 51 53 short 0O

nagni tude_ms 54 55 short 1

MB 56 57 char O

z h 58 58 char 0

cul tural 59 59 char 0

ot her 60 60 char 0O
nagni t ude_ot her 61 63 short 2
other _authority 64 66 char 0
i de 67 67 char 0O
depth_control 68 68 char 0O
nunber _stations_qual 69 71 char 0
time_authority 72 72 char 0
nmagni tude_| ocal 73 75 short 2
| ocal _scale 76 77 char 0O

| ocal authority 78 80 char 0

Three other formats used for California earthquake data are hypoellipse, hypoinverse, and hypo71.
Subsets of these formats are described in the format description file hypo.fmt. The format descriptions
include the parameters required by the AcroSpin program that is distributed as part of the |ASPEI
Software Library (Volume 2). AcroSpin shows 3D views of earthquake point data.

hypo.fmt

/ This format description file describes subsets of the
/ hypoel |i pse, hypoi nverse, and hypo71 fornats.

ASC | _data "hypoel |'i pse format"
year 1 2 uchar O

month 3 4 uchar 0

day 5 6 uchar 0

hour 7 8 uchar 0

mnute 9 10 uchar 0O

second 11 14 ushort 2

| atitude _deg_abs 15 16 uchar 0
latitude ns 17 17 char 0O
latitude mn 18 21 ushort 2

| ongi t ude_deg_abs 22 24 uchar 0
[ongi tude_ew 25 25 char 0

[ongi tude_mn 26 29 ushort 2
depth 30 34 short 2

magni tude_| ocal 35 36 uchar 1

ASC | _data "hypoi nverse format"
year 1 2 uchar O

month 3 4 uchar 0

day 5 6 uchar 0

hour 7 8 uchar 0

mnute 9 10 uchar 0O

second 11 14 ushort 2

| atitude _deg_abs 15 16 uchar 0
latitude ns 17 17 char 0O
latitude mn 18 21 ushort 2

| ongi t ude_deg_abs 22 24 uchar 0
[ongi tude_ew 25 25 char 0

[ongi tude_mn 26 29 ushort 2
depth 30 34 short 2

FORMAT CONVERSION

38

nmagni tude_| ocal 35 36 uchar 1
nunber _of times 37 39 short 0

nmaxi num azi nut hal _gap 40 42 short O
nearest _station 43 45 short 1
rns_travel _time residual 46 49 short 2

ASC | _data "hypo7l1l fornat"

year 1 2 uchar O

nmonth 3 4 uchar 0

day 5 6 uchar 0

hour 8 9 uchar 0

mnute 10 11 uchar O

second 12 17 float 2

| atitude _deg_abs 18 20 uchar 0
latitude ns 21 21 char O
latitude mn 22 26 float 2

| ongi tude_deg_abs 27 30 uchar 0
| ongi tude_ew 31 31 char O
longitude mn 32 36 float 2
depth 37 43 float 2

nmagni tude_| ocal 44 50 float 2
nunber _of times 51 53 short 0
nmaxi num azi nut hal _gap 54 57 float 0O
nearest _station 58 62 short 1
rns_travel time residual 63 67 float 2
error_horizontal 68 72 float 1
error_vertical 73 77 float 1
s_waves_used 79 79 char 0

The parameters from the California earthquake data in the NGDC format needed for use with the
AcroSpin program can be extracted and converted using the following commands:

newform calif.tap -if eqtape.fmt -of hypo.fmt -oft " hypoellipse format" -o calif.he
newform calif.tap -if eqtape.fmt -of hypo.fmt -oft " hypoinverse format" -o calif.hi
newform calif.tap -if eqtape.fmt -of hypo.fmt -oft " hypo71 format" -o calif.h71

If you develop an application that accesses seismicity datain a particular ASCII format, you need only
to write an appropriate format description file in order to convert NGDC data into the format used by
the application. This lets you make use of the datathat NGDC provides in aformat that works for you.

FORMAT CONVERSION

39

Conversion Variables

Space and time values such as latitude and longitude, date, and time of day can be represented in vari-
ous ways. For example, latitude and longitude can be given in degrees and minutes, or as floating point
numbers (among other possibilities). FreeForm conversion variables make it possible to translate be-
tween a number of representations of space and time values. Y ou tell FreeForm that a conversion is
needed by including the appropriate standard conversion variable name in the relevant format descrip-
tion file. When FreeForm reads a format description file and finds a conversion variable, it automati-
cally performs the indicated conversion.

CONVERSION VARIABLES

40

Accessing Conversion Functions

FreeForm’s conversion functions are invoked by using standard conversion variable names in the input
and output format descriptions. FreeForm attempts a conversion only if the input and output names for
avariable differ, and both names are included in FreeForm’slist of standard conversion variables (see

[Appendix A). If avariable name in an output format does not correspond to a name in the input format,
FreeForm searches the input variables for standard conversion variable names.

For example, assume the following variable is described in the input format description:
latitude 1 10 double 6

The output format description includes the following variable descriptions, but not one for | ati t ude :

latitude deg 1 7 short O
latitude nmin 13 15 short O
latitude sec 21 23 short O

FreeForm will transparently identify and call conversion functions to construct the specified output
values (latitude in units of degrees, minutes, and seconds) using the input value given by the variable
| atitude.

Latitude and Longitude Conversions

Space is often delineated by latitude and longitude in geophysical applications. Latitude and longitude
values can be represented most directly as floating point numbers, but often are not. Data sets fre-
guently give latitude and longitude in other representations such as degrees and minutes, or absolute
value of degrees, decimal minutes, and N/S or E/W to designate hemisphere.

FreeForm includes a set of functions that perform conversions between a number of the most common
representations of latitude and longitude. In order to access these conversions, you must use the follow-
ing standard variable names.

Name Description Example Value
latitude Signed floating point number that completely de- -47.583333
longitude scribes a latitude or longitude coordinate value -176.75
latitude_abs Absolute value of alatitude or longitude coordinate 47.583333
longitude_abs (may include fractions of a degree) 176.75
latitude_deg Degrees component of a latitude or longitude coor- -47
longitude_deg dinate value (may be signed) -176
latitude_deg_abs Absolute value of the degrees component of a lati- 47
longitude_deg_abs tude or longitude coordinate 176

CONVERSION VARIABLES

latitude_min Minutes component of alatitude or longitude coor- 30.5
longitude_min dinate value 45.0
latitude _sec Seconds component of alatitude or longitude coor- 30.0
longitude_sec dinate value 0.0
latitude_sign Sign of alatitude or longitude coordinate value -
longitude_sign + or - (datatypeischar) -
latitude ns Hemisphere: N for north, S for south, E for east, W S
longitude_ew for west (char) W
geog_qguad_code A geographic quadrant defined by DMA (Defense 4

Mapping Agency), 1 = NE, 2=NW, 3=SE, 4=SW

(char)

FreeForm uses the convention that northern latitudes and eastern longitudes are positive.

Degrees, Minutes, and Seconds

41

In this example you will convert latitude and longitude values in latlon2.bin from long integers (with
implied precision) to latitude and longitude values given in degrees, minutes and seconds. The binary

file laton2.bin was created earlier from the ASCI! file latlon.dat (seelchapter 2|or chapter 5). Thein-
put and output formats are described in 1l_d_m_s.fmt. Conversion variable names are included in the

input and output formats.

I d m sfmt

/ This is the format description file for the data files latlon2.bin and
/ 1l _d ms.dat. Each record of the input binary file latlon2.bin contains

/ two fields, latitude and | ongitude. These val ues are stored as integers.
/ Each record of the output ASCll file Il _d ms.dat contains |atitude and

/ longitude given in units of degrees, mnutes, and seconds.

bi nary_data "binary input format"
latitude 1 4 long 6
longitude 5 8 long 6

ASCI | _data "ASC | output format"
latitude deg 1 7 short O
latitude nmn 13 15 short O
latitude sec 21 23 short O

| ongi tude_deg 27 31 short O

[ongi tude_mn 37 39 short O

| ongi tude_sec 45 47 short O

To convert the data to the new ASCII format use the following command:

newform latlon2.bin -fIl_d m_sfmt-oll_d m_sdat

The ASCII filell_d_m_s.dat is created with the 20 latitude and longitude values given in degrees,

minutes, and seconds. If a degree value is between 0 and -1, then either the minute or second value is

signed. When you view Il_d_m_s.dat, you should see the following values:

1 2 3 4 5
12345678901234567890123456789012345678901234567890
-47 18 13 -176 9 40

0 -55 41 0 46 38
-28 17 12 35 35 31

CONVERSION VARIABLES

42

12 35 18 149 24 29
-83 13 25 55 19 11
54 7 6 -136 56 26
38 49 8 91 24 41
-34 34 37 30 10 20
27 19 54 - 155 14 1

Y ou can convert the datafilell_d_m_s.dat back to its original ASCII format (in latlon.dat) but the
values will be somewhat different than those in latlon.dat. The ASCII format for I|_d_m_s.dat uses

whole seconds, which are not precise enough to represent decimal degreesto six decimal places. Frac-
tional seconds are required to preserve the values of decimal degreesto six places. If ushort variables

with a precision of 3 were specifiedinll_m_d_s.fmt, fractional seconds could be represented.

Absolute Degrees and Minutes

In the following two examples, you will create new ASCII data files from latlon2.bin that give latitude
and longitude in absolute degrees and minutes with hemisphere indicated in the first case and geo-
graphic quadrant in the second case. Conversion variable names are used in the input and output for-
mats in both examples.

With Hemisphere

Y ou will convert the datain latlon2.bin to latitude and longitude values given in absolute degrees and
minutes. FreeForm converts the sign (+ or -) of the input datato N for north, S for south, E for east, or
W for west as appropriate. Southern latitudes and western longitudes are negative. The input and out-
put formats are described in degabsm.fmt.

degabsm.fmt

/ This is the format description file for the data files |latlon2. bin and
/ degabsmdat. Each record of the input binary file latlon2. bin contains
/ two fields, latitude and | ongitude. These val ues are stored as integers.

bi nary_data "binary input format"
latitude 1 4 long 6
longitude 5 8 long 6

/ Each record of the output ASA | file degabsmdat contains |atitude and

/ longitude given in units of absolute degrees and m nutes. The heni sphere

/ is indicated by the variables latitude ns and | ongitude ew. The val ue can be
/ the character N for north, S for south, E for east, or Wfor west.

ASCI | _data "ASCl| output format"
| atitude deg_abs 6 7 short 0O
latitude_mn_abs 10 15 float 2
latitude ns 17 17 char O

| ongi tude_deg_abs 24 26 short 0
| ongi tude_mn_abs 28 34 float 3
| ongi tude_ew 36 36 char 0

To convert the data to absolute degrees and minutes with hemisphere included, use the following
command:

newform latlon2.bin -f degabsm.fmt -0 degabsm.dat

CONVERSION VARIABLES

43

When you view degabsm.dat, you should see the following values:

1 2 3 4
1234567890123456789012345678901234567890

47 18.21 S 176 9.666 W

0 55.68 S 0 46.636 E
28 17.20 N 35 35.513 E
12 35.29 N 149 24.487 E
83 13.41 S 55 19.176 E

With Quadrant

Y ou will convert the datain latlon2.bin to latitude and longitude values given in absolute degrees and
minutes with the geographic quadrant indicated by a character code. The input and output formats are
described in degmgeog.fmt.

degmgeog.fmt
/ This is the format description file for the data files |latlon2. bin and

/ degngeog. dat. Each record of the input binary file latlon2. bin contains
/ two fields, latitude and | ongitude. These val ues are stored as integers.

bi nary_data "binary input format"
latitude 1 4 long 6
longitude 5 8 long 6

/ Each record of the output ASC1 file degngeog.dat contains |atitude and
/ longitude given in units of absolute degrees and mnutes. The
/ geographi c quadrant of the data is indicated by a nuneric character code.

Nor t heast
Nor t hwest
Sout heast
Sout hwest

~—~ e~~~ —
A WN P

ASC | _data "ASCl| output format"
| atitude deg_abs 6 7 short 0O
latitude_mn_abs 10 15 float 2

| ongi tude_deg_abs 21 23 short 0
| ongi tude_mn_abs 26 31 float 2
geog_quad_code 40 40 char 0O

To convert the data to absolute degrees and minutes with quadrant, use the following command:

newform latlon2.bin -f degmgeog.fmt -o degmgeog.dat

CONVERSION VARIABLES

44

When you view degmgeog.dat, you should see the following values:

1 2 3 4
123456789012345678901234567890123456789012345
47 18.21 176 9. 67 4
0 55.68 0 46.64 3
28 17.20 35 35.51 1
12 35.29 149 24.49 1
83 13.41 55 19.18 3

Date and Time Conversions

Timeisavariable found in many scientific data sets and it can have various representations. In ASCI|
formats meant to be read by application users, time is often represented with six variables: year,
month, day, hour, minute, second. In formats meant to be read by computers, it makes sense to repre-
sent time as a floating point number in days and decimal fractions of a day, or perhaps seconds and
fractions of a second.

FreeForm can perform conversions between various representations of dates when standard conversion
variable names are included in the format descriptions. Several examples are given below.

Year, Month, Day

In this example you will convert a date string in the form of month/day/year to a date string in the form
of year, month, day with no separators. The format description file yymmdd.fmt describes the input
and output formats and the input datais stored in mdy.dat. Notice that thisis a conversion from one
ASCII dataformat to another.

yymmdd.fmt

/ This is the format description file for the data files ndy.dat and
[yymrdd. dat .

ASC | _input_data "ASA | input format"
date M dd/yy 1 10 char O

ASC | _output_data "ASA | output format"
date_yymmdd 1 12 char O

mdy.dat

1/ 26/ 20
7/ 25/ 78
11/19/ 99

To convert the data from m/d/y format to yymmdd format, use the following command:

newform mdy.dat -f yymmdd.fmt -o yymmdd.dat

CONVERSION VARIABLES

45

The resulting file yymmdd.dat will contain the following values:

yymmdd.dat

200126
780725
991119

Serial Dates

If you have time datain an ASCII format and the data will be read primarily by an application, you
may want to convert it to a binary format. FreeForm supports a binary representation of time as a serial
day starting at January 1, 1980.

FreeForm conversion functions let you convert from an ASCI| representation to the binary serial date
representation. As an example, you will convert the ASCII data in time.dat, which contains 10 random
times from this century, to a binary serial date format in serial.bin. The format description file
serial.fmt describes the input and output formats for time.dat and serial.bin. It also contains a format
description for serial.dat, which will contain the datain serial.bin in an ASCII format.

serial.fmt

/ This is the format description file for the data files time.dat, serial.bin,
/ and serial.dat. Each record of the ASCII file time.dat contains six
/ fields: year, nonth, day, hour, mnute, second.

ASC | _data "ASC | yndhns date"
year 2 5 ushort O

nmonth 10 11 uchar O

day 19 20 uchar 0

hour 28 29 uchar 0

m nute 37 38 uchar 0O

second 43 47 float 2

/ Each record of the binary file serial.bin contains one field,
/ serial date, defined as a double that occupies 8 bytes and has
/ 8 places of precision.

bi nary_data "binary serial date"
serial _day_ 1980 1 8 double 8

|/ Each record of the ASCII file serial.dat contains one field,
| serial date.

ASCl | data "ASC| serial date"
serial _day_ 1980 1 16 double 8

time.dat
1920 1 26 11 26 49. 79
1978 7 25 1 36 14. 89
1999 11 19 14 4 4,78

CONVERSION VARIABLES

46

To convert the dates from the ASCII format in time.dat to the binary serial date format, use the follow-
ing command:

newform time.dat -f serial.fmt -ift " ASCII ymdhms date" -o serial.bin
Then view the binary file serial.bin with either of the following commands:
newform serial.bin -oft " ASCI| serial date" -o serial.dat
or
readfile serial.bin

Y ou should see the following values:

- 21889. 52303484
-524. 93316100
7262. 58616644

- 20525. 28111250
5046. 80073889

CONVERSION VARIABLES

47

Header Formats

Headers are one of the most commonly encountered forms of metadata—data about data. Applications
need the information contained in headers for reading the data that the headers describe. To access
these data, applications must be able to read the headers. Just as there are many data formats, there are
numerous header formats. Y ou can include header format descriptions, which have exactly the same
form as data format descriptions, in format description files.

FreeForm provides two programs for working with header formats. The fillhdr program fills new or
existing headers with maximums and minimums for variables in data files. The gethdr program lets
you view and change formats of headersin datafiles.

HEADER FORMATS

48

Header Types

FreeForm recognizes two types of headers. File headers describe al the data in afile whereas record
headers describe the datain a single record or data block. FreeForm can read headers included in the
datafile or stored in a separate file. Header formats, like data formats, are described in format descrip-
tion files. For alist of the header descriptors you can use in format descriptions, , Format
Descriptors, in chapter 3.

File Headers

A file header included in adatafile is at the beginning of the file (shown below). Only one file header
can be associated with adatafile. A file header can aternatively be stored in afile separate from the
datafile.

File Header

Data

In the following example, afile header is used to store the minimum and maximum for each variable
and the data are converted from ASCII to binary. There are two variables, | ati tude and | ongitude .
The file header format and data formats are described in the format description file lImaxmin.fmt.

[lmaxmin.fmt

ASC | _file header "Latitude/Longitude Limts"
mnmax_title 1 24 char 0

latitude nmin 25 36 double 6

| atitude nmax 37 46 double 6

[ongi tude_mn 47 59 doubl e 6

| ongi tude_max 60 70 doubl e 6

ASCl| data "lat/lon"
latitude 1 10 double 6
[ongi tude 12 22 double 6

bi nary_data "lat/|on"
latitude 1 4 long 6
longitude 5 8 long 6

The example ASCII datafile llImaxmin.dat contains afile header and data as described in
[Imaxmin.fmt.

HEADER FORMATS

49

[lmaxmin.dat

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890
Latitude and Longitude: -83.223548 54.118314 -176.161101 149. 408117

-47.303545 -176.161101
-25. 928001 0. 777265
-28.286662 35.591879
12.588231 149. 408117
-83.223548 55. 319598
54. 118314 -136. 940570
38.818812 91. 411330
-34.577065 30.172129
27. 331551 -155. 233735
11. 624981 -113. 660611

This use of afile header would be appropriate if you were interested in creating maps from large data
files. By including maximums and minimums in a header, the scale of the axes can be determined
without reading the entire file.

FreeForm naming conventions have been followed in this example, so to convert the ASCII datain the
example to binary format, use the following simple command:

newform lImaxmin.dat -o lImaxmin.bin

The file header in the example will be written into the binary file as ASCII text because the header de-
scriptor in lImaxmin.fmt (ASQ | _fi | e_header) does not specify read/write type, so the format is
used for both the input and output header.

Note! You can usethe splitdat program to translate files with headers and data into separate header
and data files with formats as specified in a FreeForm format file. See{chapter 9|for details.
Record Headers

Record headers occur once for every block of datain afile. They are interspersed with the data, a con-
figuration sometimes called a format sandwich (shown below). Record headers can also be stored to-
gether in a separate file.

Record Header

Data

Record Header

Data

HEADER FORMATS

50

The following format description file specifies a record header and ASCII and binary data formats for
aeromagnetic trackline data.

aeromag.fmt

ASC | _record_header "Aeromagnetic Record Header Format"

flight line_nunber 1 5 long O

count 6 13 long O
fiducial _nunber_corresponding to first_|ogical _record 14 22 long O
date_MVDDYY or _julian_day 23 30 long O
flight_nunmber 31 38 long O
utmeasting_of first record 39 48 float 0O
utmnorthing_of first record 49 58 float 0O
utmeasting_of last record 59 68 float O
utmnorthing_of last record 69 78 float 0O
bl ank_paddi ng 79 104 char 0

ASCI | _data "Aeromagnetic ASCI| Data Format"

flight line_nunber 1 5 1long O

fiducial _nunber 6 15 long O
utmeasting_meters 16 25 float 0
utmnorthing_rmeters 26 35 float 0

mag total field intensity nT 36 45 long O
mag _residual _field nT 46 55 long O

alt _radar_neters 56 65 long O

alt _baronetric_meters 66 75 long O

bl ank 76 80 char 0

latitude 81 92 float 6
[ongi tude 93 104 float 6

bi nary_data "Aeromagnetic Binary Data Format"
flight line_nunber 1 4 long O

fiducial _nunber 5 8 long 0
utmeasting_meters 9 12 long 0
utmnorthing_meters 13 16 long 0

mag total field intensity nT 17 20 long O
mag _residual _field nT 21 24 long O

alt radar_neters 25 28 long O

alt _baronetric_meters 29 32 long O

bl ank 33 37 char 0

latitude 38 41 long 6
| ongi tude 42 45 long 6

The example ASCI|I file aeromag.dat contains two record headers followed by a number of data rec-
ords. The header and data formats are described in aeromag.fmt. The variable count (second variable

defined in the header format description) is used to indicate how many data records occur after each

header.
aeromag.dat
1 2 3 4 5 6 7 8 9 10
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345

420 5 5272 178 2 413669. 6669740. 333345. 6751355
420 5272 413669. 6669740. 2715963 2715449 1088 1348 60. 157307 - 154. 555191
420 5273 413635, 6669773. 2715977 2715464 1088 1350 60. 157593 - 154. 555817
420 5274 413601. 6669807. 2716024 2715511 1088 1353 60. 157894 - 154. 556442
420 5275 413567. 6669841. 2716116 2715603 1079 1355 60. 158188 - 154. 557068
420 5276 413533. 6669875. 2716263 2715750 1079 1358 60. 158489 - 154. 557693
411 10 8366 178 2 332640. 6749449. 412501. 6668591
411 8366 332640. 6749449. 2736555 2736538 963 1827 60. 846806 - 156. 080185
411 8367 332674. 6749415, 2736539 2736522 932 1827 60. 846516 - 156. 079529
411 8368 332708. 6749381l. 2736527 2736510 917 1829 60. 846222 - 156. 078873
411 8369 332742, 6749347. 2736516 2736499 922 1832 60. 845936 - 156. 078217

HEADER FORMATS

411
411
411
411
411
411

51

8370 332776. 6749313. 2736508 2736491 946 1839 60. 845642 -156. 077560
8371 332810. 6749279. 2736505 2736488 961 1846 60. 845348 -156. 076904
8372 332844. 6749245. 2736493 2736476 982 1846 60. 845062 -156. 076248
8373 332878. 6749211. 2736481 2736463 1015 1846 60. 844769 -156. 075607
8374 332912. 6749177. 2736470 2736452 1029 1846 60. 844479 -156. 074951
8375 332946. 6749143. 2736457 2736439 1041 1846 60. 844189 -156. 074295

This file contains two record headers. The first occurs on the first line of the file and has acount of 5,
so it isfollowed by 5 data records. The second record header follows the first 5 data records. It hasa
count of 10 and isfollowed by 10 data records.

The FreeForm default naming conventions have been used here so you could use the following abbre-
viated command to reformat aer omag.dat to a binary file named aer omag.bin:

newform aeromag.dat -o aeromag.bin
The ASCII record headers are written into the binary file as ASCII text.

Note! You can usethe splitdat program to translate files with headers and data into separate header
and data files with formats as specified in a FreeForm format file. See|ch§§ter 9ffor details.

Separate Header Files

Y ou may need to describe a data set with external headers. An external or separate header file can
contain only headers—one file header or multiple record headers.

Separate File Header

Suppose you want the file header used to store the minimum and maximum values for latitude and
longitude (from the [Imaxmin example) in a separate file so that the data file is homogenous, thus
easier for applications to read. Instead of one ASCII file (Ilmaxmin.dat), you will have an ASCI|I
header file, say it is named [Imxmn.hdr, and an ASCII datafile—call it Imxmn.dat.

[Imxmn.hdr
Latitude and Longitude: -83.223548 54.118314 -176.161101 149. 408117

[Imxmn.dat

-47.303545 -176.161101
-25. 928001 0. 777265
-28.286662 35.591879
12.588231 149. 408117
-83.223548 55. 319598
54. 118314 -136. 940570
38.818812 91. 411330
-34.577065 30.172129
27. 331551 -155. 233735
11. 624981 -113. 660611

Y ou will need to make one change to [Imaxmin.fmt, adding the qualifier separ at e to the header de-
scriptor, so that FreeForm will look for the header in a separate file. The first line of [Imaxmin.fmt be-
COMeS:

ASC | _file header separate "Latitude/Longitude Limts"
Save [Imaxmin.fmt as lImxmn.fmt after you make the change.
To convert the datain lImxmn.dat to binary format in lImxmn.bin, use the following command:

newform IImxmn.dat -o [Imxmn.bin

HEADER FORMATS

52

Note! When you run newform, it will write the separate header to Ilmxmn.bin along with the datain
[Imxmn.dat. Y ou can use the splitdat program to translate files with headers and data into
separate header and data files. See chapter 9for details.

Separate Record Headers

Record headers in separate files can act as indexes into datafiles if the headers specify the positions of
the data in the data file. For example, if you have afile containing data from 25 observation stations,
you could effectively index the file by including a station ID and the starting position of the data for
that station in each record header. Then you could use the index to quickly locate the data for a particu-
lar station.

Returning to the aer omag example, suppose you want to place the two record headers in a separate
file. Again, the only change you need to make to the format description file (aeromag.fmt) is to add
the qualifier separ at e to the header descriptor. The first line would then be:

ASC | _record_header separate "Aeronmagneti c Record Header Fornat"

The separate header file would contain the following two lines:

420 5 5272 178 2 413669. 6669740. 333345. 6751355.
411 10 8366 178 2 332640. 6749449. 412501. 6668591.

The datafile would look like the current aeromag.dat with the first and seventh lines removed.

Assuming the data file is named aer omag.dat, the default name and location of the header file would
be aer omag.hdr in the same directory as the data file. Otherwise, the separate header file name and
location need to be defined in an equivalence table. (For information about equivalence tables, see the
GeoVu Tools Reference Guide.)

Note! You can usethe splitdat program to translate files with headers and data into separate header
and data files. See|chapter 9/for details.

The dBASE Format

Headers and data records in dBA SE format are represented in ASCII but are not separated by end-of -
line characters. They can be difficult to read or to use in applications that expect newlines to separate
records. By using newform, dBASE data can be reformatted to include end-of-line characters.

In this example, you will reformat the dBASE datafilq oceantmp.dab| (see below) into the ASCII data
file oceantmp.dat. The input file oceantmp.dab contains a record header at the beginning of each
line. The header is followed by data on the same line. When you convert the file to ASCII, the header
will be on one line followed by the data on the number of lines specified by the variable count . The
format description file oceantmp.fmt is used for this reformatting.

oceantmp.fmt

dbase_record_header "NODG 01 record header format"
WVD quad 1 1 char O

latitude deg_abs 2 3 uchar 0
latitude_ mn 4 5 uchar 0

| ongi t ude_deg_abs 6 8 uchar 0
[ongitude_mn 9 10 uchar 0
date_yymmdd 11 16 long O
hours 17 19 uchar 1
country_code 20 21 char 0O
vessel 22 23 char 0

count 24 26 short 0O

HEADER FORMATS

53

data_type _code 27 27 char 0O
cruise 28 32 long O
station 33 36 short O

dbase _data "I BT input format"
depth m1 4 short O
tenperature 5 8 short 2

RETURN "NEW LI NE | NDI CATCR'

ASC | _data "ASCl| output format"
depth m1 5 short O
tenperature 27 31 float 2

This format description file contains a header format description, a description for dBASE input data,
the special RETURN descriptor, and a description for ASCII output data. The variable count (fourth
from the bottom in the header format description) indicates the number of data records that follow
each header. The descriptor RETURN lets newform skip over the end-of-line marker at the end of each
data block in the input file oceantmp.dab asit is meaningless to newfor m here. Because the end-of -
line marker appears at the end of the data records in each input data block, RETURN is placed after the
input data format description in the format description file.

oceantmp.dab

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

11000171108603131109998 4686021000000002767001027670020276700302767
110011751986072005690AM 4686091000000002928001028780020287200302872
11111176458102121909998 4681011000000002728009126890241110005000728

112281795780051918090PI 268101100000000268900402711

Each dBA SE header in oceantmp.dab is located from position 1 to 36. It is followed by four data rec-
ords of 8 bytes each. Each record comprises a depth and temperature reading. The variable count in
the header (positions 24-26) indicates that there are 4 data records each in the first 3 lines and 2 on the
last line. Thiswill all be more obvious after conversion.

To reformat oceantmp.dab to ASCII, use the following command:
newform oceantmp.dab -0 oceantmp.dat

The resulting file oceantmp.dat is much easier to read. It is readily apparent that there are 4 data rec-
ords after the first three headers and 2 after the last.

oceantmp.dat

1 2 3 4
1234567890123456789012345678901234567890

11000171108603131109998 46860210000

0 27.67

10 27.67

20 27.67

30 27.67

110011751986072005690AM 46860910000

0 29. 28

10 28.78
20 28.72
30 28.72

HEADER FORMATS

54

11111176458102121909998 46810110000

0 27.28

91 26. 89

241 11. 00

500 07. 28
112281795780051918090PI 26810110000

0 26. 89

40 27.11

fillhdr

The FreeForm-based program fillhdr fills afile header with the maximum and minimum values for
specified variables in adatafile. When it is run, fillhdr looks through the data file for all variables that
appear in the header format description with the suffixes_max and _ni n. It then fills each _max and
_nmi n variable in the header with its associated maximum or minimum value. For example, if

| atitude_nmax isincluded in the header format description, fillhdr looks through the datafile to de-
termine the maximum value of the variable | ati t ude and then entersthat valuefor | atitude nmax in
the header.

Thefillhdr program can fill new headers or portions of existing headers. Y ou need to create a format
description file with format descriptions for the header and data before you can use fillhdr. For fillhdr
to work properly, you must use FreeForm naming conventions. Y ou must also allocate space in the in-
put file for the maximum and minimum val ues before running fillhdr; the amount of space is specified
in the header format description.

Thefillhdr command has the following form:

fillhdr input_file [-f format_file] [-if input_format_file] [-of output_format_file]
[-ft "title"] [-ift " title"] [-oft " title"] [-b local_buffer_size]

P For descriptions of the arguments, see the sectionl “Command Line Arguments” |in chapter 4.

Example

Thefile lImaxmin.dat (used in a previous example) originally did not include maximums and mini-
mums in its header. It was generated using the fillhdr program, which determined the maximum and
minimum values for latitude and longitude in the file and placed them in the header. Y ou will duplicate
the process in this example. The file latlon3.dat has the same contents as [Imaxmin.dat had before
fillhdr wasrun onit.

latlon3.dat (before running fillhdr)

Latitude and Longit ude:
-47.303545 -176.161101
- 25. 928001 0. 777265
-28.286662 35.591879

The header format description from latlon3.fmt, which isidentical t (see the previous

section “File Headers”), is shown below.

ASCA | _file_header "Latitude/Longitude Limts"
mnmax_title 1 24 char 0

latitude_mn 25 36 doubl e 6

latitude_max 37 46 doubl e 6

I ongi tude_nmn 47 59 double 6

| ongi tude_max 60 70 double 6

HEADER FORMATS

55

The description indicates that maximum and minimum values occupy positions 25-70. Those positions
are occupied by asterisks (*) in latlon3.dat. Run fillhdr on latlon3.dat using the following command:

fillhdr latlon3.dat

The maximum and minimum values for the two variables| ati t ude and | ongi t ude write over the
asterisks in the header:

Latitude and Longitude: -83. 223548 54.118314 -176.161101 149. 408117
-47.303545 -176.161101
-25. 928001 0. 777265
-28.286662 35.591879

Thefile latlon3.dat should now beidentical to IImaxmin.dat.

gethdr

The FreeForm utility program gethdr lets you view headersin data files. Y ou can also use gethdr to
convert headers from one format to another and then display them.

Viewing Headers

File headers and record headers are displayed differently by gethdr. For file headers, the header vari-
able names are shown followed by their values. Record headers, however, are listed in their entirety.
They are not broken down by individual value preceded by variable name.

To view headers, the gethdr command has the following form:

gethdr input_file[-f format_file] [-if input_format_fil€] [-of output_format_file]
[-ft "title"] [-ift " title"] [-oft " title"] [-b local_buffer_size] [-0 output_fil€]

P For descriptions of the arguments, see the sectionl “Command Line Arguments” Fn chapter 4.

Note! For gethdr to work properly when you use it to view headers, a header output format should
not be included in the format description file. An output format is explicitly indicated by in-
cluding out put in the descriptor, i.e., out put _fil e_header

Example—File Header
To use gethdr to view the file header in lImaxmin.dat, enter the following command:

gethdr llmaxmin.dat

Because FreeForm filenaming conventions have been used, gethdr can locate and use [Imaxmin.fmt
(see the previous section “File Headers™). The output from gethdr is shown below.

HEADER FORMATS

56

Headers bei ng displayed for || nmaxm n. dat:

Header vari abl es:

mnnax_title: Latitude and Longitude
latitude _mn: -83.223548

| atitude_max: 54.118314

| ongi tude_mn: -176.161101

| ongi tude_max: 149. 408117

Example—Record Headers
To view the record headers in oceantmp.dab, you can enter the following abbreviated command
(because FreeForm naming conventions were used):

gethdr oceantmp.dab
The output is shown below. Notice that header variable names (WD quad , | ati t ude_deg_abs , etc.—

in the previous section “The dBASE Format”) are not included.

Header s bei ng di spl ayed for oceant np. dab:

11000171108603131109998 46860210000
110011751986072005690AM 46860910000
11111176458102121909998 46810110000
112281795780051918090P1 26810110000

Changing Header Formats

To convert file headers or record headers from one format to another and display them, the gethdr
command has the following form:

gethdr input_file[-f format_file] [-b local_buffer _size] [-o0 output_header file]

P For descriptions of the arguments (except output_header file), see the section
“Command Line Arguments’|in chapter 4.

output_header file

Name of the output header file. FreeForm expects the output header file name to be of the form
datafile.ndr, where datafile is the base name of the input file.

Example
Y ou can use gethdr to display just the latitudes and longitudes from the record headersin

| oceantmp.dab) (see previous example) in an easily readable format. The format description file
otmphead.fmt describes the new header format.

otmphead.fmt

ASC | _out put_record_header "Latitude/Longitude Header Val ues"
latitude 1 8 float 2
| ongi tude 10 18 float 2

Use the following command to display the latitude and longitude values:

gethdr oceantmp.dab -of otmphead.fmt

HEADER FORMATS

57

The output from this command is shown below.
Converting headers for file oceantnp. dab:

10. 00 171. 17
10. 02 175. 32
11.18 176. 75
12. 47 179. 95

Y ou could add the format description that constitutes otmphead.fmt to oceantmp.fmt instead of creat-
ing a separate format description file. If you do that and then enter the command gethdr
oceantmp.dab, you will get the output shown above.

Note! Conversion variables were used in this example. The variables| ati t ude_deg_abs ,
latitude_mn ,latitude deg abs ,and! ongitude mn havebeenconvertedtol at i -
tude and | ongi t ude , or from a separate degrees and minutes representation to a single deci-
mal value representation.

HEADER FORMATS

Data Checking

The FreeForm-based utility program checkvar creates variable summary files, lists of maximum and
minimum values, and summaries of processing activity. Y ou can use this information to check data
guality and to examine the distribution of the data.

DATA CHECKING

58

59

Generating the Summaries

A variable summary file (or list file), which contains histogram information showing the variable's
distribution in the datafile, is created for each variable (or designated variables) in the specified data
file. You can optionally specify an output file in which a summary of processing activity is saved.

Variable summaries (list files) can be helpful for performing quality control checks of data. For exam-
ple, you could run checkvar on an ASCII file, convert the file to binary, and then run checkvar on the
binary file. The output from checkvar should be the same for both the ASCII and binary files. Y ou can
also use variable summaries to look at the data distribution in a data set before extracting data.

The checkvar command has the following form:

checkvar input_file[-f format file] [-if input_format_file] [-of output_format_file]
[-ft "title"] [-ift " title"] [-oft " title"] [-b local_buffer_size] [-c +/-count] [-v var_file]
[-g query_file] [-p precision] [-m maxbinsg] [-md missing_data _flag] [-mm]
[-0 processing_summary]
Note that the checkvar program needsto find only an input format description. Output format descrip-

tionswill beignored. If conversion variables are included in input or output formats, no conversion is
performed when you run checkvar, since it ignores output formats.

b _For descriptions of the standard arguments (first eleven arguments above), see the section
|“ Command Line Arguments’” |in chapter 4.

-p precision
Option flag followed by the number of decimal places. The number represents the power of 10 that

datais multiplied by prior to binning. A value of 0 binson one's, 1 on tenth's, and so on. This op-
tion allows an adjustment of the resolution of the checkvar output.

The default is 0; maximum is 5.

Note! If you use the -p option on the command line, the precision set in the relevant format fileis
overridden. The precision in the format file serves as the default.
-m maxbins

Option flag followed by the approximate maximum number of bins desired in checkvar output.
The checkvar program keeps track of the number of binsfilled as the data is processed. The
smaller the number of bins, the faster checkvar runs. By keeping the number of bins small, you
can check the gross aspects of data distribution rather than the details.

The number of binsis adjusted dynamically as checkvar runs depending on the distribution of data
in theinput file. If the number of filled bins becomes > 1.5 * maxbins, the width of the binsis
doubled to keep the total number near the desired maximum.

The default is 100 bins; minimum is 6. Must be < 10,000.

Note! The precision (-p) and maxbins (-m) options have no effect on character variables.

DATA CHECKING

60

-md missing_data_flag
Option flag followed by aflag value that checkvar should ignore across all variablesin creating
histogram data. Missing data flags are used in a data file to indicate missing or meaningless data. If
you want checkvar to ignore more than one value, use the query (-q) option in conjunction with
the variable file (-v) option.

-mm

Option flag indicating that only the maximum and minimum values of variables are calculated and
displayed in the processing summary. Variable summary files are not created.

-0 processing_summary

Option flag followed by the name of the file in which summary information displayed during proc-
essing is stored.

Example
Y ou will use checkvar with a precision of 3 to create a processing summary file and summary files for
thetwo variables| atit ude and| ongi tude inthefilelatlon.dat.

latlon.dat

-47.303545 -176.161101
- 0. 928001 0. 777265
-28. 286662 35.591879
12. 588231 149. 408117
-83.223548 55. 319598
54. 118314 -136. 940570
38.818812 91.411330
-34.577065 30.172129
27. 331551 -155. 233735
11. 624981 -113. 660611
77.652742 -79.177679
77.883119 -77.505502
-65. 864879 -55.441896
-63. 211962 134.124014
35. 130219 -153. 543091
29. 918847 144.804390
-69.273601 38. 875778
-63.002874 36. 356024
35. 086084 -21.643402
-12. 966961 62. 152266

To create the summary files, enter the following command:
checkvar latlon.dat -p 3 -o latlon.sum

A summary of processing information and the maximum and minimum for each variable are displayed
on the screen. The following three files are created:

a latlon.sum recaps processing activity, maximums and minimums
a latitude.lst shows distribution of the latitude valuesin latlon.dat
a longitud.Ist shows distribution of the longitude valuesin latlon.dat
(file name truncated to 8 charactersin DOS)
longitude.lst (Unix)

DATA CHECKING

61

Interpreting the Summaries

The processing and variable summary files output by checkvar from the example in the previous sec-
tion are shown and discussed below.

Processing Summary

If you specify an output file on the command line, it stores the information that is displayed on the
screen during processing. The file latlon.sum was specified as the output file in the example above.

latlon.sum

Input file : latlon.dat

Request ed precision = 3, Approxi mate nunber of sorting bins = 100
| nput data fornat (latlon.fnt)

ASC | _input_data "ASCl | format"

The format contains 2 variables; length is 24.

Qut put data format (latlon.fnt)

bi nary_out put _dat a "binary fornat"

The format contains 2 variables; length is 16.

H stogram data precision: 3, Nunber of sorting bins: 20
| atitude: 20 val ues read

m ni num -83.223548 found at record 5

maxi num 77.883119 found at record 12

Summary file: latitude.lst

H stogram data precision: 3, Nunber of sorting bins: 20
| ongi tude: 20 val ues read

mnimnum -176.161101 found at record 1

maxi mum 149. 408117 found at record 4

Summary file: longitud.|st.

The processing summary file latlon.sum first shows the name of the input datafile (I at| on. dat). If
you specified precision and a maximum number of bins on the command line, those values are given
as Request ed precision ,inthiscase 3, and Approxi mate nunber of sorting bins ,inthis
case the default value of 100. If precision is not specified, No request ed precision isshown.

A summary of each format shows the type of format (in thiscase, | nput data format and Qut put
data format) and the name of the format file containing the format descriptions (I atl on. f mt),
whether specified on the command line or located through the default search sequence (as detailed in
chapter 4). In this case, it was located by default. Since checkvar only needs an input format descrip-
tion, it ignores output format descriptions. Next, you see the format descriptor as resolved by FreeForm
(e.g.,, ASA | _i nput _dat a) and the format title (e.g., "ASC | format"). Then the number of vari-
ablesin arecord and total record length are given; for ASCII, record length includes the end-of-line
character (2 bytesfor DOS, 1 for Unix).

A section for each variable processed by checkvar indicates the histogram precision and actual num-
ber of sorting bins. Under some circumstances, the precision of values in the histogram file may be dif-
ferent than the precision you specified on the command line. The default value for precision, if noneis
specified on the command line, is the precision specified in the relevant format description file or 5,
whichever is smaller. The second line shows the name of the variable (I ati t ude , | ongi t ude) and
the number of values in the datafile for the variable (20 for both | ati t ude and | ongi t ude).

DATA CHECKING

62

The minimum and maximum values for the variable are shown next (- 83. 223548 isthe minimum
and 77. 883119 isthe maximum value for | ati t ude). The maximum and minimum values are given
here with a precision of 6, which is the precision specified in the format description file. The locations
of the maximum and minimum valuesin the input file are indicated. (- 83. 223548 isthefifth latitude
valuein latlon.dat and 77. 883119 isthe twelfth). Finally, the name of the histogram data (or variable
summary) file generated for each variableisgiven (I atitude.1st andl ongitud.|st).

Variable Summaries

The name of each variable summary file (list file) output by checkvar is of the form variable.lst for
numeric variables and variable.cst for character variables. The datain *.Ist, and *.cst files can be
loaded into histogram plot programs for graphical representation. (Y ou must be familiar enough with
your program of choice to manipulate the data as necessary in order to achieve the desired result.)

In DOS, if the first eight characters of multiple variable names in the format file are the same (e.g.,
longitude_ns, longitude_ew, ...), the digits 1,2, ... will replace the eighth character in the base sum-
mary file names (e.g., longitul.lst, longitu2.lst, ...). The format file controls the numbering, i.e.,
longitul is described first in the format file, longitu2 second, and so on. In Unix, there is no need to
abbreviate the base file name.

Note! If you use the -v option, the order of variablesin var_file has no effect on the numbering of
base file names of the variable summary filesin DOS.

The two example variable summary files, | ati tude. | st andlongitud. | st ,areshown next.

latitude.lst longitud.|st
-83. 224 1 -176. 162 1
-69. 274 1 -155. 234 1
- 65. 865 1 -153. 544 1
-63. 212 1 -136. 941 1
-63. 003 1 -113. 661 1
-47. 304 1 -79.178 1
-34.578 1 -77.506 1
- 28. 287 1 -55. 442 1
-12. 967 1 -21. 644 1
-0.929 1 0.777 1
11. 624 1 30. 172 1
12. 588 1 35.591 1
27.331 1 36. 356 1
29. 918 1 38. 875 1
35. 086 1 55. 319 1
35. 130 1 62. 152 1
38. 818 1 91. 411 1
54.118 1 134. 124 1
77.652 1 144. 804 1
77.883 1 149. 408 1

The variable summary files consist of two columns. The first indicates boundary values for data bins
and the second gives the number of data pointsin each bin. Because a precision of 3 was specified in
the example, each boundary value has three decimal places. The boundary values are determined dy-
namically by checkvar and often do not correspond to data values in the input file, even if the
checkvar and data file precisions are the same.

DATA CHECKING

Thefirst data bin in latitude.lst contains data points in the range - 83. 224 (inclusive) to - 69. 274
(exclusive); neither boundary number existsin latlon.dat. The first bin has one data point,
- 83. 223548 . The fourth data bin contains latitude values from - 63. 212 (inclusive) to - 63. 003

(exclusive), again with neither boundary value occurring in the data file. The data point in the fourth
binis-63.211962 .

DATA CHECKING

63

64

HDF Utilities

FreeForm includes three utilities for use with HDF (hierarchical data format) files: makehdf, splitdat,
and pntshow. These programs were built using both the FreeForm library and the HDF library, which
was developed at the National Center for Supercomputer Applications (NCSA).

The makehdf program converts binary and ASCI| datafilesto HDF files and converts multiplexed
(band interleaved by pixel) image filesinto a series of single parameter files. The splitdat program is
used to separate and reformat data files containing headers and data into separate header and data files,
or to translate them into HDF files. The pntshow program extracts point data from HDF files into bi-
nary or ASCII format.

It is assumed in this chapter that you have a working familiarity with HDF terminology and conven-
tions. See HDF user documentation for detailed information.

WARNING! Do not try the examplesin this chapter. The example file set is incomplete.

HDF UTILITIES

65

mak ehdf

Using makehdf you can convert data files with formats described in a FreeForm format file into HDF
files. You should follow FreeForm naming conventions for the data and format files. For details about
FreeForm conventions, see/chapter 4

Note! A dBASE input file must be converted to ASCII or binary using newform before you can run
makehdf onit.

The HDF file resulting from a conversion consists either of a group of scientific datasets (SDS's), one
for each variable in the input datafile, or of avgroup containing all the variables as one vdata. If you
are working with grid data, you will want SDS's (the default) in the output HDF file. A vdata (-vd op-
tion) is the appropriate choice for point data.

The makehdf command has the following form:

makehdf input_file [-r rows] [-c columng] [-v var_fil€]
[-d HDF_description_filg] [-xI x_label -yl y_label]
[-xu x_units-yu y_unitg] [-xf x_format -yf y_format]
[-id file_id] [-vd [vdata_file]] [-dmx [-sep]] [-df]
[-md missing_data file] [-dof HDF_file]
input_file
Name of the input data file. Following FreeForm naming conventions, the standard extensions for
datafiles are .dat for ASCII format and .bin for binary.

-I rows

Option flag followed by the number of rows in each resulting scientific dataset. The number of
rows must be specified through this option on the command line, or in an equivalence table, or in a
header (.hdr) file defined according to FreeForm standards.

-c columns

Option flag followed by the number of columnsin each resulting scientific dataset. The number of
columns must be specified through this option on the command line, or in an equivalence table, or
in a header (.hdr) file defined according to FreeForm standards.

P For information about equivalence tables, see the GeoVu Tools Reference Guide.

-vvar_file
Option flag followed by the name of the variable file. The file contains names of the variablesin
the input data file to be processed by makehdf. Variable namesin var_file can be separated by
one or more spaces or each name can be on a separate line.

-d HDF_description_file
Option flag followed by the name of the file containing a description of the input file. The descrip-
tion will be stored as afile annotation in the resulting HDF file.

-X| x_label -yl y_label
Option flags followed by strings (Iabels) describing the x and y axes; labels must be in quotes (")
if more than one word.

HDF UTILITIES

66

-XU X_Uunits-yu y_units
Option flags followed by strings indicating the measurement units for the x and y axes; strings
must be in quotes (") if more than one word.

-xf x_format -yf y format
Option flags followed by strings indicating the formats to be used in displaying scale for the x and
y dimensions; strings must be in quotes (" ") if more than one word.

-id file_id
Option flag followed by a string that will be stored as the ID of the resulting HDF file.

-vd [vdata file]
Option flag indicating that the output HDF file should contain avdata. The optional file name
specifies the name of the output HDF file; the default isinput_file.HDF.

-dmx [-sep]
The option flag -dmx indicates that input data should be demultiplexed from band interleaved by
pixel to band sequential form in input_filedmx. If -dmx isfollowed by -sep, the input data are
demultiplexed into separate variable files called data file.1 ... data file.n

-df
To use this option, the input file (data_file.ext) must be a binary demultiplexed (band sequential)
file. For each input variable in the applicable FreeForm format description file, there is a corre-
sponding demultiplexed section in the output HDF file.

-md missing_data _file
Option flag followed by the name of the file defining missing data (data you want to exclude). Use
this option only along with the vdata (-vd) option. Each line in the missing data file has the form:

variable_name lower_limit upper_limit

The precision of the upper and lower limits matches the precision of the input data.

-dof HDF _file

Option flag followed by the name of the output HDF file. If you do not use the -dof option, the de-
fault output file nameisinput_file HDF.

Example

Y ou will use makehdf to store latlon.dat as an HDF file. The HDF file will consist of two SDS's, one
each for the two variables| ati t ude and| ongi t ude . Each SDS will have four rows and five col-
umns.

To convert latlon.dat to an HDF file, enter the following command:

makehdf latlon.dat -r 4-c5
As makehdf tranglates latlon.dat into HDF, processing information is displayed on the screen:
1 Caches (1150 bytes) Processed: 800 bytes witten to |atlon.dnx

Witing latlon. HOF and cal cul ating maxi ma and nminima ...

Variabl e | atitude:

M ni nrum -86. 432712 Maxi mum 89. 170904
Vari abl e | ongi t ude:

M ni nrum -176. 161101 Maxi mum 165. 066193

HDF UTILITIES

67

The output from makehdf is an HDF file named latlon.HDF (by default). It contains the minimum
and maximum values for the two variables as well as the two SDS's.

A temporary file named latlon.dmx was also created. It contains the data from latlon.dat in demulti-
plexed form. The data was converted from its original multiplexed form to enable makehdf to write
sections of datato SDS's.

If you start with a demultiplexed file such as latlon.dmx, the translation process is much quicker, par-
ticularly for large data files. Asan illustration, try this. Rename latlon.dmx to latlon.bin (renaming is
necessary for makehdf to find the format description file latlon.fmt by default). Enter the following
command:

makehdf latlon.bin -df -r 4-¢5

The output file again is latlon.HDF, but notice that no demultiplexing was done.

splitdat

The splitdat program translates files with headers and data into separate header and data files or into
HDF files. If the tranglation is to separate header and datafiles, the header file can include indexing in-
formation.

The combination of header and data recordsin afileis often used for point data sets that include a
number of observations made at one or more stations or locations in space. The header records contain
information about the stations or locations of the measurements. The data records hold the observa-
tional data. A station record usually indicates how many data records follow it. The structure of such a
fileis similar to the following:

Header for Station 1

(bservation 1 for Station
(bservation 2 for Station

R

O)sérvation N for Station 1

Header for Station 2
(bservation 1 for Station 2
(bservation 2 for Station 2

O)sérvation N for Station 2

Header for Station 3

Many applications have difficulty reading this sort of heterogeneous data file. One solution is to split
the data into two homogeneous files, one containing the headers, the other containing the data. With
splitdat, you can easily create the separate data and header files. To use splitdat for this purpose, the
input and output formats for the record headers and the data must be described in a FreeForm format
description file. To use splitdat for translating files to HDF, the input format must be described in a
FreeForm format description file. Y ou should follow FreeForm naming conventions for the data and
format files. For details about FreeForm conventions, see

HDF UTILITIES

68

The splitdat command has the following form:
splitdat input_file [output_data file > output_header_file]
input_file

Name of the file to be processed. Following FreeForm naming conventions, the standard exten-
sions for data files are .dat for ASCII format and .bin for binary.

output_data file

Name of the output file into which data are transferred with the format specified in the applicable
FreeForm format description file. The standard extensions are the same as for input files. If an out-
put file name is not specified, the default is standard output.

output_header file

Name of the output file into which headers from the input file are transferred with the format
specified in the applicable FreeForm format description file. If an output header file name is not
specified, the default is standard output.

Index Creation

Y ou can use the two variables begi n and ext ent (described below) in the format description for the
output record headers to indicate the location and size of the data block associated with each record
header. If you then use splitdat, the header file that results can be used as an index to the datafile.

begin
Indicates the offset to the beginning of the data associated with a particular header. If the datais
being translated to HDF, the units are records; if not, the units are bytes.

extent
Indicates the number of records (HDF) or bytes (non-HDF) associated with each header record.

Example

Y ou will use splitdat to extract the headers and data from arawinsonde (a device for gathering mete-
orological data) ASCII datafile named hara.dat (HARA = Historic Arctic Rawinsonde Archive) and
create two output files—23338.dat containing the ASCII data and 23338hdr .dat containing the ASCI|
headers. The format description file hara.fmt should contain the necessary format descriptions.

hara.fmt

ASC | _input_record_header "ASC | Location Record input format"
WWO station ID nunber 1 5 char 0O
latitude 6 10 long 2

| ongi tude_east 11 15 long 2

year 17 18 uchar O

nmonth 19 20 uchar O

day 21 22 uchar 0

hour 23 24 uchar 0

flag_processing_1 28 28 char 0
flag_processing_2 29 29 char 0
flag_processing_3 30 30 char 0O
station_type 31 31 char 0O

sea level _elev 32 36 long O

i nstrunent _type 37 38 uchar 0
nunber _of observati ons 40 42 ushort O
identification code 44 44 char 0O

HDF UTILITIES

69

ASC | _input_data "H storical Arctic Rawi nsonde Archive input fornmat"
at nospheric_pressure 1 5 long 1
geopotential _height 7 11 long O
tenperature_deg 13 16 short O
dewpoi nt _depressi on 18 20 short 0
wind_direction 22 24 short 0O

wi nd_speed _nis 26 28 short 0O
flag_qgg 30 30 char 0

flag_qggl 31 31 char 0

flag_gt 33 33 char 0

flag_qtl 34 34 char 0

flag_qgd 36 36 char 0

flag_qdl 37 37 char 0

flag_gw 39 39 char 0

flag_gwl 40 40 char 0

flag_gp 42 42 char 0

flag_ |l evck 43 43 char 0

ASCI | _out put_record header "ASC | Location Record output fornat"

ASC | _output _data "H storical Arctic Rawi nsonde Archive output fornat"

To “split” hara.dat, enter the following command:
splitdat hara.dat 23338.dat > 23338hdr .dat

The data values from har a.dat are stored in 23338.dat and the headers in 23338hdr .dat.

Because the variables begi n and ext ent were used in the header output format in hara.fmt to indi-
cate data offset and number of records, 23338hdr.dat has two columns of data showing offset and ex-
tent. Thus, it can serve as an index into 23338.dat.

HDF Translation

If output files are not specified on the splitdat command line, afile named input_file HDF is created.
It is hierarchically named and organized as follows:

vgroup
i nput_file name
/ \
/ \
vdat al vdat a2
" Poi nt | ndex" "input_file_nane"

- vdatal contains the record headers

- vdata2 contains the data

- If witing to a Vset (represented by a vgroup), both output formats are
converted to binary, if not binary already.

HDF UTILITIES

70

Example
To create the file hara.HDF from hara.dat, enter the following abbreviated command:

splitdat hara.dat

The output formats in hara.fmt are automatically converted to binary, and subsequently the ASCI|
datain hara.dat are also converted to binary for HDF storage.

pntshow

The pntshow program is a versatile tool for extracting point data from HDF files containing scientific
datasets and V sets. The extraction can be done into any binary or ASCII format described in a Free-
Form format description file. Before using pntshow on an HDF file, you should pack the file using the
NCSA-developed HDF utility hdfpack.

Y ou can use pntshow to extract headers and data from an HDF file into separate files or to extract just

the data. It's a good idea to define GeoVu keywords in an equivalence table to facilitate access to HDF

objects. For information about equivalence tables, see the GeoVu Tools Reference Guide. The input

and output formats must be described in a FreeForm format description file. Y ou should follow Free-

Form naming conventions for the data and format files. For details about FreeForm conventions, see
-chapter 4,

If aformat description file is not specified on the command line, the output format is taken by default
from the FreeForm output format annotation stored in the HDF file. If there is no annotation, a default
ASCII output format is used.

Notel An equivalence table takes precedence over everything. (vdata=1963, SDS=702)

If you have not specified an HDF object in an equivalence table, pntshow uses the following sequence
to determine the appropriate source for output:

1. Output the first vdata with class name Data.
2. Output the largest vdata.
3. Output the first SDS.

If no vdatas exist in the file, but an SDSisfound, it is extracted and a default ASCII output format is
used.

Extracting Headers and Data

The pntshow command takes the following form when you want to extract headers and data from
HDF filesinto separate files.

pntshow input_ HDF _file[-h [output_header fil€]] [-hof output_header format_file]
[-d [output_data file]] [-dof output_data format_file]

input HDF_file
Name of the input HDF file, which has been packed using hdfpack.

HDF UTILITIES

71

-h [output_header_file]
Option flag followed optionally by the name of the file designated to contain the record headers
currently stored in a vdata with a class name of Index. If an output header file name is not speci-
fied, the default is standard output.

-hof output_header_format_file
Option flag followed by the name of the FreeForm format file that describes the format for the
headers extracted to standard output or output_header_file.

-d [output_data file]
Option flag followed optionally by the name of the file designated to contain the data currently
stored in avdata with a class name of Data. If an output file name is not specified, the default is
standard output.

-dof output_data format_file

Option flag followed by the name of the FreeForm format file that describes the format for data
extracted to standard output or output_data_file.

Example

Y ou will extract data and headers from hara.HDF (created by splitdat in a previous example). This
file contains two vdatas: one has the class name Data and the other has the class name Index. Because
thisfile is extremely small, no appending links were created in the file, so there is no need to pack the
file before using pntshow, though you can if you wish.

To extract data and headers from hara.HDF, enter the following command:
pntshow hara.HDF -d haradata.dat -h harahdrs.dat

The data from the vdata designated as Data in hara.HDF are now stored in haradata.dat. The data are
in their original format because the original output format was stored by splitdat in the HDF file. The
header data from the vdata designated as Index in hara.HDF are now stored in harahdrs.dat. In addi-
tion to the original header data, the variables begi n and ext ent have also been extracted to
harahdrs.dat.

Extracting Data Only

The pntshow command takes the following form when you want to extract just the data from an HDF
file:
pntshow input_HDF _file [-of default_output_format_file] [> output_fil€]
input HDF_file
Name of the input HDF file, which has been packed using hdfpack.
-of default_output_format_file

Option flag followed by the name of the FreeForm format file that describes the format for data
extracted to standard output or output_file.

output_file

Name of the output file into which datais transferred. If an output file name is not specified, the
default is standard output.

HDF UTILITIES

72

Examples

Y ou can use pntshow to extract designated variables from an HDF file. In this example, you will ex-
tract temperature and pressure values from hara.HDF to an ASCII format. First, the following format
description file must exist.

haradata.fmt

ASCI | _output_data "ASA | format for pressure, tenp"
at mospheric_pressure 1 10 long 1
tenperature_deg 15 25 float 1

To create afile named temppres.dat containing only the temperature and pressure variables, enter ei-
ther of the following commands:

pntshow hara.HDF -of haradata.fmt > temppres.dat
or
pntshow hara.HDF -d temppres.dat -dof haradata.fmt

If you use the first command, pntshow searches hara.HDF for a vdata named Data. Since hara.HDF
contains only one vdata named Data, this vdata is extracted by default with the format specified in
haradata.fmt.

The results are the same if you use the second command. Now, try running pntshow on the previously
created file latlon.HDF, which contains two SDS's. Use the following command:

pntshow latlon.HDF > latlon.SDS

The latlon.SDS file now contains the latitude and longitude values extracted from latlon.HDF. They
have the default ASCII output format. Y ou could have used the -of option to specify an output format
included in a FreeForm format description file.

HDF UTILITIES

73

10
Developing FreeForm Applications

As applications have become increasingly complex, the concept of layered application development
has gained wide acceptance. A series of layers, each of which is as self-contained as possible, is used
to interface between user and data. Interactions between layers are kept as simple as possible. Free-
Form applications use this model and also incorporate the object-oriented approach to increase appli-
cation power and efficiency while simplifying design and maintenance. As an application programmer,
you can use the FreeForm Data Access System to build your own FreeForm-based programs.

DEVELOPING FREEFORM APPLICATIONS

74

FreeForm Application Layers

FreeForm applications are composed of the layers shown below.

USER

USER INTERFACE

APPLICATION SPECIFICS

FREEFORM DATA OBJECTS

FREEFORM LIBRARY

DATA

The FreeForm Data Access System comprises the FreeForm Library and Data Objects layers. Y ou, the
application programmer, write the application-specific code and the user interface that sit above and
make use of the FreeForm layers. The FreeForm Library sits closest to the data. It includes functions
for creating and interpreting format description files, and for reading, converting, and writing data.

The Data Object layer above the FreeForm Library consists of several types of objects that provide a
simplified interface to the Library. Many common data access tasks have been implemented as events
that the objects know how to accomplish. These objects are implemented as structures in the C pro-
gramming language. The members of a structure are attributes of the object described by the structure.

Building an Application
Y ou build a FreeForm application using the FreeForm library functions and data objects. To use an
object in an application, you must complete three steps:
1. Create the object.
2. Set the object's attributes.
3. Send eventsto the object to trigger the desired action.

Y ou can also include calls to show functions, e.g., db_show, to determine current characteristics of
objects as the application runs.

Example Program

The example FreeForm application getll.c extracts and converts latitude and longitude values in any
datafile from their native format into a signed decimal degree representation. The program first de-
fines a data bin with the native input format for a data file that includes latitude and longitude variables
in any representation. Then it defines a compile-time format for just latitude and longitude, and refor-
mats the latitude and longitude variables from their native format into the decimal degrees format.

DEVELOPING FREEFORM APPLICATIONS

75

Compile-time formats are used to read data from any hard-coded format into memory, where the data
can then be accessed by applications. Unlike other formats, a compile-time format is not intended to be
written to afile (although it could be). The example program getll.c demonstrates how to implement a
compile-time format in a FreeForm-based application.

Source Code-getll.c

/*

* NAME getl|

*

* PURPCBE: This programreads latitude and | ongitude in any recogni zed
* format, converting to values in decinal degrees.

*

* AUTHOR Ted Haber mann, NGDC, (303) 497-6472, haber @il . ngdc. noaa. gov
* Modified (MO

*

* USACE getll data_ file

*

* COMMENTS:

*

* FreeForm applications are designed to run on rmany different types of

* conputers. One of the differences between these conputers is the names
* of various include files. These differences are taken care of by defining
* your environnent by defining one of the foll owi ng three preprocessor

* macros: 1) COMBC (PC, Mcrosoft C, 2) SUNCC (Unix workstation, ANSI O,
* or 3) CCLSC (Maci ntosh, ANSI C).

*

*/

#include <limts. h>

/* The FreeForminclude file is surrounded by a definition of the

* constant DEFINE_DATA in the main programso that extern arrays that
* FreeFormuses get initialized. The DEFI NE_DATA constant nust not be
* defined in any other files.

*/

#def i ne DEFI NE_DATA
#i ncl ude <freeform h>
#undef DEFI NE_DATA

/* This include file defines the data objects */
#i ncl ude <dat abi n. h>

#defi ne ROUTI NE_NAME "getl|"

/* An error call back routine -- it tells nmake_standard_dbi n which events
are okay if they fail. getll "dynamically" creates the output data
format, and throws away any existing output data format, so we don't
require an output data fornat in the format file. This function allows
nmake_standard_dbin() to process other events, even if the QUTPUT_FCRVAT
event fails to produce an output format.

*/

#i fdef PROTO

static int nkstdbin_cb(int routine_nane)

DEVELOPING FREEFORM APPLICATIONS

#el se

static int nkstdbin_cb(routine namne)
int routine_nane;

#endi f

{
return(routine_name != QUTPUT_FCRVAT);
}

/***

* NAME check for_unused flags()
PURPCSE: Has user asked for an uninpl enented option?
USAGE: check _for _unused flags(std args ptr);
RETURNS: void

DESCRIPTION Al FreeFormutilities do not enploy all of the "standard"
FreeForm comrand |ine options. Check if the user has unwittingly asked
for any options which this utility will ignore.

The followi ng "standard" command |ine options are not used by this
appl i cation:

* -v variable file

* -q query file

* -p precision (checkvar only)
* -md mssing data flag (checkvar only)

* -m maxi mum nunber of bins (checkvar only)

* - mm nmaxi mund m ni num processi ng only (checkvar only)

AUTHCR Mark Chrenschal |, NGDC
SYSTEM DEPENDENT FUNCTI ONS:
GLCBALS:

COMMVENTS:

KEYWORDS:

ERRCRS:

***/

#i fdef PROTO

static void check for_unused flags(FFF_STD ARGS PTR std_args)
#el se

static void check for_unused flags(std args)

FFF_STD ARGS PTR std_args;

#endi f

if (std_args->user.set var file)
err_push(ROUTI NE_NAME, ERR | GNCRED_CPTI O\,

"variable file"

);

DEVELOPING FREEFORM APPLICATIONS

if (std_args->user.set _query file)

err_push(ROUTI NE_NAME, ERR | GNCRED _CPTI O\,
"query file"

}
if (std_args->user.set_cv_precision)

err_push(ROUTI NE_NAME, ERR | GNCRED_CPTI O\,
"precision (checkvar only)"

}
if (std args->user.set _cv_nissing d ata)

err_push(ROUTI NE_NAME, ERR | GNCRED _CPTI O\,
"mssing data flag (checkvar only)"

}
if (std_args->user.set _cv_naxbi ns)

err_push(ROUTI NE_NAME, ERR | GNCRED _CPTI O\,

"maxi mum nunber of hi stogram bi ns (checkvar only)"
)
}

if (std_args->user.set_cv_naxm n_only)

err_push(ROUTI NE_NAME, ERR | GNORED CPTI ON,

"maxi num and m ni mum processi ng only (checkvar only)"

)
}

if (err_state ())
err_disp();
}

}

#i fdef PROTO
void main(int argc, char *argv[])
#el se
voi d mai n(argc, argv)
int argc;
char *argv[]
#endi f
{

int error = 0; /* to hold error return val ues */

char *out put _buffer
long output _bytes

NULL; /* output data buffer */
0; /* bytes witten into output buffer */

FFF_STD ARGS std args; /* holds command |ine information */

DATA BIN PTR i nput = NULL; /* the data bin */
FI LE *pfile = NULL; /* output file */
if (argc == 1)

{
fprintf(stderr, "%9%",

DEVELOPING FREEFORM APPLICATIONS

77

#i fdef ALPHA

"\nWel cone to getll alpha "FF LIB VER' " DATE \

" -- an NGDC FreeForm exanpl e applicati on\n\n",

#el i f defi ned(BETA)

"\nWel cone to getll beta "FF LIB VER' " DATE \

" -- an NGDC FreeForm exanpl e application\n\n",

#el se

"\nWel cone to getll release "FF _LIB VER

" -- an NGDC FreeForm exanpl e applicati on\n\n",

#endi f

"Default extensions: .bin = binary, .dat = ASC 1, .dab = dBASE\n\

\t.fm = format description file\n\

\t.bfm.afn.df m= binary/ ASQ | / dBASE vari abl e description file\n\n\

getll data file [-f format _file] [-if input format file]\n\
[-of output format file] [-ft \"format title\"]\n\
[-ift \"input format title\"] [-oft \"output fornat

title\"]\n\
[-c count] No. records to process at head(+)/tail (-) of
file\ln\

[-0 output file] default = output to screen\n\n\
See the FreeForm User's Quide for detailed informati on.\n"
)
exit (EXI T_FAl LURE) ;
}

/* The FREEFCRM system uses a hierarchical error handling system
whi ch all ows each layer of an application to add error nmessages to
a queue. err_push is the function which adds nmessages to the queue.
It is called by any function which runs into an error. err _dispis
the function that interactivly displays those errors to the user.

It is called by the nain application programwhen an error occurs.*/

/* Alocate the output buffer:

FREEFORM uses two types of buffers extensively and defines def aul t
buffer sizes in the include file freeformh. The | ocal or scratch
buffers are used as tenporary work space. The cache buffers are

used for reading | arge bl ocks of data.*/

output _buffer = (char *)mal | oc((size_t)DEFAULT CACHE S| ZE);
if (!output_buffer)

err_push(ROUTI NE_NAME, ERR MEM LACK, "Qutput Buffer");

err_disp();
exit (EXIT_FAI LURE);
}

/* Collect options entered on the command line, this information will be

used in the call to make_standard _dbin(), bel ow
*/
if (parse_command_|line(argc, argv, &std_args))
free(output _buffer);

err_disp();
exit (EXIT_FAI LURE);

}
check for_unused fl ags(&std_args);

DEVELOPING FREEFORM APPLICATIONS

78

79

/* reate and initialize the data bin */
i f (nake_standard_dbin(&td args, & nput, nkstdbin_ch))

free(out put _buffer);

err_disp();
exit (EXIT_FAI LURE);
}

/* make_standard_dbin nay have generated an incidental error, in case
t he QUTPUT_FCRMVAT event failed. nkstdbin_cb downgrades such an error
froma termnal error to a warning, but an error nessage mght still
have been queued. |If so, clear it.
*/
if (err_state())
err_clear();

/* Has user indicated an output file? */
if (std args.output file)

pfile = fopen(std_args.output _file, "wh");
if (!pfile)
{
free(output _buffer);
err_push(ROUTI NE_NAME, ERR CREATE_FI LE,
std_args.output _file);
err_disp();
exit (EXIT_FAI LURE);
}
}

el se

/* If not, wite to standard out put */
pfile = stdout;

}

/* Rather than using an output format con tained in a file, create a
"dynam c" buffer, wite an output format descriptioninto it, and
use that to initialize the data bin's output fornat

*/

sprintf(output_buffer, "\

ASC | _output _data \"hard-coded in getll.c:nain()\"\n\
longitude 1 11 double 6\n\
latitude 13 25 double 6\n"

)

/* Use the FORMAT BUFFER event to set the output format. The data bin

*/

knows that this is an output fornmat because of the fornat type,
"ASClI | _output _data".

if (db_set(input ,
FCRVAT_BUFFER, out put _buffer, NULL, NULL,
END_ARGS
)

DEVELOPING FREEFORM APPLICATIONS

80

/* Error in the output format creation -- this nust never happen!
Ensure that the output buffer is syntactically correct, since it
is hard-coded into the prograni

*/

free(output _buffer);
if (std_ args.output file)
fclose(pfile);

err_push(ROUTI NE_NAME, ERR MAKE FORM out put_buffer);

err_disp();
exit (EXIT_FAI LURE);
}

/* D splay sone infornmation about the data fornats */
db_show(i nput, FCRVAT _LIST, FFF_INFQ END ARGS);

/* db_show wites into data bin's working buffer */
fprintf(stderr, "9%", input->buffer);

/*
** process the data
*/

/* use PROCESS FORMAT LIST to fill cache and fill headers */
while ((error = db_events(input,
PROCESS_FORVAT_LI ST, FFF_ALL_TYPES,
END_ARGS
)
) ==
)

/* Make sure output buffer is |arge enough for the cache */
db_show(i nput,

DBl N_BYTE_OCOUNTS, DBI N QUTPUT_CACHE, &out put _byt es,
END ARGS, END ARGS
)

i f ((unsigned | ong)output bytes > (unsigned | ong) U NT_NAX)
{

error = 1,

err_push(ROUTI NE_NAME, ERR MEM LACK,
"real l ocation size too hig");

br eak;

}
if (output_bytes > DEFAULT _CACHE Sl ZE)

/* The default cache size was too snall for the nunber of
out put bytes needed. This contigency is coded for, but
is extrenely unlikely to happen. However, it is possible
that the programwll error out if it can not resize the
output bu ffer.

*/

char *cp = NUL;

cp = (char *)realloc(output_buffer, (size t)output bytes);
if (cp)

out put _buffer = cp;

DEVELOPING FREEFORM APPLICATIONS

el se
{
error = 1,
err_push(ROUTI NE_NAME, ERR MEM LACK,
"real l ocation of output buffer");
br eak;
}
}
/* Convert the cache into the output buffer -- this will performa

binary to ASA | conversion if necessary. (The exanpl e shows
getll running on Il maxmn.dat, an ASC Il file, but this program
works equally well on Il maxmn.bin, which is created by running
newf ormon || maxm n. dat .)
*/
error = db_event s(i nput,
DBl N_DATA TO NATI VE, NULL, NULL, NULL,
DBl N CONVERT_CACHE, out put _buffer, NULL,
&out put _bytes,
END_ARGS
)
if (error)
br eak;

/* Wite the contents of the output buffer to the file
(or screen).
*/
if ((long)fwite(output buffer, sizeof(char),
(size_t)output_bytes, pfile)
< out put _bytes
)

{
err_push(ROUTI NE NAME, ERR WRITE FILE, std args.output file
? std_args.output file
"to screen”
br eak;
}
}/* End Processing */

if (std_ args.output file)
fclose(pfile);

free(out put _buffer);

/* Deallocate all nenory assocated with the data bin */
db_free(input);

/* The error stack is checked to see if anything went wong du ring
processi ng

*/

if ((error & error !'= ECF) || err_state())

err_push(ROUTI NE_NAME, ERR PROCESS DATA, NULL);

err_disp();
exit (EXIT_FAI LURE);
}

} /* end main() for programgetl| */

DEVELOPING FREEFORM APPLICATIONS

81

82

Using getll

In this example, you will use getll to extract |latitude and longitude values from the ASCII data file
latlon.dat. Their native format is signed decimal degrees, so no conversion takes place. Enter the fol-
lowing command:

getll latlon.dat

This command prints format summary information and alist of longitude and latitude values to the
screen:
-176. 161101 -47. 303545
0.777265 -0. 928001

35.591879 -28. 286662
149. 408117 12. 588231

As another example, use the following command to extract the latitude and longitude values from the
file calif.tap.

getll calif.tap -f eqtape.fmt

The latitude and longitude values are extracted and converted from their native representation as abso-
lute values with quadrant indicated. Y ou should see the following signed decimal degree values written
to the screen:

-121. 815000 37. 852000

-121. 740000 37. 737000
- 116. 550000 33. 517000

Writing out latitude and longitude values to standard output (the screen) is not a very impressive feat,
but you could create a similar program to use as the front end for a graphics package. In that case, you
might want to include a third output column which contains the values of athird variable. For example,
with a seismological application, you might want to include values for magnitude or depth. Y ou can
easily add the third column to the getll program by changing the spri ntf statement, which creates the
compile-time format, so it is similar to the following:

sprintf(output_buffer, "longitude 1 8 double 6\nlatitude 9 16 double 6\n
% 17 24 double 2", *(argv+2));

The getllvar program incorporates a more general version of the spri nt f statement and several other
small changes to the getll code; see getllvar.c. Now the second command line argument is the name of
the third variable (only with getllvar; thisis at variance with standard FreeForm command line syn-
tax). Try the following command:

getllvar calif.tap depth -f egtape.fmt

DEVELOPING FREEFORM APPLICATIONS

Y ou should see the following output with values for depth given in the third column:

-121. 815000 37. 852000 11
-121. 740000 37. 737000 15
- 116. 550000 33. 517000 6
-125. 033000 40. 600000 5
-118. 840000 37. 600000 5
-118. 875000 37. 609000 24
-118. 832000 37. 527000 12
-118. 820000 37. 569000 15

If you enter the following command:
getllvar calif.tap year -f eqtape.fmt

the year will be shown in the third column.

DEVELOPING FREEFORM APPLICATIONS

84

Appendix A

Conversion Variable Names

FreeForm can automatically perform conversions between various representations of space and time
values. When FreeForm encounters standard conversion variable names in aformat description file, it
performs the appropriate conversion.

This appendix lists the conversion variable names that FreeForm recognizes. For conversions that oc-
cur in one direction only, the conversion variable names are listed in columnstitled I nput and Output.
Conversion names that you can use for either input or output variables are in untitled columns.

APPENDIX A CONVERSION VARIABLE NAMES

85

General

By adding the appropriate suffix to a variable name, you can perform several general (miscellaneous)
conversions. To convert between meters and feet, add _mand ft to therelevant variable names. For
absolute and sighed values, add _abs and _si gn . For scientific notation, use _base and _exp toiden-
tify the base and exponent parts of a number. There may or may not be an 'E' or '€ in the exponent; the
range of the E format is E+/-999. Be sure the output field is large enough for the converted number.

var name_m var nanme_ft

var narre_abs var name
var namre_si gn

var nane_base var nane
var nane_exp

varname = any character string without blanks

Latitude/Longitude
FreeForm supports conversions between a number of representations of latitude and longitude values
with the use of the correct conversion variable names.
General Lat/Lon

By using the appropriate suffixes, you can perform conversions between a number of different repre-
sentations of latitudes and longitudes.

Input Output

var narre_abs var nane
varnane_ns or varnane_ew

varname or varname_abs var name_deg
varname_ns or varname_ew varnane_mn
var nane_sec

var name varname_abs or varnane_si gn

varname or varname_abs var narre_deg_abs
var name_m n_abs
var name_sec_abs

var name_deg varname or varname_abs
var name_mn
var nane_sec

varname_deg or _abs var name
varname_mn or _abs

varnane_sec or _abs

geo_quad_code ns, _ew or _sign

varname =latitude orlongitude

APPENDIX A CONVERSION VARIABLE NAMES

86

Degrees, Minutes, Seconds

The following variables are used for conversions between degrees, minutes, and seconds (_deg, _nin,
_sec) or absolute degrees, minutes, and seconds (_deg_abs , _m n_abs , _sec_abs) and decimal de-
grees (no suffix). If a conversion to degrees, minutes and seconds results in avalue for degrees be-
tween 0 and -1, the minutes or seconds part is signed as appropriate to avoid avalue of - 0 degrees.

var nane_deg var name
var name_m n
var name_sec

var narre_deg_abs var name
var narre_m n_abs
var narme_sec_abs

varname =latitude orlongitude

Geographic Quadrants

Use the following variables to convert from severa different representations of latitude and longitude
to a geographic quadrant defined by DMA (Defense Mapping Agency) for their gravity data.

DMA defines four geographic quad codes as follows:
1 = Northeast 2 = Northwest
3 = Southeast 4 = Southwest

Input Output
[atitude geo_quad_code
| ongi t ude
latitude _ns geo_quad_code

| ongi t ude_ew

[atitude_sign geo_quad_code
| ongi t ude_si gn

Longitude East

Use the following variables for conversions between east longitudes (I ongi t ude_east) and
| ongi t ude (no suffix) or longitude represented in degrees/minutes/seconds (_deg, _mi n, _sec) plus
hemisphere or geographic quadrant (_ns, _ew, geo_quad_code) .

APPENDIX A CONVERSION VARIABLE NAMES

87

Input Output
| ongi t ude_east | ongi t ude
| ongi t ude | ongi t ude_east
var name_m n | ongi t ude_east
var name_sec
var nane_ns
var nane_ew
geo_quad_code

Quadrant, Sign

Use the following variables to convert from lat/lon with quadrant to signed lat/lon or vice versa.

| atitude_ns | atitude_sign

| ongi t ude_ew | ongi t ude_si gn

Earthquake Magnitude

FreeForm includes a conversion function that lets you extract one of the three magnitudes out of the
variable| ongmag , or create | ongmag from one, two, or more of the individual magnitudes.

Thevariable | ongmag is along which contains three magnitudes:
ms2 hasaprecision of 2 and is multiplied by 10,000,000
msl hasaprecision of 2 and is multiplied by 10,000
mb has a precision of 1 and is multiplied by 10

| ongnag magni t ude_nb
magni t ude_nsl
magni t ude_ns2
magni t ude_ni
magni t ude_| ocal

APPENDIX A CONVERSION VARIABLE NAMES

Date and Time

FreeForm includes conversion functions that let you convert between various representations of date
and time including decimal year; serial date with January 1, 1980 as 0; any combination of year,
month, day, hour, minute, second; and IPE (Institute of Physics of the Earth) date in minutes AD.

year serial _day_ 1980
nont h

day

hour

m nut e

second

serial _day_ 1980 i pe_date

year i pe_date
nont h

day

date_dd/ mm yy dat e_ddmyy
ti me_hhmss time_hh: nmss

APPENDIX A CONVERSION VARIABLE NAMES

89

Appendix B
Error Handling

The FreeForm error handling system captures errors, such asimproper usage, code problems, and sys-
tem errors, and places them in an error queue. For each error captured, error type and a short message
are placed in the message queue. If afatal error occurs, the program stops executing and displays all
error messages in the queue.

APPENDIX B ERROR HANDLING

90

Error Messages

Thefollowing is alist of some possible error messages with suggestions for corrections.

Pr obl em openi ng, reading, or witing to file
Check that al file names and paths are correct.

Pr obl em nmaki ng f or mat
Make sure there is a format file describing the data file formats.
Check that input and output format descriptionsin the format file accurately describe the data.

Pr obl em maki ng header fornat
If aheader existsin the datafile, it must be described in aformat file.
Check that the header description accurately describes the header in your datafile.

Probl em getti ng val ue

Pr obl em processing variable |ist

The data formats may not be described correctly or there may be some inconsistencies in the data.
Check also for unprintable characters at the end of the datafile.

File length / Record | ength m smatch

Record Length or CR Probl em

This usually happens because the input format description is not correct.

Make sure the format description's last position is the last character before the end-of-line charac-
ter. If you have a header, make sure it is described correctly.

The header's length must include all characters up until the last end-of-line-character before the
data begins.

Bi nary COverfl ow

Try using alarger output variable type such as along instead of a short.

Be sure you have given enough space for the values to be written.

Seethe sectionl “FreeForm Variable Types’ |in chapter 3 for more information.

Vari abl e not found
The variable names in your output format must match the variable names in the input format unless
you are using conversion variables.

Dat a Overfl ow

*kkk k%

Data overflow does not usually cause afatal error and FreeForm functions try to anticipate them. If
overflow occurs for a particular value, ***'s are written to that value's location.

If you find these in your output, check your variable positions and precision. Increase field width
or use a“larger” datatype.

Be sure the output format specifies space for the output variable. For instance, FreeForm adds a
leading zero in front of decimal points. If the original data did not have a leading zero, the output
will have one more digit than the input.

Insufficient menory allocation
The application has run out of memory. Try using the -b (local buffer size) option, or modify
autoexec.bat and config.sys and comment out devices, TSR’s, etc.

APPENDIX B ERROR HANDLING

91

Appendix C
Query Syntax

This appendix lists the operators, symbols, and functions you can use to construct queries. Thelists are
followed by definitions, rules for combining elements to form equations and queries, and brief usage
explanations.

Symbols and Operators—List

Arithmetic Operators

Rep. M eaning

A exponentiation
% modulus

* multiplication
/ division

+ addition

- subtraction

APPENDIX C QUERY SYNTAX

Logical Operators

Rep.

not

Xor

N

\Y

<>

><

< =

> =

M eaning

logical not (takes only 1 argument)
logical not (takes only 1 argument)
logical and

logical and

logical and

logical or

logical or

logical or

logical exclusive or

logical exclusive or

equal to

equal to

less than

greater than

not equal to

not equal to

not equal to

less than or equal to

greater than or equal to

Special Symbols

Rep.

0)
[]

M eaning

negative sign

indicate order in which expressions are evaluated
enclose variables

enclose string constants

Functions—List

Name
acosh
asinh
atanh

M eaning
inverse hyperbolic cosine
inverse hyperbolic sine

inverse hyperbolic tangent

APPENDIX C QUERY SYNTAX

92

asech inverse hyperbolic secant

acsch inverse hyperbolic cosecant
acoth inverse hyperbolic cotangent
acos inverse cosine (radians)

asin inverse sine (radians)

atan inverse tangent (radians)
asec inverse secant (radians)

acsc inverse cosecant (radians)
acot inverse cotangent (radians)
cosh hyperbolic cosine

sinh hyperbolic sine

tanh hyperbolic tangent

sech hyperbolic secant

csch hyperbolic cosecant

coth hyperbolic cotangent

sort sguare root

sign sign of argument (1 if pos, -1 if neg, 0 if 0)
cos cosine (radians)

sin sine (radians)

tan tangent (radians)

sec secant (radians)

csc cosecant (radians)

cot cotangent (radians)

abs absolute value

exp e to the power

log logarithm base 10

fac factorial

deg radians to degrees

rad degreesto radians

rup round to nearest larger integer
rdn round to nearest smaller integer
rnd round to nearest integer

sgr sguare

ten ten to the power

APPENDIX C QUERY SYNTAX

94

not logical not

In logarithm base e

Definitions of Terms
Constant

A number whose value is explicitly stated in the query.
Predefined Constant

A number whose value is known explicitly by the equation interpreter, but is not stated in the
equation. The two predefined constants, with names preceded by a colon, are :e (2.71828182846)
and :pi (3.14159265359).

String Constant
A character string whose value is explicitly stated in the equation.
Variable

A number which is referenced by a unique name in the equation, but whose value is not stated in
the equation.

String Variable

A character string which is referenced by a unique name in the equation, but whose value is not
stated in the equation.

Domain Error

A problem which arises when a function or operation is undefined for certain input values, such as
division by 0. If adomain error is generated, the equation is evaluated to O.

Rules

Equations or queries are formed by combining variables and constant values with operators or func-
tionsin a meaningful way. The following set of rules applies to creating an equation.

Variable names must be enclosed in [] (square brackets).
For instance, finding the sum of a variable named height and another variable named altitudeis
expressed as.

[height] + [altitud€]

String constants must be surrounded by " " (quotation marks).
For instance, a query to seeif astring variable latitude is equal to the string north is expressed as:
[latitude] =" north”

Constants with negative values must be proceeded by ~ (tilde).
For instance, multiplying the variable altitude by a negative four is expressed as.
[altitude] = ~4

APPENDIX C QUERY SYNTAX

95

At least one variable (numeric or string) must be referenced in the equation.
Variable names cannot contain " (quotation marks), or [] (square brackets).

Spaces are ignored in equations (except inside string constants and variable names), so you can use
spaces to separate the parts of your equation and make it more readable.

Pre-defined Constants

The names of the two predefined constants e and pi are preceded by a colon to differentiate them from
afunction name or variable name.

Example

[degreed] = e+ :pi
multiplies the variable degrees by e (2.718...) and adds pi (3.141...)

Operators—with Definitions

Operators cause the indicated operation to be performed on two values (string or numeric) with athird
value resulting. The format for using operatorsis as follows:
valuel operator value?

Arithmetic Operators

Arithmetic operators cannot be used with string variables or string constants.

Symbol M eaning Explanation

A exponentiation Raises valuel to the value2 power. Generates a
domain error if valuel is negative and value2 is not
an integer.

% modulus Returns the remainder when valuel is divided by

value2. If valuel = value?2 » a + R, whereaisan
integer and R is less than value2, the modulus
operator returns R. Generates a domain error if

value? is 0.

* multiplication Multiplies valuel by value2.

/ division Divides valuel by value2. Generates a domain error
if value2 is0.

+ addition Adds valuel and value2.

- subtraction Subtracts value2 from valuel.

Logical Operators

Inputs to the logical operators are evaluated to FALSE if they are equal to 0. Any value other than O
evaluates to TRUE. Outputs of the logical operators are O for FALSE, 1 for TRUE.

Some of the logical operators have a“word” which is synonymous with their symbol (C language
compatible), or multiple acceptable symbols. There is no advantage in speed to using any one of these

APPENDIX C QUERY SYNTAX

96

alternate names, but the equation may be more human-readable in one form than in another. For ex-
ample, the following equations, which evaluate to TRUE (i.e, 1) if the variables x and y are TRUE,

are all equivalent:

[x] & [y]

[x] && [y]

[x] and [y]
Symbol M eaning
& logical AND
&& logical AND
and logical AND
| logical OR
Il logical OR
or logical OR
X logical exclusive or (XOR)

Explanation

TRUE if valuel and value2 are both TRUE
TRUE if valuel and value2 are both TRUE
TRUE if valuel and value2 are both TRUE
Logical AND accepts only numeric arguments.
Truth table for logical AND:

valuel value output
FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

TRUE if valuel or value2 are TRUE

TRUE if valuel or value2 are TRUE

TRUE if valuel or value2 are TRUE

Logical OR accepts only numeric arguments.
Truth table for logical OR:

valuel value output
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

TRUE if valuel or value2 are TRUE, but not both

APPENDIX C QUERY SYNTAX

Xxor

<>

><

logical exclusive or (XOR)

equal to
equal to

less than

greater than

not equal to
not equal to
not equal to

less than or equal to

APPENDIX C

TRUE if valuel or value2 are TRUE, but not both
Logical XOR accepts only numeric arguments.
Truth table for logical XOR:

valuel value2 output
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE FALSE

TRUE if valuel is equal to value2
TRUE if valuel is equal to value2

This operator can be used with both numeric and
string values as long as valuel and value2 are both
of the same type.

TRUE if valuel isless than value2

This operator can be used with both numeric and
string values, as long as valuel and value2 are both
of the same type.

TRUE if valuel is greater than value2

This operator can be used with both numeric and
string values, as long as valuel and value2 are both
of the same type.

TRUE if valuel is not equal to value2

TRUE if valuel is not equal to value2

TRUE if valuel is not equal to value2

This operator my be used with both numeric and
string values, as long as valuel and value2 are both

of the same type.

TRUE if valuel is less than or equal to value2

This operator can be used with both numeric and
string values, as long as valuel and value2 are both
of the same type.

QUERY SYNTAX

97

not

greater than or equal to

logical NOT
logical NOT

Functions—with Definitions

98

TRUE if valuel is greater than or equal to value2

This operator can be used with both numeric and
string values, as long as valuel and value2 are both
of the same type.

TRUE if valueis FALSE, FALSE if valueis TRUE
TRUE if valueis FALSE, FALSE if valueis TRUE
Logical NOT accepts only numeric arguments.

Note! Thelogical NOT operator, unlike all other
logical operators, takes only 1 argument. Thus,
the format for alogical NOT statement is as
follows:

I value
not value

The functions take only a single argument, in the following manner:

name(value)

Please note that the parentheses implied above are not necessary unless the function is evaluating a
complex argument. In the definitions given below, the value is represented as x. Function definitions
which require functions themselves are given in a manner compliant with the equation evaluator.

Name

acosh

asinh
atanh

asech

acsch

acoth

acos

atan

M eaning

inverse hyperbolic cosine

inverse hyperbolic sine

inverse hyperbolic tangent

inverse hyperbolic secant

inverse hyperbolic cosecant

inverse hyperbolic cotangent

inverse cosine (radians)
inverse sine (radians)
inverse tangent (radians)
inverse secant (radians)

inverse cosecant (radians)

Explanation/Definition

In(x + sgrt((x " 2) -1))
Domain error if x < 1.

In(x + sgrt((x * 2) + 1))

In((L+x)/(1-x))/2
Domain errorif x>=1or x <=-1

In((1 + sgrt(1-(x * 2))) / x)
Domainerrorif x<=0orx>1

In(((1/x) + (sart(1 + (x ~ 2))) / abs(x)))
Domain error if x =0

log((x+1)/(x-1))/2
Domain errorif -1<=x<=1

Domainerorif x<-lorx>1

Domainerorif x<-lorx>1

Domainerorif-1<x<1

Domainerrorif -1<x<1

APPENDIX C QUERY SYNTAX

acot
cosh
sinh
tanh

sech

coth

sort
sign

Ccos

deg
rad
rup
rdn

rnd

ten

not

99

inverse cotangent (radians) Domainerror if x =0
hyperbolic cosine

hyperbolic sine

hyperbolic tangent

hyperbolic secant

hyperbolic cosecant

hyperbolic cotangent

square root Domain error if x <0
sign of argument Evaluatesto 1if x>0, 0if x =0, and
-lifx<0

cosine (radians)
sine (radians)
tangent (radians)
secant (radians)
cosecant (radians)
cotangent (radians)

absolute value

eto the power ‘e x
logarithm base 10 Domainerror if x <=0
factorial Domain error if x <=0

X isrounded to nearest smaller integer before
factorial is calculated.

radians to degrees 180« x / :pi
degreesto radians pi = x /180
round to nearest larger integer

round to nearest smaller integer

round to nearest integer

square X2
ten to the power 10~ x
logical not Thisisthe same asthe logical NOT operator,

but isincluded here because of its
function-like behavior. Evaluates to
1if x =0, 0 otherwise.

logarithm base e Domain error if x <=0

APPENDIX C QUERY SYNTAX

Order of Operations

An equation is evaluated in the following order:

1
2
3
4.
5
6

anything inside parentheses (left to right, sub-parentheses given precedence)

functions (no explicit order to function evaluation)
exponentiation (left to right)

multiplication, division, and modulus (left to right)
addition and subtraction (left to right)

logical operators (no explicit order to logical operator evaluation)

For instance, the equation

4+ (coslx] - [y] " 3) = (Y] + 4/ 7) + ([x] > 1)

isevaluated as follows: ([X] = 3.14159265359, [y] = 3, bold is changed value)

4+ (1-[y[*3)+ ((Iyl +H /7)) +([X] > 1)
4+ (~1-27)+ ([y] +4) /1 7) + ([x] > 1)
4+~28+ (([yl +4)/7)+(x] > 1)
4+~28%(7/7)+(x]>1)
4+~28+1+([x]>1)

4+~28x1+1

4+~28+1

~24+1

~23

The similar equation

4+ (cog[x] -[y] " 3) = (Iyl +4) /1) +[x] > 1

is evaluated as follows: (with the same values for [x] and [y])

4+(~1-[y]"3)» (([yl+4)/7)+[x]>1
4+ (~1-20) = (([y] +4 /7 +[x]>1
4+~28+ (([yl+4)/7)+[x]>1
4+~28% (717 +[x]>1
4+~28x1+[x]>1

4+~28+[x]>1

~24+[x]>1

~20.8584073464 > 1

0

APPENDIX C QUERY SYNTAX

100

101

General Suggestions

It is best to use the supported operators and functions in order to reduce the number of itemsto be
evaluated. This reduces the time it takes to evaluate the equation, perhaps negligible for each evalua-
tion, but with repeated evaluation, the time savings can be substantial. For instance, the equation:

In(((17[x]) + (sart(L + ([x] 2))) / abs([x])))
is equivalent to:
acsch[x]

but the first equation takes much longer to evaluate than the second. There are afew cases where there
are various ways to state the same equation, such as:

[x] + [X]
[x]~2
sar[x]

All three equations above sgquare the variable x. All three require only one evaluation each, and there-
fore require almost exactly the same amount of time to evaluate. The equations below are also com-
pletely equivalent:

[X] * [x] * [X]
[x] "3

In this case, the first equation requires two evaluations ([x] * [X], and then the result of that + [x]),
while the second equation requires only one evaluation. The evaluation of the second equation will
therefore be approximately 2 times faster.

Avoid causing unnecessary evaluations. For instance, the following equation:
(1/2) » [base] » [height]

isfaster if expressed as:
[base] » [height] / 2

Examples

Absolute L atitude

The following equation takes the variable abs _|atitude and multipliesit by -1 if the value of
latitude n_or_sis S, abs latitudeis multiplied by 1 otherwise.

[abs_latitude] = (([latitude_n_or_s] '="S") + ~1 » ([latitude_n_or_s| ="S"))
Distance Between Points

The following equation computes the distance between the points given by x1, y1, x2 and y2
(assuming all pointslie on aplane).

sart(sar([x2] - [x1]) + sar([y2] - [y1]))
Quadratic Solution
The following equation computes one of the solutions to the quadratic formula:

(=1« [b] + sqrt([b] * 2 - 4+ [a] + [c])) / (2 = [4])

APPENDIX C QUERY SYNTAX

102

Sine of Angle

The following 3 equations are all roughly equivalent, finding the sine of angle deg (which is measured
in degrees). The first equation is not recommended, because the value used for pi is not as accurate as
the value given by the pre-defined constant :pi. The second equation is better, but requires more time
to be evaluated than the third.

sin(3.141592 = [deg] / 180)
sin(:pi » [deg] / 180)
sin(rad[deq])

Volume of Sphere
The following equation finds the volume of a sphere:

4 % :pi = [radius] ~ 3/ 3

APPENDIX C QUERY SYNTAX

Index .

—A—

about this guide| 4]
accessing conversion functi ons,
arguments
command Iine,
count,[25]
filters/25]
format description source,
format file,
format title,

input and outr ut files,

input file,23]
input format file,

input format title/24]

local buffer size,[24

output fil e,

output format fi Ie,

output format title, 24

query fiIe,

run-time parameters,

variablefile,
ASCII to ASCII conversion,[36]
ASCI! to binary conversion,

— B—

band interleaved by pixel form. See multiplexed form
band sequential form. See demultiplexed form

binary archives, creatin ,

binary files, viewing

binary to ASCII conversion,

—C—
case sensitivity,
changing formats, @]
changing header formats,|56|
checkvar,

checkvar command,

command line arguments,

commands
checkvar ,
fillndr [54)
gethdr, for changing header formats,
gethdr, for viewing headers
makehdf
newform,|27/
pntshow, for extracting data onIy
pntshow, for extracting headers and data,
readfile,
splitdat, 68|

conventions
file name,
FreeForm,
typographic,[5|

INDEX

conversion

ASCII to ASCII,[36]

ASCI! to binary,[29,[31]

binary to ASCI|

format,[8

to HDF,|65
conversion functions, accessi ng,
conversion variables

names, |84
overview,
conversions
absolute degrees and mi nut
date,

degrees, minutes, and seconds
| atitude,[40]
Iongitude,
serial dates| 45|
time,
year, month, da
converting formats, 8
creating
binary archives,[28
indexed HDF files, [68]
separate data and header files,
summary fiI

—D—

date conversi ons,

demultiplexed form,[66,[67|
descriptions

format

variable,

descriptors,

determining input and output formats,
developing FreeForm applications,

diff,[30
downloading FreeForm files

—FE—
error messages, 90|

example FreeForm aplication,
extensions, file name,

extracting point data,
—F—

file headers, 48|

file names

case sensitiv
conventions,

data, nonstandard,[34]
extensi ons,

format description, nonstandard,[35]
relationshi ps,

103

FreeForm
You can click on a page number following an index entry to go to the appropriate section in the text.

If you want to use the Acrobat Go To Page function instead, you must add 5 to the page number in the index to go to the proper page, e.g., if the page number in the index is 40, go to page 45.

file names and context,

file types

ASCII,

binary,

dBASE,
fillhdr [54
fillhdr command,[54
format conversion| 8)26|

format description files] 7,/[L6]
format descriptions,
overview, |1
writi ng, @]
format descriptors,
format files, locating,
format title,
format type,
formats
changi ng
FreeForm
files[4]
files, downloading,[4|
overview[1]
quick tour,@
FreeForm application la ers
FreeForm conventions,
FreeForm Data Access System. See FreeForm

—G—
gethdr,

gethdr command
for changing header formats,
for viewing headers,

getll.c source code,

— H—

HDF files, indexed,67]
HDF utilities, overview
header files, separate,
header formats,

changi ng,
header types,
headers

file[48]

record,

viewing,
histogram files. See variable summary files

indexed HDF files, creating,
input and output formats, determining,
interpreting summary files[10l[61

INDEX

—L—

|atitude conversi ons,

list files. See variable summary files
locating format files,[21]

longitude conversi ons,

—M—

makehdf[65]
makehdf command

multiplexed,
multiplexed form,

—N—
newform,

newform command

—0O0—
options, readfile,

—pP—
pntshow,

pntshow command

for extracting data onIy,

for extracting headers and data,
processing summary,
programs

checkvar

fillhdr, @

gethdr,

makehdf,
newform,
pntshow [70l

readfile,27
splitdat,|67]

Q
query wntax,
query, specifying,

— R—

read/write type, [21]
readfile,

readfile command,
readfile options,

reading a binary file,[30|
record headers,
relationships, file name,

104

—S—

search sequence,
separate header fiI&s,
specifying a query, [32]
splitdat,

splitdat command,
summary files

creati ng@
interpreting, @

—T—

time conversions,[44]
typographic conventi ons

INDEX

—V—

variable descriptions,
variable summar files@
variable types,
viewing

binary files/9]

headers,

—W—
writing format descripti on

105

	Contents
	Introduction
	The Format Problem
	Standard Formats
	Smart Programs
	The FreeForm Solution

	The FreeForm System
	FreeForm Files
	About this Guide
	Conventions

	Quick Tour of FreeForm
	Writing Format Descriptions
	Changing Formats
	Viewing Binary Data Files
	Creating Summary Files
	Generating the Summaries
	Interpreting the Summaries

	Format Descriptions
	FreeForm Variable Types
	FreeForm File Types
	Format Description Files
	Format Descriptions
	Format Type and Title
	Format Descriptors
	Variable Descriptions

	FreeForm Conventions
	File Name Conventions
	File Name Extensions
	File Name Relationships

	Determining Input and Output Formats
	Locating Format Files
	Search Sequence
	Case Sensitivity

	Command Line Arguments
	Specifying Input and Output Files
	Specifying Format Description Source
	Changing Run-time Parameters
	Defining Filters

	Format Conversion
	newform
	readfile
	Creating a Binary Archive
	Simple ASCII to Binary Conversion
	Conversion to a More Portable Binary

	File Names and Context
	“Nonstandard” Data File Names
	“Nonstandard” Format Description File Names

	Changing ASCII Formats

	Conversion Variables
	Accessing Conversion Functions
	Latitude and Longitude Conversions
	Degrees, Minutes, and Seconds
	Absolute Degrees and Minutes

	Date and Time Conversions
	Year, Month, Day
	Serial Dates

	Header Formats
	Header Types
	File Headers
	Record Headers
	Separate Header Files
	The dBASE Format

	fillhdr
	gethdr
	Viewing Headers
	Changing Header Formats

	Data Checking
	Generating the Summaries
	Interpreting the Summaries

	HDF Utilities
	makehdf
	splitdat
	pntshow
	Extracting Headers and Data
	Extracting Data Only

	Developing FreeForm Applications
	FreeForm Application Layers
	Building an Application
	Example Program
	Source Code–getll.c
	Using getll

	Appendix A: Conversion Variable Names
	General
	Latitude/Longitude
	General Lat/Lon
	Degrees, Minutes, Seconds
	Geographic Quadrants
	Longitude East
	Quadrant, Sign

	Earthquake Magnitude
	Date and Time

	Appendix B: Error Handling
	Error Messages

	Appendix C: Query Syntax
	Symbols and Operators–List
	Functions–List
	Definitions of Terms
	Rules
	Pre-defined Constants
	Operators–with Definitions
	Functions–with Definitions
	Order of Operations
	General Suggestions
	Examples

	Index

