
FreeForm
A Flexible System of Format Descriptions for Data Access

Version 3.1

User’s Guide

UNITED STATES DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Environmental Satellite, Data, and Information Service
National Geophysical Data Center
Boulder, Colorado 80303 USA

FreeForm
This guide is formatted for simplex printing, i.e., printing on one side of each page. You can choose to print on both sides of each page, but page numbers will always be in the upper right-hand corner and there will be no gutters (extra space on the inside margins).

Also be aware that the document may display and print with some odd spacing.

NOTICE
The information in this publication is subject to change without notice. NOAA reserves the right to
revise this publication and to make changes in the content hereof without obligation of NOAA to no-
tify any person of such revisions or changes.

DISCLAIMER
While every precaution has been taken in the preparation of this publication, NOAA assumes no re-
sponsibility for any errors or omissions that may appear herein. Nor does it assume any liability for
damages resulting from the use of the information contained in this publication.

TRADEMARKS
All brand and product names are trademarks of their respective companies. Mention of a commercial
company or product does not imply endorsement by NOAA or the Department of Commerce. Using
information from this publication concerning proprietary products for publicity or advertising purposes
is not authorized.

iii

CONTENTS

Contents

INTRODUCTION 1
The Format Problem 2

Standard Formats 2
Smart Programs 2
The FreeForm Solution 2

The FreeForm System 3
FreeForm Files 4
About this Guide 4
Conventions 5

QUICK TOUR OF FREEFORM 6
Writing Format Descriptions 7
Changing Formats 8
Viewing Binary Data Files 9
Creating Summary Files 9

Generating the Summaries 9
Interpreting the Summaries 10

FORMAT DESCRIPTIONS 12
FreeForm Variable Types 13
FreeForm File Types 15
Format Description Files 16
Format Descriptions 16

Format Type and Title 16
Format Descriptors 17
Variable Descriptions 18

FREEFORM CONVENTIONS 19
File Name Conventions 20

File Name Extensions 20
File Name Relationships 20

Determining Input and Output Formats 21
Locating Format Files 21

Search Sequence 22
Case Sensitivity 23

Command Line Arguments 23
Specifying Input and Output Files 23
Specifying Format Description Source 24
Changing Run-time Parameters 24
Defining Filters 25

FORMAT CONVERSION 26
newform 27
readfile 27
Creating a Binary Archive 28

Simple ASCII to Binary Conversion 29
Conversion to a More Portable Binary 31

FreeForm
To access and use the electronic version of this table of contents, display the bookmarks in the overview area.

iv

CONTENTS

File Names and Context 33
“Nonstandard” Data File Names 34
“Nonstandard” Format Description File Names 35

Changing ASCII Formats 36

CONVERSION VARIABLES 39
Accessing Conversion Functions 40
Latitude and Longitude Conversions 40

Degrees, Minutes, and Seconds 41
Absolute Degrees and Minutes 42

Date and Time Conversions 44
Year, Month, Day 44
Serial Dates 45

HEADER FORMATS 47
Header Types 48

File Headers 48
Record Headers 49
Separate Header Files 51
The dBASE Format 52

fillhdr 54
gethdr 55

Viewing Headers 55
Changing Header Formats 56

DATA CHECKING 58
Generating the Summaries 59
Interpreting the Summaries 61

HDF UTILITIES 64
makehdf 65
splitdat 67
pntshow 70

Extracting Headers and Data 70
Extracting Data Only 71

DEVELOPING FREEFORM APPLICATIONS 73
FreeForm Application Layers 74
Building an Application 74

Example Program 74
Source Code–getll.c 75
Using getll 82

APPENDIX A: CONVERSION VARIABLE NAMES 84
General 85
Latitude/Longitude 85

General Lat/Lon 85
Degrees, Minutes, Seconds 86

v

CONTENTS

Geographic Quadrants 86
Longitude East 86
Quadrant, Sign 87

Earthquake Magnitude 87
Date and Time 88

APPENDIX B: ERROR HANDLING 89
Error Messages 90

APPENDIX C: QUERY SYNTAX 91
Symbols and Operators–List 91
Functions–List 92
Definitions of Terms 94
Rules 94
Pre-defined Constants 95
Operators–with Definitions 95
Functions–with Definitions 98
Order of Operations 100
General Suggestions 101
Examples 101

INDEX 103

1

INTRODUCTION

1

Introduction

The FreeForm Data Access System is a flexible system for specifying data formats to facilitate data
access, management, and use. How many data sets have you not examined or used because they were
not in the correct format for your applications? How many others have foregone analysis of your data
for the same reason? FreeForm can save you countless hours of changing the formats of data sets prior
to analyzing them.

The large variety of data formats is a primary obstacle in the way of creating flexible data management
and analysis software. FreeForm was conceived, developed, and implemented at the National Geo-
physical Data Center (NGDC) to alleviate the problems that occur when you need to use data sets with
varying native formats or to write format-independent applications.

2

INTRODUCTION

The Format Problem
Programmers can readily describe a format for a specific data set, but a compiled application cannot be
used with other data sets until either the data or the program is modified. Two possible methods for
handling data in a variety of formats are to reformat all the data into a standard format or to develop
programs that can read data in many different formats.

Standard Formats
A number of standard formats have been proposed over the years and the specifications for these for-
mats have generally improved. However, standard formats do not enjoy widespread use, which will
probably continue to be the case.

Many scientists have large amounts of data on hand in non-standard formats. Converting to standard
formats is cumbersome and time-consuming. In addition, there are so many standard formats that for-
mat-independent applications are required even if only standard formats are used.

Smart Programs
Software developers can create programs that use data in many different formats. This approach has
several advantages:

• The programs are flexible enough to allow the introduction of new data formats.

• The scientist collecting the data is not forced to conform to any single data format.

• The information contained in the original data is not lost through reformatting.

The FreeForm Solution
FreeForm uses a variation on the smart program approach. With FreeForm, you specify formats out-
side application programs by writing text files that describe the formats of your data sets. The applica-
tions then use these format files as they process data. FreeForm-based applications are in effect format-
independent and you do not need to modify the data or the applications.

FreeForm provides a mechanism for data description that is flexible and easy to use. A set of ready-to-
use programs for manipulating a wide variety of data in standard and non-standard formats is also
provided. FreeForm lets you concentrate on your specialty rather than trying to figure out how to ac-
cess and manipulate data in multiple formats. Additionally, the application programmer can use Free-
Form libraries and data constructs to develop format-independent applications.

3

INTRODUCTION

The FreeForm System
The FreeForm Data Access System comprises a format description mechanism, a library of C func-
tions, object-oriented constructs for data structures, and a set of programs (built using the FreeForm li-
brary and data objects) for manipulating data. FreeForm also includes several utilities for use with
HDF files.

There are two types of FreeForm users. Data users and providers create format description files and
run FreeForm programs such as newform. Programmers use the FreeForm library and data objects to
write data management and analysis applications.

FreeForm includes the following programs for ac-
cessing and manipulating data in various formats:

newform reformats data

readfile reads binary files

checkvar creates variable summaries

fillhdr writes maximums and minimums
to a header

gethdr displays headers

The FreeForm data objects provide an interface
between application and data files.

Programmers use the FreeForm library routines
to develop applications.

Data users and providers write format descrip-
tion files that FreeForm-based programs use to
correctly access data.

Data

FreeForm
Library

Data Objects

Applications

User Interface

Format
Descriptions

DeveloperDeveloper
 Interface

4

INTRODUCTION

FreeForm Files
The FreeForm file set includes program files (executables), format description files and data files used
in examples throughout this guide, and electronic copies of this guide. You can download a single self-
extracting compressed file that contains the FreeForm file set from Internet using FTP. To download
the file, your computer must be connected to Internet and support the FTP protocol. The following
procedure assumes you are accessing FTP from the command line.

To download the FreeForm file set:

1. Change to the directory in which you want to put the FreeForm files.

2. From the command line, enter ftp ftp.ngdc.noaa.gov.

3. Log in using anonymous for the user ID. Use your own e-mail address or name as the pass-
word.

4. Change directory (cd) to Solid_Earth/Access_Tools/FREEFORM/XXX.
where XXX is the platform-specific directory:

PC DOS = PC
Unix Sun = SUN
Unix SGI (Silicon Graphics) = SGI

To list the directory contents, enter ls -CF.

5. Transfer the appropriate file (ff31.exe for DOS, FREEFORM31.XXX.tar.Z for Unix) in bi-
nary mode. Use the image or binary command to set the mode to binary and the get command
to transfer the file. Enter bye to exit FTP.

6. To extract and decompress files on a DOS system, enter ff31. On Unix systems, enter uncom-
press file_name, then tar -xf file_name.

To obtain a diskette containing FreeForm files (for DOS systems) or if you have questions, feel free to
contact NGDC:

National Geophysical Data Center
325 Broadway
Boulder, CO 80303-3328
Fax: (303) 497-6513
email: info@ngdc.noaa.gov

About this Guide
This guide provides instructions for writing format descriptions, using FreeForm programs, and writing
your own FreeForm-based applications. The content of each chapter is outlined below.

Chapter 1, Introduction (this chapter), introduces the FreeForm Data Access System and summarizes
typographic conventions and the contents of this guide.

Chapter 2, Quick Tour of FreeForm, provides a brief introduction to writing format descriptions and
using several of the FreeForm programs.

Chapter 3, Format Descriptions, provides detailed information about writing format descriptions to
facilitate data access.

5

INTRODUCTION

Chapter 4, FreeForm Conventions, presents FreeForm file name conventions, the search rules for locat-
ing format files, and standard command line arguments for FreeForm programs.

Chapter 5, Format Conversion, shows you how to use the FreeForm program newform to convert data
from one format to another and also how to read the data in a binary file.

Chapter 6, Conversion Variables, discusses FreeForm conversion variables, which let you translate
between a number of representations of space and time values.

Chapter 7, Header Formats, tells you how to use the FreeForm programs fillhdr and gethdr to work
with header formats.

Chapter 8, Data Checking, discusses the FreeForm program checkvar, which you can use to check
data distribution and quality.

Chapter 9, HDF Utilities, covers the three programs you can use with HDF (hierarchical data format)
files. The makehdf program converts binary and ASCII data files to HDF files. The splitdat program
translates files with headers and data into indexed HDF files. The pntshow program extracts point data
from HDF files.

Chapter 10, Developing FreeForm Applications, summarizes how to use the FreeForm Data Access
System to build FreeForm-based programs.

Appendix A, Conversion Variable Names, lists the conversion variable names that FreeForm recog-
nizes.

Appendix B, Error Handling, presents a list of common FreeForm error messages.

Appendix C, Query Syntax, lists the operators, symbols, and functions you can use to construct que-
ries.

Conventions
The following typographic conventions are used throughout this guide (except Appendix C).

• File names, executable program names, commands, and user input are in boldface.

• Emphasized words, book titles, and axis names (e.g., x axis) are in italics.

• Code examples, data file contents, and system output are in this typeface .

• Key names (e.g., Return) have an initial capital letter.

• A position box is used to indicate column position of field values in data files. It is shown at
the beginning of a data list in the documentation, but does not appear in the data file itself.

 1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890

6

QUICK TOUR

2

Quick Tour of FreeForm

This chapter provides you a quick introduction to writing format descriptions and using several Free-
Form programs. You will look at a format description file, convert data from one format to another,
read the data in a binary file, and create summary files.

FreeForm
In order to do the examples in this chapter and the rest of this guide, you must download the FreeForm file set via FTP. See the section "FreeForm Files" in chapter 1 for downloading instructions.

7

QUICK TOUR

Writing Format Descriptions
You can easily create FreeForm format description files that describe the formats of input and output
data and headers. FreeForm-based programs then use these files to correctly access and manipulate
data in various formats. An example format description file is shown and described below.

⇒ For complete information about writing format descriptions, see chapter 3.

latlon.fmt
/ This is the format description file for data files latlon.bin
/ and latlon.dat. Each record in both files contains two fields,
/ latitude and longitude.

binary_data "binary format"
latitude 1 8 double 6
longitude 9 16 double 6

ASCII_data "ASCII format"
latitude 1 10 double 6
longitude 12 22 double 6

Note! You can display latlon.fmt on your screen by changing to the directory containing the Free-
Form example files and using the appropriate command (type, cat, or more).

This format description file contains two format descriptions. The first describes data in the binary data
file latlon.bin and the second describes data in the ASCII data file latlon.dat (contents shown below).

The binary and ASCII variables both have the same names. The binary variables are defined to occupy
8 bytes each (positions 1-8 and 9-16). The ASCII variable latitude occupies 10 bytes (positions 1 to
10) and longitude occupies 11 bytes (positions 12-22). Both the binary and ASCII variables are
stored as doubles because they have more than seven digits and include a decimal point (see the
latlon.dat listing below). The precision of 6 for all the variables indicates that there are six digits to the
right of the decimal point.

latlon.dat
 1 2 3 4 5 6
12345678901234567890123456789012345678901234567890123456789012345

-47.303545 -176.161101
 -0.928001 0.777265
-28.286662 35.591879
 12.588231 149.408117
-83.223548 55.319598
 54.118314 -136.940570
 38.818812 91.411330
-34.577065 30.172129
 27.331551 -155.233735
 11.624981 -113.660611
 77.652742 -79.177679
 77.883119 -77.505502
-65.864879 -55.441896
-63.211962 134.124014
 35.130219 -153.543091

8

QUICK TOUR

 29.918847 144.804390
-69.273601 38.875778
-63.002874 36.356024
 35.086084 -21.643402
-12.966961 62.152266

Note! You can display latlon.dat on your screen by changing to the directory containing the Free-
Form example files and using the appropriate command (type, cat, or more).

Changing Formats
The FreeForm program newform is used to convert data from one format to another. Format descrip-
tions for all the data (input and output) involved in the conversion must be included in a format de-
scription file.

In this example, you will use newform to convert ASCII data in the input file latlon.dat to binary data
in the output file latlon2.bin. First you need to create a format description file like the following that
describes the data in these two files.

latlon2.fmt
/ This is the format description file for data files latlon.dat
/ and latlon2.bin. Each record in both files contains two fields,
/ latitude and longitude.

ASCII_data "ASCII format"
latitude 1 10 double 6
longitude 12 22 double 6

binary_data "binary format"
latitude 1 4 long 6
longitude 5 8 long 6

The ASCII and binary variables both have the same names. The ASCII variable latitude occupies
10 bytes (positions 1-10) and longitude occupies 11 bytes (positions 12-22). The ASCII variables
are defined to be of type double because they have more than seven digits and include a decimal
point. (See the latlon.dat listing above.) The binary variables are defined to occupy four bytes each
(positions 1-4 and 5-8) and to be of type long . The precision for all is 6.

Note! You can display latlon2.fmt on your screen by changing to the directory containing the Free-
Form example files and using the appropriate command (e.g., type, cat, or more).

To convert the ASCII data in latlon.dat to binary data:

1. Change to the directory that contains the FreeForm example files.

2. Enter the following command:

newform latlon.dat -f latlon2.fmt -o latlon2.bin

This command creates a new binary data file called latlon2.bin with the 20 latitude and longi-
tude values in latlon.dat stored as binary longs.

⇒ For complete information about using newform, see chapter 5.

9

QUICK TOUR

Viewing Binary Data Files
The FreeForm Data Access System includes an interactive utility program, readfile, for reading binary
files. You can use readfile to read the binary file latlon2.bin and check that the data are correct.

To read latlon2.bin:

1. Change to the directory that contains the FreeForm example files.

2. On the command line, enter readfile latlon2.bin

3. The data are stored as longs, so enter l to view the first value.
The number -47303545 , corresponding to the first number in latlon.dat (but with implied
precision, i.e., without a decimal point), should appear.

4. To check additional numbers, continue to enter l or press Return.
The numbers should correspond to those in latlon.dat.

5. When you want to quit readfile, enter q.

⇒ ⇒ For complete information about using readfile, see chapter 5.

Creating Summary Files
The FreeForm-based utility program checkvar creates a summary file for each variable in a data file, a
list of maximum and minimum values, and a summary of processing activity. A variable summary file
(also called a histogram data file) contains histogram information that shows the variable’s distribution
in the data file. In this example, you will use checkvar to create a processing summary file and vari-
able summary files for the two variables latitude and longitude in the file latlon2.bin.

Generating the Summaries
To create summary files for latlon2.bin:

1. Change to the directory that contains the FreeForm example files.

2. Enter the following command:

checkvar latlon2.bin -o checkvar.out

A summary of processing information and the maximum and minimum for each variable are
displayed on the screen. The following three files are created:

◊ checkvar.out recaps processing activity, maximums and minimums

◊ latitude.lst shows distribution of the latitude values in latlon2.bin

◊ longitud.lst shows distribution of the longitude values in latlon2.bin
(DOS truncates file names to 8 characters)

longitude.lst (Unix)

3. To view the files, use the appropriate command, i.e., type, cat, or more.

10

QUICK TOUR

Interpreting the Summaries
The three files output by checkvar are shown and discussed below. To remind yourself of the input
values, refer to latlon.dat since it contains the same values as latlon2.bin in ASCII representation.

checkvar.out
Input file: latlon2.bin
No requested precision, Approximate number of sorting bins = 100

Input data format (latlon2.fmt)
binary_input_data "binary format"
The format contains 2 variables; length is 8.

Output data format (latlon2.fmt)
ASCII_output_data "ASCII format"
The format contains 2 variables; length is 24.

Histogram data precision: 5, Number of sorting bins: 20
latitude: 20 values read
minimum: -83.223548 found at record 5
maximum: 77.883119 found at record 12
Summary file: latitude.lst

Histogram data precision: 5, Number of sorting bins: 20
longitude: 20 values read
minimum: -176.161101 found at record 1
maximum: 149.408117 found at record 4
Summary file: longitud.lst

The processing summary file checkvar.out first shows the name of the input data file (latlon2.bin).
Since precision and a maximum number of bins were not specified on the command line, No re-
quested precision and the default value for sorting bins of 100 are shown.

A summary of each format shows the type of format (in this case, Input data format and Output
data format) and the name of the format file containing the format descriptions (latlon2.fmt de-
scribes both the input and output formats; note that checkvar ignores output formats). Next, you see
the format descriptor as resolved by FreeForm (e.g., binary_input_data) and the format title (e.g.,
"binary format"). Then the number of variables in a record and total record length are given; for
ASCII, record length includes the end-of-line character.

A section for each variable processed by checkvar indicates the histogram precision and actual num-
ber of sorting bins. Under some circumstances, the precision of values in the histogram file may be dif-
ferent than the precision you specified on the command line. No precision was specified on the com-
mand line in this case, so the default maximum precision of 5 is used. The second line shows the name
of the variable (latitude and longitude) and the number of values in the data file for the variable
(20 for both latitude and longitude).

The minimum and maximum values for the variable are shown next (-83.223548 is the minimum
and 77.883119 is the maximum value for latitude). The maximum and minimum values are given
here with a precision of 6, which is the precision specified in the relevant format description file. The
locations of the maximum and minimum values in the input file are indicated. (-83.223548 is the fifth
latitude value in latlon2.bin and 77.883119 is the twelfth).

Finally, the name of the histogram data (or variable summary) file generated for each variable is given.
The two example histogram files, latitude.lst and longitud.lst , are shown next.

11

QUICK TOUR

latitude.lst
-83.22355 1
-69.27361 1
-65.86488 1
-63.21197 1
-63.00288 1
-47.30355 1
-34.57707 1
-28.28667 1
-12.96697 1
 -0.92801 1
 11.62498 1
 12.58823 1
 27.33155 1
 29.91884 1
 35.08608 1
 35.13021 1
 38.81881 1
 54.11831 1
 77.65274 1
 77.88311 1

longitud.lst
-176.16111 1
-155.23374 1
-153.54310 1
-136.94057 1
-113.66062 1
 -79.17768 1
 -77.50551 1
 -55.44190 1
 -21.64341 1
 0.77726 1
 30.17212 1
 35.59187 1
 36.35602 1
 38.87577 1
 55.31959 1
 62.15226 1
 91.41133 1
 134.12401 1
 144.80439 1
 149.40811 1

The histogram files consist of two columns. The first indicates boundary values for data bins and the
second gives the number of data points in each bin. The boundary values are determined dynamically
by checkvar and often do not correspond exactly to data values in the input file, even if the checkvar
and data file precisions are the same.

The first data bin in latitude.lst contains data points in the range -83.22355 (inclusive) to -69.27361
(exclusive). The first bin has one data point, -83.223548 (refer to latlon.dat on page 7). The fifth
data bin contains latitude values from -63.00288 (inclusive) to -47.30355 (exclusive); the data point in
the fourth bin is -63.002874 .

⇒ For complete information about using checkvar, see chapter 8.

12

FORMAT DESCRIPTIONS

3

Format Descriptions

Format descriptions define the formats of input and output data and headers. FreeForm provides an
easy-to-use mechanism for describing data. FreeForm programs and FreeForm-based applications that
you develop use these format descriptions to correctly access data. Any data file used by FreeForm
programs must be described in a format description file.

13

FORMAT DESCRIPTIONS

FreeForm Variable Types
The data sets you produce and use may contain a variety of variable types. The characteristics of the
types that FreeForm supports are summarized in the table below, which is followed by a description of
each type.

Table 1: Variable Types

Name Minimum Value Maximum Value Binary Size
(bytes)

Precision
(significant
digits)

char

uchar

short

ushort

long

ulong

float

double

constant

initial

convert

0

-32,767

0

-2,147,483,647

0

10-37

10-307

255

32,767

65,535

2,147,483,647

4,294,967,295

1038

10308

*

1

2

2

4

4

4

8

*

record length

*

6**

15**

* User-specified
** Can vary depending on environment

Note! The sizes in the table are machine-dependent. Those given are for PC-compatible machines and
many Unix workstations.

char
The char variable type is used for character strings. Variables of this type, including numerals, are in-
terpreted as characters, not as numbers.

uchar
The uchar (unsigned character) variable type can be used for integers between 0 and 255 (28- 1). Vari-
ables that can be represented by the uchar type (for example: month, day, hour, minute) occur in many
data sets. An advantage of using the uchar type in binary formats is that only one byte is used for each
variable. Variables of this type are interpreted as numbers, not characters.

short
A short variable can hold integers between -32,767 and 32,767 (215- 1). This type can be used for
signed integers with less than 5 digits, or for real numbers with a total of 4 or fewer digits on both
sides of the decimal point (-99 to 99 with a precision of 2, -999 to 999 with a precision of 1, and so
on).

14

FORMAT DESCRIPTIONS

ushort
A ushort (unsigned short) variable can hold integers between 0 and 65,535 (216 - 1).

long
A long variable can hold integers between -2,147,483,647 and +2,147,483,647 (231 - 1). This variable
type is commonly used to represent floating point data as integers, which may be more portable. It can
be used for numbers with 9 or fewer digits with up to 9 digits of precision, for example, latitude or
longitude (-180.000000 to 180.000000).

ulong
The ulong (unsigned long) variable type can be used for integers between 0 and 4,294,967,295
(232 - 1).

float, double
Numbers that include explicit decimal points are either float or double depending on the desired num-
ber of digits. A float has a maximum of 6 significant digits, a double has 15 maximum. The extra dig-
its of a double are useful, for example, for precisely specifying time of day within a month as decimal
days. One second of time is approximately 0.00001 day. The number specifying day (maximum = 31)
can occupy up to 2 digits. A float can therefore only specify decimal days to a whole second
(31.00001 occupies seven digits). A double can, however, be used to track decimal parts of a second
(for example, 31.000001).

constant
FreeForm has two variable types, constant and initial, for sequences of characters (or bytes) that are
the same for all records in a file. A constant variable is placed into the output buffer on initialization.
The constant value is the same as the name of the variable. For example, given the variable description
below:

NGDCDATA 1 8 constant 0

the string NGDCDATA , which is both the variable name and value, is placed in characters 1-8 of each
output record.

FreeForm recognizes the special constant EOL as an end-of-line character, which is used with multi-
line records. The variable descriptions shown next are for a data record that includes several variables,
the end-of-line character, then several more variables.

year 1 2 short 0
.
. (more variables)
.

latitude_sec 75 80 float 2
EOL 81 82 constant 0
longitude_deg 83 89 float 3
longitude_min 72 78 float 2

.

. (remaining variables)

.

The variable longitude_deg starts a new line in the data file.

15

FORMAT DESCRIPTIONS

initial
The variable type initial can be used when you want to set more than one constant value at a time. It
provides an initialization template for the output record. This template is read from a file with the same
name as the initial variable. For example, suppose you have the following variable description:

seattle.ini 1 80 initial 0

The initial variable is named seattle.ini , so the initialization template file seattle.ini is read
and used to initialize the output records. Assume the Seattle template contains the following values,
which are written to an earthquake record:

SEA19 SEA

The other values in the output record are written over this template resulting in a record that looks like
the following:

SEA19 5 -146.34172 -47.39710 1011 SEA 910802

Note! The length of the template file must equal the length of the record in the output format. The file
name and extension are of your choosing.

convert
The convert variable type allows you to access an extensive set of functions for constructing output
variables that do not exist in input files, but can be computed from variables which do. FreeForm can
transparently identify and call conversion functions during the data access process if you use properly
named input and output variables in variable descriptions.

⇒ See chapter 6 for examples and Appendix A for a complete list of names for conversion variables.

header
Previous versions of FreeForm included header variables. You can now specify header formats in for-
mat description files.

⇒ For details, see the section “Format Descriptors” below and also chapter 7.

FreeForm File Types
FreeForm supports binary, ASCII, and dBASE file types. Binary data are stored in a fixed amount of
space with a fixed range of values. This is a very efficient way to store data, but the files are machine-
readable rather than human-readable. Binary numbers can be integers or floating point numbers.

Numbers and character strings are stored as text strings in ASCII. The amount of space used to store a
string is variable, with each character occupying one byte.

The dBASE file type, used by the dBASE product, is ASCII text without end-of-line markers.

16

FORMAT DESCRIPTIONS

Format Description Files
Format description files accompany data files. A format description file can contain descriptions for
one or more formats. You include descriptions for header, input, and output formats as appropriate.
Format descriptions for more than one file may be included in a single format description file.

An example format description file is shown next. The sections that follow describe each element of a
format description file.

/ This format description file is for ⇒ comment lines
/ data files latlon.bin and latlon.dat.

binary_data "Default binary format" ⇒ format type and title
latitude 1 4 long 6 ⇒ variable description
longitude 5 8 long 6 ⇒ variable description

⇒ blank line(s) to mark the end
 of a format description

ASCII_data "Default ASCII format" ⇒ format type and title
latitude 1 10 double 6 ⇒ variable description
longitude 12 22 double 6 ⇒ variable description

⇒ end of the format description
 file

You can include blank lines between format descriptions and comments in a format description file as
necessary. Optional comment lines begin with a slash (/). FreeForm ignores comments.

Format Descriptions
A format description file comprises one or more format descriptions. A format description consists of a
line specifying the format type and title followed by one or more variable descriptions.

Example:
/ This is an example format description

binary_data "Default binary format" ⇒ format type and title
latitude 1 4 long 6 ⇒ variable description
longitude 5 8 long 6 ⇒ variable description

Format Type and Title
A line specifying the format type and title begins a format description. Format descriptors, for exam-
ple, binary_data , are used to indicate format type to FreeForm. The format title, for example,
"Default binary format" , briefly describes the format. It must be surrounded by quotes and fol-
low the format descriptor on the same line. The maximum number of characters for the format title is
80 including the quotes.

format
description

format
description

17

FORMAT DESCRIPTIONS

Format Descriptors
Format descriptors indicate (in the order given) file type, read/write type, and file section. Possible
values for each descriptor component are shown in the following table.

Table 2: Descriptor Components

File Type Read/Write
Type (optional)

File Section

ASCII
binary
dBASE

input
output

data
file_header
record_header
file_header_separate*
record_header_separate*

*The qualifier separate indicates there is a header file separate from the data file.

The components of a format descriptor are separated by underscores (_). For example,
ASCII_output_data indicates that the format description is for ASCII data in an output file. The or-
der of descriptors in a format description should reflect the order of format types in the file. For in-
stance, the descriptor ASCII_file_header would be listed in the format description file before
ASCII_data . The format descriptors you can use in FreeForm are listed in Table 3.

Table 3: Format Descriptors

Data Header Special

XXX_data
XXX_input_data
XXX_output_data

XXX_file_header
XXX_file_header_separate
XXX_record_header
XXX_record_header_separate

XXX_input_file_header
XXX_input_file_header_separate
XXX_input_record_header
XXX_input_record_header_separate

XXX_output_file_header
XXX_output_file_header_separate
XXX_output_record_header
XXX_output_record_header_separate

RETURN *
EOL**

where XXX = ASCII , binary , or dBASE
Example: XXX_data = ASCII_data , binary_data , or dBASE_data

* The RETURN descriptor lets FreeForm skip over end-of-line characters in the data.
** The EOL descriptor is a constant indicating an end-of-line character should be inserted in a

multi-line record.

⇒ For more information about header formats, see chapter 7.

18

FORMAT DESCRIPTIONS

Variable Descriptions
A variable description defines the name, start and end column position, type, and precision for each
variable. The fields in a variable description are separated by white space. Two variable descriptions
are shown below with the fields indicated. Each field is then described.
/ Here are two example variable descriptions.
latitude 1 10 double 6
longitude 12 22 double 6

name
start
end
type
precision

Name
The variable name is case-sensitive, up to 63 characters long with no blanks. The variable names in the
example are latitude and longitude . If the same variable is included in more than one format de-
scription within a format description file, its name must be the same in each format description.

Start Position
The column position where the first character (ASCII) or byte (binary) of a variable value is placed.
The first position is 1, not 0. In the example, the variable latitude is defined to start at position 1
and longitude at 12.

End Position
The column position where the last character (ASCII) or byte (binary) of a variable value is placed. In
the example, the variable latitude is defined to end at position 10 and longitude at 22.

Type
The variable type can be a standard type such as char, float, double, or a special FreeForm type. The
type for both variables in the example is double. See the section “FreeForm Variable Types” for de-
scriptions of supported types.

Precision
Precision defines the number of digits to the right of the decimal point. For float or double variables,
precision only controls the number of digits printed or displayed to the right of the decimal point in an
ASCII representation. The precision for both variables in the example is 6.

19

FREEFORM CONVENTIONS

4

FreeForm Conventions

File name conventions have been defined for FreeForm. If you follow these conventions, FreeForm
can locate format files through a default search sequence. Using the file name conventions also lets
you reduce the number of arguments on the command line. In addition to standard file names, Free-
Form programs recognize various standard command line arguments.

20

FREEFORM CONVENTIONS

File Name Conventions
Naming conventions have been established for files accessed by FreeForm. Although you are not re-
quired to follow these conventions, using them lets you enter abbreviated commands when you are
using FreeForm-based programs. FreeForm can then automatically execute several operations:

• Determination of input and output formats when they are not explicitly identified in the relevant
format descriptions in format files

• Location of format files when they are not specified on the command line

File Name Extensions
The expected extensions for data files are as follows:

.dat = ASCII, e.g., latlon.dat

.dab = dBASE, e.g., latlon.dab

.bin = binary or anything that is not .dat or .dab, e.g., latlon.bin

The expected extension for format description files is .fmt, e.g., latlon.fmt. You should not use mixed
case extensions for format description files if you want to take advantage of FreeForm’s default search
capabilities. If you explicitly specify the names of format description files on the command line, you
can use mixed case extensions.

Note! Previous versions of FreeForm used variable description files (formerly called format specifica-
tion files) each of which contained variable descriptions for one file. Expected extensions for
these files were .afm (ASCII), .bfm (binary), and .dfm (dBASE). Variable descriptions for one
or more files can now be incorporated into a single format description file. It is recommended
that you convert and combine (as appropriate) existing variable description files into format
description files.

File Name Relationships
FreeForm-based programs expect certain relationships between data file and format description file
names as outlined below.

• The data file is named datafile.ext where datafile is the file name of your choosing and ext is the
extension.
Example: latlon.dat

• The corresponding format description file should be named datafile.fmt.
Example: latlon.fmt

• If one format description file is used for multiple data files, all with the same extension, the format
description file should be named ext.fmt.
Example: ll.fmt is the format description file for lldat1.ll, lldat2.ll, and lldat3.ll.

Again, although not required, it is to your advantage to use these conventions.

21

FREEFORM CONVENTIONS

Note! The expected file names for variable description files in previous versions of FreeForm were
datafile.afm (ASCII), datafile.bfm (binary), and datafile.dfm (dBASE). It is recommended
that you convert existing variable description files to format description files.

Determining Input and Output Formats
You can optionally include read/write type (input or output) in format descriptors, e.g.,
ASCII_input_data . You may not want to specify the read/write type in some circumstances. For ex-
ample, you may need to translate from native ASCII to binary, then back to ASCII. ASCII is the input
format in the first translation and the output format in the second translation, vice versa for binary. You
would need to edit the format description file before executing the second translation if you included
read/write type in the format descriptors.

Note! If you use the -ft option, you do not need to edit the format description file. See
“Specifying Format Description Source” later in this chapter.

If you do not specify read/write type, FreeForm can nevertheless determine which format in a format
description file is input and which is output as long as you have adhered to FreeForm filenaming con-
ventions.

• If the input format is not specified, and
the input data filename extension is .bin, assume binary input.
the input data filename extension is .dab, assume dBASE input.
the input data filename extension is .dat, assume ASCII input.
the input data filename extension is anything else, assume binary input.

• If the output format is not specified, and
the input format is binary, the output is ASCII or dBASE, whichever is found first.
the input format is dBASE, the output is ASCII or binary, whichever is found first.
the input format is ASCII, the output is binary or dBASE, whichever is found first.

Note! The appropriate format descriptions must be in the format description file(s) used by FreeForm
for a translation. If, for example, FreeForm determines the input format is binary and the output
format is ASCII, there must be a format description for each type.

The checkvar program needs only an input format.

Locating Format Files
FreeForm programs use the following search sequence to find a format file (format or variable de-
scription file) for the data file datafile.ext when the format file name is not explicitly specified on the
command line. In summary, FreeForm searches the directory specified by the GeoVu keyword
format_dir (defined in a equivalence table or in the environment), the current or working directory,
and the data file’s home directory. The rules are applied in the order given below until a format file is
found or all rules have been exhausted. If the relevant format file does not follow FreeForm conven-
tions for name or location, it should be explicitly specified on the command line.

22

FREEFORM CONVENTIONS

Note! GeoVu is a FreeForm-based application for data access and visualization. FreeForm applica-
tions other than GeoVu use GeoVu keywords.

⇒ For information about equivalence tables, see the GeoVu Tools Reference Guide.

Search Sequence
1. Search the directory given by the GeoVu keyword format_dir for a format description file

named datafile.fmt.

2. Search the directory given by the GeoVu keyword format_dir for variable description files
named datafile.afm, datafile.bfm, and datafile.dfm.

If the data file has extension .dat: datafile.afm is used as the input
variable description file
datafile.bfm or datafile.dfm, if datafile.bfm doesn’t
exist, is used as the output variable description file

If the data file has extension .dab: datafile.dfm is used as the input
variable description file
datafile.afm or datafile.bfm, if datafile.afm doesn’t
exist, is used as the output variable description file

If the data file has extension .bin, datafile.bfm is used as the input
extension other than above, variable description file
or no extension: datafile.afm or datafile.dfm, if datafile.afm
doesn’t

exist, is used as the output variable description file

Note! Step 2 is included to accommodate variable description files that were created using previous
versions of FreeForm. It is recommended that you convert existing variable description files to
format description files.

3. Search the directory given by the GeoVu keyword format_dir for a format description file
named ext.fmt.

If the GeoVu keyword format_dir is not found, FreeForm continues the search for a format file as
follows.

4. Search the current (default) directory for a format description file named datafile.fmt.

5. Search the current directory for variable description files named datafile.afm, datafile.bfm,
and datafile.dfm. Use the criteria in step 2 for determining input and output format files.

6. Search the current directory for a format description file named ext.fmt.

If the data file’s home directory is not the same as the current directory, FreeForm continues the search
for a format file with steps 7-9. The data file’s home directory is given by the directory path compo-
nent of the data file name. If the data file name has no directory path component, the home directory
search is not done.

23

FREEFORM CONVENTIONS

7. Search the data file’s home directory for a format description file named datafile.fmt.

8. Search the data file’s home directory for variable description files named datafile.afm,
datafile.bfm, and datafile.dfm. Use the criteria in step 2 for determining input and output
format files.

9. Search the data file’s home directory for a format description file named ext.fmt.

Case Sensitivity
FreeForm adheres to the following rules for case sensitivity (in applicable operating systems) when it
searches for a format file for the data file datafile.ext.

• FreeForm preserves the case of datafile, for example, the default format file for the data file
LATLON.BIN is LATLON.fmt (or LATLON.bfm).

• FreeForm searches for a format file with a lower case extension. That is, the format file must have
its extension in lower case no matter what the case of datafile. For example, the default format file
for the data file LatLon.dat is LatLon.fmt (or LatLon.afm), and TIMEDATE.fmt (or
TIMEDATE.bfm) is the default format file for TIMEDATE.bin.

• In searching for a format description file of type ext.fmt, FreeForm preserves the case of ext. For
example, for data files named lldat1.LL, lldat2.LL, and latlon3.LL, the default format description
file is LL.fmt.

Command Line Arguments
FreeForm programs can take various command line arguments. The most widely used or standard ar-
guments are discussed in this section. They are used for several different purposes: identifying input
and output files, identifying format files and titles, changing run-time operation parameters, and defin-
ing data filters.

The only required argument for any FreeForm program is the name of the input file or file to be proc-
essed. All other arguments are optional and can be in any order following the input file name. The
command line of a FreeForm program with the standard arguments has the following form:

application_name input_file [-f format_file] [-if input_format_file] [-of output_format_file]
[-ft "title"] [-ift "title"] [-oft "title"] [-b local_buffer_size]
[-c +/-count] [-v var_file] [-q query_file] [-o output_file]

Note! To see a summary of command line usage for a FreeForm program, enter the program’s name
on the command line without any arguments.

Specifying Input and Output Files
input_file

Name of the file to be processed. Following FreeForm naming conventions, the standard exten-
sions for data files are .dat for ASCII format, .bin for binary, and .dab for dBASE.

-o output_file
Option flag followed by the name of the output file. The standard extensions are the same as for
input files.

24

FREEFORM CONVENTIONS

Specifying Format Description Source
FreeForm offers a number of command line options for specifying the source of the format descrip-
tions that a program must find in order to process data. The proper option or combination of options to
use depends on how you have constructed your format files.

-f format_file
Option flag followed by the name of the format description file describing both input and output
data.

-if input_format_file
Option flag followed by the name of the format description file describing the input data. Also use
this option for an input variable description file written using earlier versions of FreeForm.

-of output_format_file
Option flag followed by the name of the format description file describing the output data. Also
use this option for an output variable description file written using earlier versions of FreeForm.

-ft "title"
Option flag followed by the title (enclosed in quotes) of the format to be used for both input and
output data, in which case there is no reformatting. The title follows format type on the first line of
a format description in a format description file.

-ift "title"
Option flag followed by the title (enclosed in quotes) of the desired input format.

-oft "title"
Option flag followed by the title (enclosed in quotes) of the desired output format.

Note! Previous versions of FreeForm used variable description files (.afm, .bfm, .dfm). It is recom-
mended that you convert and combine (as appropriate) existing variable description files into
format description files.

The various options available for specifying the source of a format description offer you a great deal of
flexibility–in naming files, setting up format description files, and on the command line. In using these
options, you need to consider the content of your format description files and how FreeForm will in-
terpret the arguments on the command line.

Changing Run-time Parameters
FreeForm includes three arguments that let you change run-time parameters according to your needs.
One argument lets you specify local buffer size, another indicates the number of records to process,
and the third indicates which variables to process.

-b local_buffer_size
Option flag followed by the size of the memory buffer used to process the data and format files.

Default buffer size is 32,768 bytes; must be < 65,536 bytes (PCs)

You many want to decrease the buffer size if you are running with low memory (on a PC). Keep in
mind that too small a buffer may result in unexpected behavior.

25

FREEFORM CONVENTIONS

-c count
Option flag followed by a number that specifies how many data records at the head or tail of the
file to process.
If count > 0, count records at the beginning of the file are processed.
If count < 0, count records at the tail or end of the file are processed.

-v var_file
Option flag followed by the name of a variable file. The file contains names of the variables in the
input data file to be processed by the FreeForm program. Variable names in var_file can be sepa-
rated by one or more spaces or each name can be on a separate line.

Defining Filters
The query option lets you define data filters via a query file so you can precisely specify which data to
process. The FreeForm program will process only those records meeting the query criteria.

-q query_file

Option flag followed by the name of the file containing query criteria. See Appendix C for query
syntax.

26

FORMAT CONVERSION

5

Format Conversion

The FreeForm utility program newform lets you convert data from one format to another. This allows
you to pass data to applications in the format they require. You may also want to create binary archives
for efficient data storage and access. With newform, conversion of ASCII data to binary format is
straightforward. If you wish to read the data in a binary file, you can convert it to ASCII with new-
form, or use the interactive program readfile. You can also convert data from one ASCII format to
another ASCII format with newform.

27

FORMAT CONVERSION

newform
The FreeForm-based program newform is a general tool for changing the format of a data file. The
only required command line argument, if you use FreeForm naming conventions, is the name of the
input data file. The reformatted data is written to standard output (the screen) unless you specify an
output file. If you reformat to binary, you will generally want to store the output in a file.

You must create a format description file (or files) with format descriptions for the data files involved
in a conversion before you can use newform to perform the conversion. The standard extension for
format description files is .fmt. If you do not explicitly specify the format description file on the com-
mand line, which is unnecessary if you use FreeForm naming conventions, newform follows the Free-
Form search sequence to find a format file.

⇒ For details about FreeForm naming conventions and the search sequence, see chapter 4.

The newform command has the following form:

newform input_file [-f format_file] [-if input_format_file] [-of output_format_file]
[-ft "title"] [-ift "title"] [-oft "title"] [-b local_buffer_size] [-c +/-count]
[-v var_file] [-q query_file] [-o output_file]

⇒ For descriptions of the arguments, see the section “Command Line Arguments” in chapter 4.

If you want to convert an ASCII file to a binary file, and you follow the FreeForm naming conven-
tions, the command is simply:

newform datafile.dat -o datafile.bin

where datafile is the file name of your choosing.

Note! If data files and format files are not in the current directory or in the same directory, you can
specify the appropriate path name. For example, if the input data file is not in the current direc-
tory, you can enter:

newform /path/datafile.dat -o datafile.bin

To read the data in the resulting binary file, you can reformat back to ASCII using the command:

newform datafile.bin -o datafile.ext

or you can use the readfile program.

readfile
FreeForm includes readfile, a simple interactive binary file reader. The program has one required
command line argument, the name of the file to be read. You do not have to write format descriptions
to use readfile.

The readfile command has the following form:

readfile binary_data_file

28

FORMAT CONVERSION

When the program starts, it shows the available options:
Options:

 c: char 1 byte character
 s: short 2 byte signed integer
 l: long 4 byte signed integer
 f: float 4 byte single-precision floating point
 d: double 8 byte double-precision floating point
uc: uchar 1 byte unsigned integer
us: ushort 2 byte unsigned integer
ul: ulong 4 byte unsigned integer

 b: Toggle between "big-endian" and your machine’s native byte order
 p: Set new file position
 P: Show present file position and length
 h: Display this help screen
 q: Quit

Type option codes to view binary encoded values.
Tip: Pressing return repeats the last option.

The options let you interactively read your way through the specified binary file. The first position in
the file is 0. You must type the character(s) indicating variable type (e.g., us for unsigned short) to
view each value, so you need to know the data types of variables in the file and the order in which they
occur. If successive variables are of the same type, you can press Return to view each value after the
first of that type.

You can toggle the byte-order switch on and off by typing b. The byte-order option is used to read a
binary data file that requires byte swapping. This is the case when you need cross-platform access to a
file that is not byte-swapped, for example, if you are on a Unix machine reading data from a CD-ROM
formatted for a PC. When the switch is on, type s or l to swap short or long integers respectively, or
type f or d to swap floats or doubles. The readfile program does not byte swap the file itself (the file is
unchanged) but byte swaps the data values internally for display purposes only.

To go to another position in the file, type p. You are prompted to enter the new file position in bytes.
If, for example, each value in the file is 4 bytes long and you type 16, you will be positioned at the first
byte of the fifth value. If you split fields (by not repositioning at the beginning of a field), the results
will probably be garbage. Type P to find out your current position in the file and total file length in
bytes. Type q to exit from readfile.

You can also use an input command file rather than entering commands directly. In that case, the
readfile command has the following form:

readfile binary_data_file < input_command_file

Creating a Binary Archive
By storing data files in binary, you save disk space and make access by applications more efficient. An
ASCII data file can take two to five times the disk space of a comparable binary data file. Not only is
there less information in each byte, but extra bytes are needed for decimal points, delimiters, and end-
of-line markers.

29

FORMAT CONVERSION

It is very easy to create a binary archive using newform as the following examples show. The input
data for these examples are in the ASCII file latlon.dat (shown below). They consist of 20 random
latitude and longitude values. The size of the file on DOS is 480 bytes–20 lines x (22 characters + 2
end-of-line characters). On a Unix system, the file size is 460.

latlon.dat
-47.303545 -176.161101
 -0.928001 0.777265
-28.286662 35.591879
 12.588231 149.408117
-83.223548 55.319598
 54.118314 -136.940570
 38.818812 91.411330
-34.577065 30.172129
 27.331551 -155.233735
 11.624981 -113.660611
 77.652742 -79.177679
 77.883119 -77.505502
-65.864879 -55.441896
-63.211962 134.124014
 35.130219 -153.543091
 29.918847 144.804390
-69.273601 38.875778
-63.002874 36.356024
 35.086084 -21.643402
-12.966961 62.152266

Simple ASCII to Binary Conversion
In this example, you will use newform to convert the ASCII data file latlon.dat into the binary file
latlon.bin. The input and output data formats are described in latlon.fmt.

latlon.fmt
/ This is the format description file for data files latlon.bin
/ and latlon.dat. Each record in both files contains two fields,
/ latitude and longitude.

binary_data "binary format"
latitude 1 8 double 6
longitude 9 16 double 6

ASCII_data "ASCII format"
latitude 1 10 double 6
longitude 12 22 double 6

The binary and ASCII variables both have the same names. The binary variable latitude occupies
positions 1 to 8 and longitude occupies positions 9-16. The corresponding ASCII variables occupy
positions 1-10 and 12-22. Both the binary and ASCII variables are stored as doubles and have a preci-
sion of 6.

30

FORMAT CONVERSION

Converting to Binary

To convert from an ASCII representation of the numbers in latlon.dat to a binary representation:

1. Change to the directory that contains the FreeForm example files.

2. Enter the following command:

newform latlon.dat -o latlon.bin

Because FreeForm filenaming conventions have been used, newform will locate and use latlon.fmt
for the translation. The newform program creates a new data file (effectively a binary archive) called
latlon.bin. The size of the archive file in DOS is 320 bytes–20 lines x 16 bytes, so it is 2/3 the size of
latlon.dat (320 vs. 480 bytes). Additionally, the data do not have to be converted to machine-readable
representation by applications.

There are two methods for checking the data in latlon.bin to make sure they converted correctly. You
can reformat back to ASCII and view the resulting file, or use readfile to read latlon.bin.

Reconverting to Native Format

Use the following newform command to reformat the binary data in latlon.bin to its native ASCII
format:

newform latlon.bin -o latlon.rf

The ASCII file latlon.rf matches (but does not overwrite) the original input file latlon.dat. You can
confirm this by using a file comparison utility. The executable diff.com (for DOS) is included in the
FreeForm file set and the diff command is generally available on Unix platforms.

To use diff to compare the latlon ASCII files, enter the command:

diff latlon.dat latlon.rf

The output (for DOS), on the same line as the prompt, should be:
 Files are effectively identica l.

Note! The diff utility may detect a difference in other similar cases because FreeForm adds a leading
zero in front of a decimal and interprets a blank as a zero if the field is described as a number.
(A blank described as a character is interpreted as a blank.)

Reading the Binary File

To use readfile to read the data in latlon.bin:

1. Enter the following command:

readfile latlon.bin

2. The data are stored as doubles, so enter d to view each value (or press Return to view each
value after the first).

3. Enter q to quit readfile.

31

FORMAT CONVERSION

Conversion to a More Portable Binary
In this example, you will use newform to reformat the latitude and longitude values in the ASCII data
file latlon.dat into binary longs in the binary file latlon2.bin. The input and output data formats are
described in latlon2.fmt.

latlon2.fmt
/ This is the format description file for data files latlon.dat
/ and latlon2.bin. Each record in both files contains two fields,
/ latitude and longitude.

ASCII_data "ASCII format"
latitude 1 10 double 6
longitude 12 22 double 6

binary_data "binary format"
latitude 1 4 long 6
longitude 5 8 long 6

The ASCII and binary variables both have the same names. The ASCII variable latitude occupies
positions 1-10 and longitude occupies positions 12-22. The ASCII variables are defined to be of
type double . The binary variables occupy four bytes each (positions 1-4 and 5-8) and are of type
long . The precision for all is 6.

Converting to Binary Long

In the previous example, both the ASCII and binary variables were defined to be doubles. Binary
longs, which are 4-byte integers, may be more portable across different platforms than binary doubles
or floats.

To convert the ASCII data in latlon.dat to binary longs:

1. Change to the directory that contains the FreeForm example files.

2. Enter the following command:

newform latlon.dat -f latlon2.fmt -o latlon2.bin

It creates the binary archive file latlon2.bin with the 20 latitude and longitude values in
latlon.dat stored as binary longs.

Note! This example duplicates one in chapter 2. If you completed that example, an error message will
indicate that latlon2.bin exists. You can rename, move, or delete the existing file.

The size of the archive file latlon2.bin in DOS is 160 bytes–20 lines x 8 bytes, so it is 1/3 the size of
latlon.dat (160 vs. 480 bytes). Also, the data do not have to be converted to machine representation by
applications. The main tradeoff in achieving savings in space and access time is that although binary
longs are more portable than binary doubles or floats, any binary representation is less portable than
ASCII.

Note! There may be a loss of precision when input data of type double is converted to long.

32

FORMAT CONVERSION

Reading the Binary File

Once again, you can use readfile to check the data in the binary archive you created.

1. Enter the following command:

readfile latlon2.bin

2. The data are stored as longs, so enter l to view each value (or press Return to view each value
after the first).

3. Enter q to quit readfile.

If desired, you can enter the commands to readfile from an input command file rather than directly
from the command line. The example command file latlon.in is shown next.

latlon.in
llllllp0 llPq

The 6 l’s (l for long) cause the first 6 values in the file to be displayed. The sequence p0 causes a
return to the top (position 0) of the file. A position number (0) must be followed by a blank space. The
2 l’s display the first two values again. The P displays the current file position and length, and q closes
readfile.

If you enter the following command:

readfile latlon2.bin < latlon.in

you should see the following output on the screen:
long: -47303545
long: -176161101
long: -928001
long: 777265
long: -28286662
long: 35591879
New File Position = 0
long: -47303545
long: -176161101
File Position: 8 File Length: 160

The floating point numbers have been multiplied by 106, the precision of the long variables in
latlon2.fmt.

Including a Query

You can use the query option (-q query_file) to specify exactly which records in the data file
newform should process. The query file contains query criteria. Query syntax is summarized in Ap-
pendix C.

In this example, you will specify a query so that newform will reformat only those value pairs in
latlon.dat where latitude is positive and longitude is negative into the binary file llposneg.bin. The in-
put and output data formats are described in latlon2.fmt.

The query criteria are specified in the following file.

llposneg.qry
[latitude] > 0 & [longitude] < 0

33

FORMAT CONVERSION

To convert the desired data in latlon.dat to binary and then view the results:

1. Enter the following command:

newform latlon.dat -f latlon2.fmt -q llposneg.qry -o llposneg.bin

The llposneg.bin file now contains the positive/negative latitude/longitude pairs in binary
form.

2. To view the data, first convert the data in llposneg.bin back to ASCII format:

newform llposneg.bin -f latlon2.fmt -o llposneg.dat

3. Enter the appropriate command to display the data in llposneg.dat, e.g., use type in DOS:

The following output appears on the screen:
 54.118314 -136.940570
 27.331551 -155.233735
 11.624981 -113.660611
 77.652742 -79.177679
 77.883119 -77.505502
 35.130219 -153.543091
 35.086084 -21.643402

Note! As demonstrated in the examples above, you can check the data in a binary file either by using
readfile or by converting the data back to ASCII using newform and then viewing it.

File Names and Context
In the preceding examples, the read/write type (input or output) was not included in the format de-
scriptors (ASCII_data and binary_data). FreeForm naming conventions were used, so newform
can determine from the context which format should be used for input and which for output. Consider
the command:

newform latlon.dat -o latlon.bin

The input file extension is .dat and the output file extension is .bin. These extensions provide context
indicating that ASCII should be used as the input format and binary should be used as the output for-
mat. The format description file that newform will look for is the file with the same name as the input
file and the extension .fmt, i.e., latlon.fmt.

If you use the following command:

newform latlon.bin

to translate the binary archive latlon.bin back to ASCII, newform identifies the input format as binary
and uses the ASCII format for output. The ASCII data is written to the screen because an output file
was not specified.

⇒ For information about FreeForm file name conventions, see chapter 4.

34

FORMAT CONVERSION

“Nonstandard” Data File Names
If you are working with data files that do not use FreeForm naming conventions, you need to more
explicitly define the context. For example, the files lldat1.ll, lldat2.ll, lldat3.ll, lldat4.ll, and lldat5.ll
all have latitude and longitude values in the ASCII format given in the format description file
lldat.fmt. If you wanted to archive these files in binary format, you could not use a command of the
form used in the previous examples, i.e., newform datafile.dat -o datafile.bin with datafile.fmt as the
default format description file.

First, the ASCII data files do not have the extension .dat, which identifies them as ASCII files. Sec-
ond, you would need five separate format description files, all with the same content: lldat1.fmt,
lldat2.fmt, lldat3.fmt, lldat4.fmt, and lldat5.fmt. Creating the format description file ll.fmt solves
both problems.

ll.fmt
/ This is the format description file that describes latlon
/ data in files with the extension .ll

ASCII_input_data "ASCII format for .ll latlon data"
latitude 1 10 double 6
longitude 12 22 double 6

binary_output_data "binary format for .ll latlon data"
latitude 1 4 long 6
longitude 5 8 long 6

The name used for the format description file, ll.fmt, follows the FreeForm convention that one format
description file can be utilized for multiple data files, all with the same extension, if the format de-
scription file is named ext.fmt. Also, the read/write type (input or output) is made explicit by in-
cluding it in the format descriptors ASCII_input_data and binary_output_data . This provides
the context needed for FreeForm programs to determine which format to use for input and which for
output.

Use the following commands to produce binary versions of the ASCII input files:

newform lldat1.ll -o llbin1.ll

newform lldat2.ll -o llbin2.ll

newform lldat3.ll -o llbin3.ll

newform lldat4.ll -o llbin4.ll

newform lldat5.ll -o llbin5.ll

If you want to convert back to ASCII, you can switch the words input and output in the format de-
scription file ll.fmt. You could then use the following commands to convert back to native ASCII for-
mat with output written to the screen:

newform llbin1.ll

newform llbin2.ll

newform llbin3.ll

newform llbin4.ll

newform llbin5.ll

35

FORMAT CONVERSION

It is also possible to convert back to ASCII without switching the read/write types input and output
in ll.fmt. You can specify input and output formats by title instead. In this case, you want to use the
output format in ll.fmt as the input format and the input format in ll.fmt as the output format. Use the
following command to convert llbin1.ll back to ASCII:

newform llbin1.ll -ift "binary format for .ll latlon data" -oft "ASCII format for .ll latlon data"

Notice that newform reports back the read/write type actually used. Since ASCII_input_data was
used as the output format, newform reports it as ASCII_output_data .

Now assume that you want to convert the ASCII data file llvals.asc (not included in the example file
set) to the binary file latlon3.bin, and the input and output data formats are described in latlon.fmt.
The data file names do not provide the context allowing newform to find latlon.fmt by default, so you
must include all file names on the command line:

newform llvals.asc -f latlon.fmt -o latlon3.bin

“Nonstandard” Format Description File Names
If you are using a format description file that does not follow FreeForm file naming conventions, you
must include its name on the command line. Assume that you want to convert the ASCII data file lat-
lon.dat to the binary file latlon.bin, and the input and output data formats are both described in
llvals.frm (not included in the example file set). The data file names follow FreeForm conventions, but
the name of the format description file does not, so it will not be located through the default search se-
quence. Use the following command to convert to binary:

newform latlon.dat -f llvals.frm -o latlon.bin

Suppose now that the input format is described in latlon.fmt and the output format in llvals.frm. You
do not need to explicitly specify the input format description file because it will be located by default,
but you must specify the output format description file name. In this case, the command would be:

newform latlon.dat -of llvals.frm -o latlon.bin

You can always unambiguously specify the names of format description files and data files, whether or
not their names follow FreeForm conventions. Assume you want to look only at longitude values in
latlon.bin and that you want them defined as integers (longs) which are right-justified at column 30.
You will reformat the specified binary data in latlon.bin into ASCII data in longonly.dat and then
view it. The input format is found in latlon.fmt, the output format in longonly.fmt.

longonly.fmt
/ This is the format description file for viewing longitude as an
/ integer value right-justified at column 30.

ASCII_data "ASCII output format, right-justified at 30"
longitude 20 30 long 6

In this case, you have decided to look at the first 5 longitude values. Use the following command to
unambiguously designate all files involved:

newform latlon.bin -if latlon.fmt -of longonly.fmt -c 5 -o longonly.dat

36

FORMAT CONVERSION

When you view longonly.dat, you should see the following 5 values:

 1 2 3 4
1234567890123456789012345678901234567890

 -176161101
 777265
 35591879
 149408117
 55319598

Changing ASCII Formats
You may encounter situations where a specific ASCII format is required, and your data cannot be used
in its native ASCII format. With newform, you can easily reformat one ASCII format to another. In
this example, you will reformat California earthquake data from one ASCII format to three other
ASCII formats commonly used for such data.The file calif.tap contains data about earthquakes in Cali-
fornia with magnitudes > 5.0 since 1980. The data were initially distributed by NGDC on tape, hence
the .tap extension. The data format is described in eqtape.fmt:

eqtape.fmt
/ This is the format description file for the NGDC .tap format,
/ which is used for data distributed on floppy disks or tapes.

ASCII_data ".tap format"
source_code 1 3 char 0
century 4 6 short 0
year 7 8 short 0
month 9 10 short 0
day 11 12 short 0
hour 13 14 short 0
minute 15 16 short 0
second 17 19 short 1
latitude_abs 20 24 long 3
latitude_ns 25 25 char 0
longitude_abs 26 31 long 3
longitude_ew 32 32 char 0
depth 33 35 short 0
magnitude_mb 36 38 short 2
MB 39 40 constant 0
isoseismal 41 43 char 0
intensity 44 44 char 0

/ The NGDC record check format includes
/ six flags in characters 45 to 50. These
/ can be treated as one variable to allow
/ multiple flags to be set in a single pass,
/ or each can be set by itself.

ngdc_flags 45 50 char 0
diastrophic 45 45 char 0
tsunami 46 46 char 0
seiche 47 47 char 0
volcanism 48 48 char 0
non_tectonic 49 49 char 0
infrasonic 50 50 char 0

37

FORMAT CONVERSION

fe_region 51 53 short 0
magnitude_ms 54 55 short 1
MS 56 57 char 0
z_h 58 58 char 0
cultural 59 59 char 0
other 60 60 char 0
magnitude_other 61 63 short 2
other_authority 64 66 char 0
ide 67 67 char 0
depth_control 68 68 char 0
number_stations_qual 69 71 char 0
time_authority 72 72 char 0
magnitude_local 73 75 short 2
local_scale 76 77 char 0
local_authority 78 80 char 0

Three other formats used for California earthquake data are hypoellipse, hypoinverse, and hypo71.
Subsets of these formats are described in the format description file hypo.fmt. The format descriptions
include the parameters required by the AcroSpin program that is distributed as part of the IASPEI
Software Library (Volume 2). AcroSpin shows 3D views of earthquake point data.

hypo.fmt
/ This format description file describes subsets of the
/ hypoellipse, hypoinverse, and hypo71 formats.

ASCII_data "hypoellipse format"
year 1 2 uchar 0
month 3 4 uchar 0
day 5 6 uchar 0
hour 7 8 uchar 0
minute 9 10 uchar 0
second 11 14 ushort 2
latitude_deg_abs 15 16 uchar 0
latitude_ns 17 17 char 0
latitude_min 18 21 ushort 2
longitude_deg_abs 22 24 uchar 0
longitude_ew 25 25 char 0
longitude_min 26 29 ushort 2
depth 30 34 short 2
magnitude_local 35 36 uchar 1

ASCII_data "hypoinverse format"
year 1 2 uchar 0
month 3 4 uchar 0
day 5 6 uchar 0
hour 7 8 uchar 0
minute 9 10 uchar 0
second 11 14 ushort 2
latitude_deg_abs 15 16 uchar 0
latitude_ns 17 17 char 0
latitude_min 18 21 ushort 2
longitude_deg_abs 22 24 uchar 0
longitude_ew 25 25 char 0
longitude_min 26 29 ushort 2
depth 30 34 short 2

38

FORMAT CONVERSION

magnitude_local 35 36 uchar 1
number_of_times 37 39 short 0
maximum_azimuthal_gap 40 42 short 0
nearest_station 43 45 short 1
rms_travel_time_residual 46 49 short 2

ASCII_data "hypo71 format"
year 1 2 uchar 0
month 3 4 uchar 0
day 5 6 uchar 0
hour 8 9 uchar 0
minute 10 11 uchar 0
second 12 17 float 2
latitude_deg_abs 18 20 uchar 0
latitude_ns 21 21 char 0
latitude_min 22 26 float 2
longitude_deg_abs 27 30 uchar 0
longitude_ew 31 31 char 0
longitude_min 32 36 float 2
depth 37 43 float 2
magnitude_local 44 50 float 2
number_of_times 51 53 short 0
maximum_azimuthal_gap 54 57 float 0
nearest_station 58 62 short 1
rms_travel_time_residual 63 67 float 2
error_horizontal 68 72 float 1
error_vertical 73 77 float 1
s_waves_used 79 79 char 0

The parameters from the California earthquake data in the NGDC format needed for use with the
AcroSpin program can be extracted and converted using the following commands:

newform calif.tap -if eqtape.fmt -of hypo.fmt -oft "hypoellipse format" -o calif.he

newform calif.tap -if eqtape.fmt -of hypo.fmt -oft "hypoinverse format" -o calif.hi

newform calif.tap -if eqtape.fmt -of hypo.fmt -oft "hypo71 format" -o calif.h71

If you develop an application that accesses seismicity data in a particular ASCII format, you need only
to write an appropriate format description file in order to convert NGDC data into the format used by
the application. This lets you make use of the data that NGDC provides in a format that works for you.

39

CONVERSION VARIABLES

6

Conversion Variables

Space and time values such as latitude and longitude, date, and time of day can be represented in vari-
ous ways. For example, latitude and longitude can be given in degrees and minutes, or as floating point
numbers (among other possibilities). FreeForm conversion variables make it possible to translate be-
tween a number of representations of space and time values. You tell FreeForm that a conversion is
needed by including the appropriate standard conversion variable name in the relevant format descrip-
tion file. When FreeForm reads a format description file and finds a conversion variable, it automati-
cally performs the indicated conversion.

40

CONVERSION VARIABLES

Accessing Conversion Functions
FreeForm’s conversion functions are invoked by using standard conversion variable names in the input
and output format descriptions. FreeForm attempts a conversion only if the input and output names for
a variable differ, and both names are included in FreeForm’s list of standard conversion variables (see
Appendix A). If a variable name in an output format does not correspond to a name in the input format,
FreeForm searches the input variables for standard conversion variable names.

For example, assume the following variable is described in the input format description:
latitude 1 10 double 6

The output format description includes the following variable descriptions, but not one for latitude :
latitude_deg 1 7 short 0
latitude_min 13 15 short 0
latitude_sec 21 23 short 0

FreeForm will transparently identify and call conversion functions to construct the specified output
values (latitude in units of degrees, minutes, and seconds) using the input value given by the variable
latitude .

Latitude and Longitude Conversions
Space is often delineated by latitude and longitude in geophysical applications. Latitude and longitude
values can be represented most directly as floating point numbers, but often are not. Data sets fre-
quently give latitude and longitude in other representations such as degrees and minutes, or absolute
value of degrees, decimal minutes, and N/S or E/W to designate hemisphere.

FreeForm includes a set of functions that perform conversions between a number of the most common
representations of latitude and longitude. In order to access these conversions, you must use the follow-
ing standard variable names.

Name

latitude
longitude

latitude_abs
longitude_abs

latitude_deg
longitude_deg

latitude_deg_abs
longitude_deg_abs

Description

Signed floating point number that completely de-
scribes a latitude or longitude coordinate value

Absolute value of a latitude or longitude coordinate
(may include fractions of a degree)

Degrees component of a latitude or longitude coor-
dinate value (may be signed)

Absolute value of the degrees component of a lati-
tude or longitude coordinate

Example Value

-47.583333
-176.75

47.583333
176.75

-47
-176

47
176

41

CONVERSION VARIABLES

latitude_min
longitude_min

latitude_sec
longitude_sec

latitude_sign
longitude_sign

latitude_ns
longitude_ew

geog_quad_code

Minutes component of a latitude or longitude coor-
dinate value

Seconds component of a latitude or longitude coor-
dinate value

Sign of a latitude or longitude coordinate value
+ or - (data type is char)

Hemisphere: N for north, S for south, E for east, W
for west (char)

A geographic quadrant defined by DMA (Defense
Mapping Agency), 1 = NE, 2 = NW, 3 = SE, 4 = SW
(char)

30.5
45.0

30.0
0.0

-
-

S
W

4

FreeForm uses the convention that northern latitudes and eastern longitudes are positive.

Degrees, Minutes, and Seconds
In this example you will convert latitude and longitude values in latlon2.bin from long integers (with
implied precision) to latitude and longitude values given in degrees, minutes and seconds. The binary
file laton2.bin was created earlier from the ASCII file latlon.dat (see chapter 2 or chapter 5). The in-
put and output formats are described in ll_d_m_s.fmt. Conversion variable names are included in the
input and output formats.

ll_d_m_s.fmt
/ This is the format description file for the data files latlon2.bin and
/ ll_d_m_s.dat. Each record of the input binary file latlon2.bin contains
/ two fields, latitude and longitude. These values are stored as integers.
/ Each record of the output ASCII file ll_d_m_s.dat contains latitude and
/ longitude given in units of degrees, minutes, and seconds.

binary_data "binary input format"
latitude 1 4 long 6
longitude 5 8 long 6

ASCII_data "ASCII output format"
latitude_deg 1 7 short 0
latitude_min 13 15 short 0
latitude_sec 21 23 short 0
longitude_deg 27 31 short 0
longitude_min 37 39 short 0
longitude_sec 45 47 short 0

To convert the data to the new ASCII format use the following command:

newform latlon2.bin -f ll_d_m_s.fmt -o ll_ d_m_s.dat

The ASCII file ll_d_m_s.dat is created with the 20 latitude and longitude values given in degrees,
minutes, and seconds. If a degree value is between 0 and -1, then either the minute or second value is
signed. When you view ll_d_m_s.dat, you should see the following values:

 1 2 3 4 5
12345678901234567890123456789012345678901234567890

 -47 18 13 -176 9 40
 0 -55 41 0 46 38
 -28 17 12 35 35 31

42

CONVERSION VARIABLES

 12 35 18 149 24 29
 -83 13 25 55 19 11
 54 7 6 -136 56 26
 38 49 8 91 24 41
 -34 34 37 30 10 20
 27 19 54 -155 14 1

 .
 .
 .

You can convert the data file ll_d_m_s.dat back to its original ASCII format (in latlon.dat) but the
values will be somewhat different than those in latlon.dat. The ASCII format for ll_d_m_s.dat uses
whole seconds, which are not precise enough to represent decimal degrees to six decimal places. Frac-
tional seconds are required to preserve the values of decimal degrees to six places. If ushort variables
with a precision of 3 were specified in ll_m_d_s.fmt, fractional seconds could be represented.

Absolute Degrees and Minutes
In the following two examples, you will create new ASCII data files from latlon2.bin that give latitude
and longitude in absolute degrees and minutes with hemisphere indicated in the first case and geo-
graphic quadrant in the second case. Conversion variable names are used in the input and output for-
mats in both examples.

With Hemisphere

You will convert the data in latlon2.bin to latitude and longitude values given in absolute degrees and
minutes. FreeForm converts the sign (+ or -) of the input data to N for north, S for south, E for east, or
W for west as appropriate. Southern latitudes and western longitudes are negative. The input and out-
put formats are described in degabsm.fmt.

degabsm.fmt
/ This is the format description file for the data files latlon2.bin and
/ degabsm.dat. Each record of the input binary file latlon2.bin contains
/ two fields, latitude and longitude. These values are stored as integers.

binary_data "binary input format"
latitude 1 4 long 6
longitude 5 8 long 6

/ Each record of the output ASCII file degabsm.dat contains latitude and
/ longitude given in units of absolute degrees and minutes. The hemisphere
/ is indicated by the variables latitude_ns and longitude_ew. The value can be
/ the character N for north, S for south, E for east, or W for west.

ASCII_data "ASCII output format"
latitude_deg_abs 6 7 short 0
latitude_min_abs 10 15 float 2
latitude_ns 17 17 char 0
longitude_deg_abs 24 26 short 0
longitude_min_abs 28 34 float 3
longitude_ew 36 36 char 0

To convert the data to absolute degrees and minutes with hemisphere included, use the following
command:

newform latlon2.bin -f degabsm.fmt -o degabsm.dat

43

CONVERSION VARIABLES

When you view degabsm.dat, you should see the following values:

 1 2 3 4
1234567890123456789012345678901234567890

 47 18.21 S 176 9.666 W
 0 55.68 S 0 46.636 E
 28 17.20 N 35 35.513 E
 12 35.29 N 149 24.487 E
 83 13.41 S 55 19.176 E

.

.

.

With Quadrant

You will convert the data in latlon2.bin to latitude and longitude values given in absolute degrees and
minutes with the geographic quadrant indicated by a character code. The input and output formats are
described in degmgeog.fmt.

degmgeog.fmt
/ This is the format description file for the data files latlon2.bin and
/ degmgeog.dat. Each record of the input binary file latlon2.bin contains
/ two fields, latitude and longitude. These values are stored as integers.

binary_data "binary input format"
latitude 1 4 long 6
longitude 5 8 long 6

/ Each record of the output ASCII file degmgeog.dat contains latitude and
/ longitude given in units of absolute degrees and minutes. The
/ geographic quadrant of the data is indicated by a numeric character code.
/
/ 1 = Northeast
/ 2 = Northwest
/ 3 = Southeast
/ 4 = Southwest
/

ASCII_data "ASCII output format"
latitude_deg_abs 6 7 short 0
latitude_min_abs 10 15 float 2
longitude_deg_abs 21 23 short 0
longitude_min_abs 26 31 float 2
geog_quad_code 40 40 char 0

To convert the data to absolute degrees and minutes with quadrant, use the following command:

newform latlon2.bin -f degmgeog.fmt -o degmgeog.dat

44

CONVERSION VARIABLES

When you view degmgeog.dat, you should see the following values:

 1 2 3 4
123456789012345678901234567890123456789012345

 47 18.21 176 9.67 4
 0 55.68 0 46.64 3
 28 17.20 35 35.51 1
 12 35.29 149 24.49 1
 83 13.41 55 19.18 3

.

.

.

Date and Time Conversions
Time is a variable found in many scientific data sets and it can have various representations. In ASCII
formats meant to be read by application users, time is often represented with six variables: year,
month, day, hour, minute, second. In formats meant to be read by computers, it makes sense to repre-
sent time as a floating point number in days and decimal fractions of a day, or perhaps seconds and
fractions of a second.

FreeForm can perform conversions between various representations of dates when standard conversion
variable names are included in the format descriptions. Several examples are given below.

Year, Month, Day
In this example you will convert a date string in the form of month/day/year to a date string in the form
of year, month, day with no separators. The format description file yymmdd.fmt describes the input
and output formats and the input data is stored in mdy.dat. Notice that this is a conversion from one
ASCII data format to another.

yymmdd.fmt
/ This is the format description file for the data files mdy.dat and
/ yymmdd.dat.

ASCII_input_data "ASCII input format"
date_mm/dd/yy 1 10 char 0

ASCII_output_data "ASCII output format"
date_yymmdd 1 12 char 0

mdy.dat
 1/26/20
 7/25/78
 11/19/99

.

.

.

To convert the data from m/d/y format to yymmdd format, use the following command:

newform mdy.dat -f yymmdd.fmt -o yymmdd.dat

45

CONVERSION VARIABLES

The resulting file yymmdd.dat will contain the following values:

yymmdd.dat
 200126
 780725
 991119
 .
 .
 .

Serial Dates
If you have time data in an ASCII format and the data will be read primarily by an application, you
may want to convert it to a binary format. FreeForm supports a binary representation of time as a serial
day starting at January 1, 1980.

FreeForm conversion functions let you convert from an ASCII representation to the binary serial date
representation. As an example, you will convert the ASCII data in time.dat, which contains 10 random
times from this century, to a binary serial date format in serial.bin. The format description file
serial.fmt describes the input and output formats for time.dat and serial.bin. It also contains a format
description for serial.dat, which will contain the data in serial.bin in an ASCII format.

serial.fmt
/ This is the format description file for the data files time.dat, serial.bin,
/ and serial.dat. Each record of the ASCII file time.dat contains six
/ fields: year, month, day, hour, minute, second.

ASCII_data "ASCII ymdhms date"
year 2 5 ushort 0
month 10 11 uchar 0
day 19 20 uchar 0
hour 28 29 uchar 0
minute 37 38 uchar 0
second 43 47 float 2

/ Each record of the binary file serial.bin contains one field,
/ serial date, defined as a double that occupies 8 bytes and has
/ 8 places of precision.

binary_data "binary serial date"
serial_day_1980 1 8 double 8

/ Each record of the ASCII file serial.dat contains one field,
/ serial date.

ASCII_data "ASCII serial date"
serial_day_1980 1 16 double 8

time.dat
 1920 1 26 11 26 49.79
 1978 7 25 1 36 14.89
 1999 11 19 14 4 4.78

.

.

.

46

CONVERSION VARIABLES

To convert the dates from the ASCII format in time.dat to the binary serial date format, use the follow-
ing command:

newform time.dat -f serial.fmt -ift "ASCII ymdhms date" -o serial.bin

Then view the binary file serial.bin with either of the following commands:

newform serial.bin -oft "ASCII serial date" -o serial.dat

or

readfile serial.bin

You should see the following values:
 -21889.52303484
 -524.93316100
 7262.58616644
 -20525.28111250
 5046.80073889

.

.

.

47

HEADER FORMATS

7

Header Formats

Headers are one of the most commonly encountered forms of metadata–data about data. Applications
need the information contained in headers for reading the data that the headers describe. To access
these data, applications must be able to read the headers. Just as there are many data formats, there are
numerous header formats. You can include header format descriptions, which have exactly the same
form as data format descriptions, in format description files.

FreeForm provides two programs for working with header formats. The fillhdr program fills new or
existing headers with maximums and minimums for variables in data files. The gethdr program lets
you view and change formats of headers in data files.

48

HEADER FORMATS

Header Types
FreeForm recognizes two types of headers. File headers describe all the data in a file whereas record
headers describe the data in a single record or data block. FreeForm can read headers included in the
data file or stored in a separate file. Header formats, like data formats, are described in format descrip-
tion files. For a list of the header descriptors you can use in format descriptions, see table 3, Format
Descriptors, in chapter 3.

File Headers
A file header included in a data file is at the beginning of the file (shown below). Only one file header
can be associated with a data file. A file header can alternatively be stored in a file separate from the
data file.

In the following example, a file header is used to store the minimum and maximum for each variable
and the data are converted from ASCII to binary. There are two variables, latitude and longitude .
The file header format and data formats are described in the format description file llmaxmin.fmt.

llmaxmin.fmt
ASCII_file_header "Latitude/Longitude Limits"
minmax_title 1 24 char 0
latitude_min 25 36 double 6
latitude_max 37 46 double 6
longitude_min 47 59 double 6
longitude_max 60 70 double 6

ASCII_data "lat/lon"
latitude 1 10 double 6
longitude 12 22 double 6

binary_data "lat/lon"
latitude 1 4 long 6
longitude 5 8 long 6

The example ASCII data file llmaxmin.dat contains a file header and data as described in
llmaxmin.fmt.

File Header

Data

49

HEADER FORMATS

llmaxmin.dat
 1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

Latitude and Longitude: -83.223548 54.118314 -176.161101 149.408117
-47.303545 -176.161101
-25.928001 0.777265
-28.286662 35.591879
 12.588231 149.408117
-83.223548 55.319598
 54.118314 -136.940570
 38.818812 91.411330
-34.577065 30.172129
 27.331551 -155.233735
 11.624981 -113.660611

This use of a file header would be appropriate if you were interested in creating maps from large data
files. By including maximums and minimums in a header, the scale of the axes can be determined
without reading the entire file.

FreeForm naming conventions have been followed in this example, so to convert the ASCII data in the
example to binary format, use the following simple command:

newform llmaxmin.dat -o llmaxmin.bin

The file header in the example will be written into the binary file as ASCII text because the header de-
scriptor in llmaxmin.fmt (ASCII_file_header) does not specify read/write type, so the format is
used for both the input and output header.

Note! You can use the splitdat program to translate files with headers and data into separate header
and data files with formats as specified in a FreeForm format file. See chapter 9 for details.

Record Headers
Record headers occur once for every block of data in a file. They are interspersed with the data, a con-
figuration sometimes called a format sandwich (shown below). Record headers can also be stored to-
gether in a separate file.

Record Header

Data

Record Header

Data

50

HEADER FORMATS

The following format description file specifies a record header and ASCII and binary data formats for
aeromagnetic trackline data.

aeromag.fmt
ASCII_record_header "Aeromagnetic Record Header Format"
flight_line_number 1 5 long 0
count 6 13 long 0
fiducial_number_corresponding_to_first_logical_record 14 22 long 0
date_MMDDYY_or_julian_day 23 30 long 0
flight_number 31 38 long 0
utm_easting_of_first_record 39 48 float 0
utm_northing_of_first_record 49 58 float 0
utm_easting_of_last_record 59 68 float 0
utm_northing_of_last_record 69 78 float 0
blank_padding 79 104 char 0

ASCII_data "Aeromagnetic ASCII Data Format"
flight_line_number 1 5 long 0
fiducial_number 6 15 long 0
utm_easting_meters 16 25 float 0
utm_northing_meters 26 35 float 0
mag_total_field_intensity_nT 36 45 long 0
mag_residual_field_nT 46 55 long 0
alt_radar_meters 56 65 long 0
alt_barometric_meters 66 75 long 0
blank 76 80 char 0
latitude 81 92 float 6
longitude 93 104 float 6

binary_data "Aeromagnetic Binary Data Format"
flight_line_number 1 4 long 0
fiducial_number 5 8 long 0
utm_easting_meters 9 12 long 0
utm_northing_meters 13 16 long 0
mag_total_field_intensity_nT 17 20 long 0
mag_residual_field_nT 21 24 long 0
alt_radar_meters 25 28 long 0
alt_barometric_meters 29 32 long 0
blank 33 37 char 0
latitude 38 41 long 6
longitude 42 45 long 6

The example ASCII file aeromag.dat contains two record headers followed by a number of data rec-
ords. The header and data formats are described in aeromag.fmt. The variable count (second variable
defined in the header format description) is used to indicate how many data records occur after each
header.

aeromag.dat

 1 2 3 4 5 6 7 8 9 10
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345

 420 5 5272 178 2 413669. 6669740. 333345. 6751355.
 420 5272 413669. 6669740. 2715963 2715449 1088 1348 60.157307 -154.555191
 420 5273 413635. 6669773. 2715977 2715464 1088 1350 60.157593 -154.555817
 420 5274 413601. 6669807. 2716024 2715511 1088 1353 60.157894 -154.556442
 420 5275 413567. 6669841. 2716116 2715603 1079 1355 60.158188 -154.557068
 420 5276 413533. 6669875. 2716263 2715750 1079 1358 60.158489 -154.557693
 411 10 8366 178 2 332640. 6749449. 412501. 6668591.
 411 8366 332640. 6749449. 2736555 2736538 963 1827 60.846806 -156.080185
 411 8367 332674. 6749415. 2736539 2736522 932 1827 60.846516 -156.079529
 411 8368 332708. 6749381. 2736527 2736510 917 1829 60.846222 -156.078873
 411 8369 332742. 6749347. 2736516 2736499 922 1832 60.845936 -156.078217

51

HEADER FORMATS

 411 8370 332776. 6749313. 2736508 2736491 946 1839 60.845642 -156.077560
 411 8371 332810. 6749279. 2736505 2736488 961 1846 60.845348 -156.076904
 411 8372 332844. 6749245. 2736493 2736476 982 1846 60.845062 -156.076248
 411 8373 332878. 6749211. 2736481 2736463 1015 1846 60.844769 -156.075607
 411 8374 332912. 6749177. 2736470 2736452 1029 1846 60.844479 -156.074951
 411 8375 332946. 6749143. 2736457 2736439 1041 1846 60.844189 -156.074295

This file contains two record headers. The first occurs on the first line of the file and has a count of 5,
so it is followed by 5 data records. The second record header follows the first 5 data records. It has a
count of 10 and is followed by 10 data records.

The FreeForm default naming conventions have been used here so you could use the following abbre-
viated command to reformat aeromag.dat to a binary file named aeromag.bin:

newform aeromag.dat -o aeromag.bin

The ASCII record headers are written into the binary file as ASCII text.

Note! You can use the splitdat program to translate files with headers and data into separate header
and data files with formats as specified in a FreeForm format file. See chapter 9 for details.

Separate Header Files
You may need to describe a data set with external headers. An external or separate header file can
contain only headers–one file header or multiple record headers.

Separate File Header

Suppose you want the file header used to store the minimum and maximum values for latitude and
longitude (from the llmaxmin example) in a separate file so that the data file is homogenous, thus
easier for applications to read. Instead of one ASCII file (llmaxmin.dat), you will have an ASCII
header file, say it is named llmxmn.hdr, and an ASCII data file–call it llmxmn.dat.

llmxmn.hdr
Latitude and Longitude: -83.223548 54.118314 -176.161101 149.408117

llmxmn.dat
-47.303545 -176.161101
-25.928001 0.777265
-28.286662 35.591879
 12.588231 149.408117
-83.223548 55.319598
 54.118314 -136.940570
 38.818812 91.411330
-34.577065 30.172129
 27.331551 -155.233735
 11.624981 -113.660611

You will need to make one change to llmaxmin.fmt, adding the qualifier separate to the header de-
scriptor, so that FreeForm will look for the header in a separate file. The first line of llmaxmin.fmt be-
comes:
ASCII_file_header_separate "Latitude/Longitude Limits"

Save llmaxmin.fmt as llmxmn.fmt after you make the change.

To convert the data in llmxmn.dat to binary format in llmxmn.bin, use the following command:

newform llmxmn.dat -o llmxmn.bin

52

HEADER FORMATS

Note! When you run newform, it will write the separate header to llmxmn.bin along with the data in
llmxmn.dat. You can use the splitdat program to translate files with headers and data into
separate header and data files. See chapter 9 for details.

Separate Record Headers

Record headers in separate files can act as indexes into data files if the headers specify the positions of
the data in the data file. For example, if you have a file containing data from 25 observation stations,
you could effectively index the file by including a station ID and the starting position of the data for
that station in each record header. Then you could use the index to quickly locate the data for a particu-
lar station.

Returning to the aeromag example, suppose you want to place the two record headers in a separate
file. Again, the only change you need to make to the format description file (aeromag.fmt) is to add
the qualifier separate to the header descriptor. The first line would then be:
ASCII_record_header_separate "Aeromagnetic Record Header Format"

The separate header file would contain the following two lines:
 420 5 5272 178 2 413669. 6669740. 333345. 6751355.
 411 10 8366 178 2 332640. 6749449. 412501. 6668591.

The data file would look like the current aeromag.dat with the first and seventh lines removed.

Assuming the data file is named aeromag.dat, the default name and location of the header file would
be aeromag.hdr in the same directory as the data file. Otherwise, the separate header file name and
location need to be defined in an equivalence table. (For information about equivalence tables, see the
GeoVu Tools Reference Guide.)

Note! You can use the splitdat program to translate files with headers and data into separate header
and data files. See chapter 9 for details.

The dBASE Format
Headers and data records in dBASE format are represented in ASCII but are not separated by end-of-
line characters. They can be difficult to read or to use in applications that expect newlines to separate
records. By using newform, dBASE data can be reformatted to include end-of-line characters.

In this example, you will reformat the dBASE data file oceantmp.dab (see below) into the ASCII data
file oceantmp.dat. The input file oceantmp.dab contains a record header at the beginning of each
line. The header is followed by data on the same line. When you convert the file to ASCII, the header
will be on one line followed by the data on the number of lines specified by the variable count . The
format description file oceantmp.fmt is used for this reformatting.

oceantmp.fmt
dbase_record_header "NODC-01 record header format"
WMO_quad 1 1 char 0
latitude_deg_abs 2 3 uchar 0
latitude_min 4 5 uchar 0
longitude_deg_abs 6 8 uchar 0
longitude_min 9 10 uchar 0
date_yymmdd 11 16 long 0
hours 17 19 uchar 1
country_code 20 21 char 0
vessel 22 23 char 0
count 24 26 short 0

53

HEADER FORMATS

data_type_code 27 27 char 0
cruise 28 32 long 0
station 33 36 short 0

dbase_data "IBT input format"
depth_m 1 4 short 0
temperature 5 8 short 2

RETURN "NEW LINE INDICATOR"

ASCII_data "ASCII output format"
depth_m 1 5 short 0
temperature 27 31 float 2

This format description file contains a header format description, a description for dBASE input data,
the special RETURN descriptor, and a description for ASCII output data. The variable count (fourth
from the bottom in the header format description) indicates the number of data records that follow
each header. The descriptor RETURN lets newform skip over the end-of-line marker at the end of each
data block in the input file oceantmp.dab as it is meaningless to newform here. Because the end-of-
line marker appears at the end of the data records in each input data block, RETURN is placed after the
input data format description in the format description file.

oceantmp.dab
 1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

11000171108603131109998 4686021000000002767001027670020276700302767
110011751986072005690AM 4686091000000002928001028780020287200302872
11111176458102121909998 4681011000000002728009126890241110005000728
112281795780051918090PI 268101100000000268900402711

Each dBASE header in oceantmp.dab is located from position 1 to 36. It is followed by four data rec-
ords of 8 bytes each. Each record comprises a depth and temperature reading. The variable count in
the header (positions 24-26) indicates that there are 4 data records each in the first 3 lines and 2 on the
last line. This will all be more obvious after conversion.

To reformat oceantmp.dab to ASCII, use the following command:

newform oceantmp.dab -o oceantmp.dat

The resulting file oceantmp.dat is much easier to read. It is readily apparent that there are 4 data rec-
ords after the first three headers and 2 after the last.

oceantmp.dat
 1 2 3 4
1234567890123456789012345678901234567890

11000171108603131109998 46860210000
 0 27.67
 10 27.67
 20 27.67
 30 27.67
110011751986072005690AM 46860910000
 0 29.28
 10 28.78
 20 28.72
 30 28.72

54

HEADER FORMATS

11111176458102121909998 46810110000
 0 27.28
 91 26.89
 241 11.00
 500 07.28
112281795780051918090PI 26810110000
 0 26.89
 40 27.11

fillhdr
The FreeForm-based program fillhdr fills a file header with the maximum and minimum values for
specified variables in a data file. When it is run, fillhdr looks through the data file for all variables that
appear in the header format description with the suffixes _max and _min . It then fills each _max and
_min variable in the header with its associated maximum or minimum value. For example, if
latitude_max is included in the header format description, fillhdr looks through the data file to de-
termine the maximum value of the variable latitude and then enters that value for latitude_max in
the header.

The fillhdr program can fill new headers or portions of existing headers. You need to create a format
description file with format descriptions for the header and data before you can use fillhdr. For fillhdr
to work properly, you must use FreeForm naming conventions. You must also allocate space in the in-
put file for the maximum and minimum values before running fillhdr; the amount of space is specified
in the header format description.

The fillhdr command has the following form:

fillhdr input_file [-f format_file] [-if input_format_file] [-of output_format_file]
[-ft "title"] [-ift "title"] [-oft "title"] [-b local_buffer_size]

⇒ For descriptions of the arguments, see the section “Command Line Arguments” in chapter 4.

Example
The file llmaxmin.dat (used in a previous example) originally did not include maximums and mini-
mums in its header. It was generated using the fillhdr program, which determined the maximum and
minimum values for latitude and longitude in the file and placed them in the header. You will duplicate
the process in this example. The file latlon3.dat has the same contents as llmaxmin.dat had before
fillhdr was run on it.

latlon3.dat (before running fillhdr)
Latitude and Longitude:
-47.303545 -176.161101
-25.928001 0.777265
-28.286662 35.591879

.

.

.

The header format description from latlon3.fmt, which is identical to llmaxmin.fmt (see the previous
section “File Headers”), is shown below.
ASCII_file_header "Latitude/Longitude Limits"
minmax_title 1 24 char 0
latitude_min 25 36 double 6
latitude_max 37 46 double 6
longitude_min 47 59 double 6
longitude_max 60 70 double 6

55

HEADER FORMATS

The description indicates that maximum and minimum values occupy positions 25-70. Those positions
are occupied by asterisks (*) in latlon3.dat. Run fillhdr on latlon3.dat using the following command:

fillhdr latlon3.dat

The maximum and minimum values for the two variables latitude and longitude write over the
asterisks in the header:
Latitude and Longitude: -83.223548 54.118314 -176.161101 149.408117
-47.303545 -176.161101
-25.928001 0.777265
-28.286662 35.591879

.

.

.
The file latlon3.dat should now be identical to llmaxmin.dat.

gethdr
The FreeForm utility program gethdr lets you view headers in data files. You can also use gethdr to
convert headers from one format to another and then display them.

Viewing Headers
File headers and record headers are displayed differently by gethdr. For file headers, the header vari-
able names are shown followed by their values. Record headers, however, are listed in their entirety.
They are not broken down by individual value preceded by variable name.

To view headers, the gethdr command has the following form:

gethdr input_file [-f format_file] [-if input_format_file] [-of output_format_file]
[-ft "title"] [-ift "title"] [-oft "title"] [-b local_buffer_size] [-o output_file]

⇒ For descriptions of the arguments, see the section “Command Line Arguments” in chapter 4.

Note! For gethdr to work properly when you use it to view headers, a header output format should
not be included in the format description file. An output format is explicitly indicated by in-
cluding output in the descriptor, i.e., output_file_header .

Example–File Header
To use gethdr to view the file header in llmaxmin.dat, enter the following command:

gethdr llmaxmin.dat

Because FreeForm filenaming conventions have been used, gethdr can locate and use llmaxmin.fmt
(see the previous section “File Headers”). The output from gethdr is shown below.

56

HEADER FORMATS

Headers being displayed for llmaxmin.dat:

Header variables:

minmax_title: Latitude and Longitude:
latitude_min: -83.223548
latitude_max: 54.118314
longitude_min: -176.161101
longitude_max: 149.408117

Example–Record Headers
To view the record headers in oceantmp.dab, you can enter the following abbreviated command
(because FreeForm naming conventions were used):

gethdr oceantmp.dab

The output is shown below. Notice that header variable names (WMO_quad , latitude_deg_abs , etc.–
see oceantmp.fmt in the previous section “The dBASE Format”) are not included.
Headers being displayed for oceantmp.dab:

11000171108603131109998 46860210000
110011751986072005690AM 46860910000
11111176458102121909998 46810110000
112281795780051918090PI 26810110000

Changing Header Formats
To convert file headers or record headers from one format to another and display them, the gethdr
command has the following form:

gethdr input_file [-f format_file] [-b local_buffer_size] [-o output_header_file]

⇒ For descriptions of the arguments (except output_header_file), see the section
“Command Line Arguments” in chapter 4.

output_header_file
Name of the output header file. FreeForm expects the output header file name to be of the form
datafile.hdr, where datafile is the base name of the input file.

Example
You can use gethdr to display just the latitudes and longitudes from the record headers in
oceantmp.dab (see previous example) in an easily readable format. The format description file
otmphead.fmt describes the new header format.

otmphead.fmt
ASCII_output_record_header "Latitude/Longitude Header Values"
latitude 1 8 float 2
longitude 10 18 float 2

Use the following command to display the latitude and longitude values:

gethdr oceantmp.dab -of otmphead.fmt

57

HEADER FORMATS

The output from this command is shown below.
Converting headers for file oceantmp.dab:

 10.00 171.17
 10.02 175.32
 11.18 176.75
 12.47 179.95

You could add the format description that constitutes otmphead.fmt to oceantmp.fmt instead of creat-
ing a separate format description file. If you do that and then enter the command gethdr
oceantmp.dab, you will get the output shown above.

Note! Conversion variables were used in this example. The variables latitude_deg_abs ,
latitude_min , latitude_deg_abs , and longitude_min have been converted to lati-
tude and longitude , or from a separate degrees and minutes representation to a single deci-
mal value representation.

58

DATA CHECKING

8

Data Checking

The FreeForm-based utility program checkvar creates variable summary files, lists of maximum and
minimum values, and summaries of processing activity. You can use this information to check data
quality and to examine the distribution of the data.

59

DATA CHECKING

Generating the Summaries
A variable summary file (or list file), which contains histogram information showing the variable’s
distribution in the data file, is created for each variable (or designated variables) in the specified data
file. You can optionally specify an output file in which a summary of processing activity is saved.

Variable summaries (list files) can be helpful for performing quality control checks of data. For exam-
ple, you could run checkvar on an ASCII file, convert the file to binary, and then run checkvar on the
binary file. The output from checkvar should be the same for both the ASCII and binary files. You can
also use variable summaries to look at the data distribution in a data set before extracting data.

The checkvar command has the following form:

checkvar input_file [-f format file] [-if input_format_file] [-of output_format_file]
[-ft "title"] [-ift "title"] [-oft "title"] [-b local_buffer_size] [-c +/-count] [-v var_file]
[-q query_file] [-p precision] [-m maxbins] [-md missing_data_flag] [-mm]
[-o processing_summary]

Note that the checkvar program needs to find only an input format description. Output format descrip-
tions will be ignored. If conversion variables are included in input or output formats, no conversion is
performed when you run checkvar, since it ignores output formats.

⇒ For descriptions of the standard arguments (first eleven arguments above), see the section
“Command Line Arguments” in chapter 4.

-p precision
Option flag followed by the number of decimal places. The number represents the power of 10 that
data is multiplied by prior to binning. A value of 0 bins on one's, 1 on tenth's, and so on. This op-
tion allows an adjustment of the resolution of the checkvar output.

The default is 0; maximum is 5.

Note! If you use the -p option on the command line, the precision set in the relevant format file is
overridden. The precision in the format file serves as the default.

-m maxbins
Option flag followed by the approximate maximum number of bins desired in checkvar output.
The checkvar program keeps track of the number of bins filled as the data is processed. The
smaller the number of bins, the faster checkvar runs. By keeping the number of bins small, you
can check the gross aspects of data distribution rather than the details.

The number of bins is adjusted dynamically as checkvar runs depending on the distribution of data
in the input file. If the number of filled bins becomes > 1.5 * maxbins, the width of the bins is
doubled to keep the total number near the desired maximum.

The default is 100 bins; minimum is 6. Must be < 10,000.

Note! The precision (-p) and maxbins (-m) options have no effect on character variables.

60

DATA CHECKING

-md missing_data_flag
Option flag followed by a flag value that checkvar should ignore across all variables in creating
histogram data. Missing data flags are used in a data file to indicate missing or meaningless data. If
you want checkvar to ignore more than one value, use the query (-q) option in conjunction with
the variable file (-v) option.

-mm
Option flag indicating that only the maximum and minimum values of variables are calculated and
displayed in the processing summary. Variable summary files are not created.

-o processing_summary
Option flag followed by the name of the file in which summary information displayed during proc-
essing is stored.

Example
You will use checkvar with a precision of 3 to create a processing summary file and summary files for
the two variables latitude and longitude in the file latlon.dat.

latlon.dat
-47.303545 -176.161101
 -0.928001 0.777265
-28.286662 35.591879
 12.588231 149.408117
-83.223548 55.319598
 54.118314 -136.940570
 38.818812 91.411330
-34.577065 30.172129
 27.331551 -155.233735
 11.624981 -113.660611
 77.652742 -79.177679
 77.883119 -77.505502
-65.864879 -55.441896
-63.211962 134.124014
 35.130219 -153.543091
 29.918847 144.804390
-69.273601 38.875778
-63.002874 36.356024
 35.086084 -21.643402
-12.966961 62.152266

To create the summary files, enter the following command:

checkvar latlon.dat -p 3 -o latlon.sum

A summary of processing information and the maximum and minimum for each variable are displayed
on the screen. The following three files are created:

◊ latlon.sum recaps processing activity, maximums and minimums

◊ latitude.lst shows distribution of the latitude values in latlon.dat

◊ longitud.lst shows distribution of the longitude values in latlon.dat
(file name truncated to 8 characters in DOS)

longitude.lst (Unix)

61

DATA CHECKING

Interpreting the Summaries
The processing and variable summary files output by checkvar from the example in the previous sec-
tion are shown and discussed below.

Processing Summary

If you specify an output file on the command line, it stores the information that is displayed on the
screen during processing. The file latlon.sum was specified as the output file in the example above.

latlon.sum
Input file : latlon.dat
Requested precision = 3, Approximate number of sorting bins = 100

Input data format (latlon.fmt)
ASCII_input_data "ASCII format"
The format contains 2 variables; length is 24.

Output data format (latlon.fmt)
binary_output_data "binary format"
The format contains 2 variables; length is 16.

Histogram data precision: 3, Number of sorting bins: 20
latitude: 20 values read
minimum: -83.223548 found at record 5
maximum: 77.883119 found at record 12
Summary file: latitude.lst

Histogram data precision: 3, Number of sorting bins: 20
longitude: 20 values read
minimum: -176.161101 found at record 1
maximum: 149.408117 found at record 4
Summary file: longitud.lst.

The processing summary file latlon.sum first shows the name of the input data file (latlon.dat). If
you specified precision and a maximum number of bins on the command line, those values are given
as Requested precision , in this case 3, and Approximate number of sorting bins , in this
case the default value of 100 . If precision is not specified, No requested precision is shown.

A summary of each format shows the type of format (in this case, Input data format and Output
data format) and the name of the format file containing the format descriptions (latlon.fmt),
whether specified on the command line or located through the default search sequence (as detailed in
chapter 4). In this case, it was located by default. Since checkvar only needs an input format descrip-
tion, it ignores output format descriptions. Next, you see the format descriptor as resolved by FreeForm
(e.g., ASCII_input_data) and the format title (e.g., "ASCII format"). Then the number of vari-
ables in a record and total record length are given; for ASCII, record length includes the end-of-line
character (2 bytes for DOS, 1 for Unix).

A section for each variable processed by checkvar indicates the histogram precision and actual num-
ber of sorting bins. Under some circumstances, the precision of values in the histogram file may be dif-
ferent than the precision you specified on the command line. The default value for precision, if none is
specified on the command line, is the precision specified in the relevant format description file or 5,
whichever is smaller. The second line shows the name of the variable (latitude , longitude) and
the number of values in the data file for the variable (20 for both latitude and longitude).

62

DATA CHECKING

The minimum and maximum values for the variable are shown next (-83.223548 is the minimum
and 77.883119 is the maximum value for latitude). The maximum and minimum values are given
here with a precision of 6, which is the precision specified in the format description file. The locations
of the maximum and minimum values in the input file are indicated. (-83.223548 is the fifth latitude
value in latlon.dat and 77.883119 is the twelfth). Finally, the name of the histogram data (or variable
summary) file generated for each variable is given (latitude.lst and longitud.lst).

Variable Summaries

The name of each variable summary file (list file) output by checkvar is of the form variable.lst for
numeric variables and variable.cst for character variables. The data in *.lst, and *.cst files can be
loaded into histogram plot programs for graphical representation. (You must be familiar enough with
your program of choice to manipulate the data as necessary in order to achieve the desired result.)

In DOS, if the first eight characters of multiple variable names in the format file are the same (e.g.,
longitude_ns, longitude_ew, …), the digits 1,2, … will replace the eighth character in the base sum-
mary file names (e.g., longitu1.lst, longitu2.lst, …). The format file controls the numbering, i.e.,
longitu1 is described first in the format file, longitu2 second, and so on. In Unix, there is no need to
abbreviate the base file name.

Note! If you use the -v option, the order of variables in var_file has no effect on the numbering of
base file names of the variable summary files in DOS.

The two example variable summary files, latitude.lst and longitud.lst , are shown next.

latitude.lst
-83.224 1
-69.274 1
-65.865 1
-63.212 1
-63.003 1
-47.304 1
-34.578 1
-28.287 1
-12.967 1
 -0.929 1
 11.624 1
 12.588 1
 27.331 1
 29.918 1
 35.086 1
 35.130 1
 38.818 1
 54.118 1
 77.652 1
 77.883 1

longitud.lst
-176.162 1
-155.234 1
-153.544 1
-136.941 1
-113.661 1
 -79.178 1
 -77.506 1
 -55.442 1
 -21.644 1
 0.777 1
 30.172 1
 35.591 1
 36.356 1
 38.875 1
 55.319 1
 62.152 1
 91.411 1
 134.124 1
 144.804 1
 149.408 1

The variable summary files consist of two columns. The first indicates boundary values for data bins
and the second gives the number of data points in each bin. Because a precision of 3 was specified in
the example, each boundary value has three decimal places. The boundary values are determined dy-
namically by checkvar and often do not correspond to data values in the input file, even if the
checkvar and data file precisions are the same.

63

DATA CHECKING

The first data bin in latitude.lst contains data points in the range -83.224 (inclusive) to -69.274
(exclusive); neither boundary number exists in latlon.dat. The first bin has one data point,
-83.223548 . The fourth data bin contains latitude values from -63.212 (inclusive) to -63.003
(exclusive), again with neither boundary value occurring in the data file. The data point in the fourth
bin is -63.211962 .

64

HDF UTILITIES

9

HDF Utilities

FreeForm includes three utilities for use with HDF (hierarchical data format) files: makehdf, splitdat,
and pntshow. These programs were built using both the FreeForm library and the HDF library, which
was developed at the National Center for Supercomputer Applications (NCSA).

The makehdf program converts binary and ASCII data files to HDF files and converts multiplexed
(band interleaved by pixel) image files into a series of single parameter files. The splitdat program is
used to separate and reformat data files containing headers and data into separate header and data files,
or to translate them into HDF files. The pntshow program extracts point data from HDF files into bi-
nary or ASCII format.

It is assumed in this chapter that you have a working familiarity with HDF terminology and conven-
tions. See HDF user documentation for detailed information.

WARNING! Do not try the examples in this chapter. The example file set is incomplete.

65

HDF UTILITIES

makehdf
Using makehdf you can convert data files with formats described in a FreeForm format file into HDF
files. You should follow FreeForm naming conventions for the data and format files. For details about
FreeForm conventions, see chapter 4.

Note! A dBASE input file must be converted to ASCII or binary using newform before you can run
makehdf on it.

The HDF file resulting from a conversion consists either of a group of scientific datasets (SDS's), one
for each variable in the input data file, or of a vgroup containing all the variables as one vdata. If you
are working with grid data, you will want SDS's (the default) in the output HDF file. A vdata (-vd op-
tion) is the appropriate choice for point data.

The makehdf command has the following form:

makehdf input_file [-r rows] [-c columns] [-v var_file]
[-d HDF_description_file] [-xl x_label -yl y_label]
[-xu x_units -yu y_units] [-xf x_format -yf y_format]
[-id file_id] [-vd [vdata_file]] [-dmx [-sep]] [-df]
[-md missing_data_file] [-dof HDF_file]

input_file
Name of the input data file. Following FreeForm naming conventions, the standard extensions for
data files are .dat for ASCII format and .bin for binary.

-r rows
Option flag followed by the number of rows in each resulting scientific dataset. The number of
rows must be specified through this option on the command line, or in an equivalence table, or in a
header (.hdr) file defined according to FreeForm standards.

-c columns
Option flag followed by the number of columns in each resulting scientific dataset. The number of
columns must be specified through this option on the command line, or in an equivalence table, or
in a header (.hdr) file defined according to FreeForm standards.

⇒ For information about equivalence tables, see the GeoVu Tools Reference Guide.

-v var_file
Option flag followed by the name of the variable file. The file contains names of the variables in
the input data file to be processed by makehdf. Variable names in var_file can be separated by
one or more spaces or each name can be on a separate line.

-d HDF_description_file
Option flag followed by the name of the file containing a description of the input file. The descrip-
tion will be stored as a file annotation in the resulting HDF file.

-xl x_label -yl y_label
Option flags followed by strings (labels) describing the x and y axes; labels must be in quotes (" ")
if more than one word.

66

HDF UTILITIES

-xu x_units -yu y_units
Option flags followed by strings indicating the measurement units for the x and y axes; strings
must be in quotes (" ") if more than one word.

-xf x_format -yf y_format
Option flags followed by strings indicating the formats to be used in displaying scale for the x and
y dimensions; strings must be in quotes (" ") if more than one word.

-id file_id
Option flag followed by a string that will be stored as the ID of the resulting HDF file.

-vd [vdata_file]
Option flag indicating that the output HDF file should contain a vdata. The optional file name
specifies the name of the output HDF file; the default is input_file.HDF.

-dmx [-sep]
The option flag -dmx indicates that input data should be demultiplexed from band interleaved by
pixel to band sequential form in input_file.dmx. If -dmx is followed by -sep, the input data are
demultiplexed into separate variable files called data_file.1 … data_file.n

-df
To use this option, the input file (data_file.ext) must be a binary demultiplexed (band sequential)
file. For each input variable in the applicable FreeForm format description file, there is a corre-
sponding demultiplexed section in the output HDF file.

-md missing_data_file
Option flag followed by the name of the file defining missing data (data you want to exclude). Use
this option only along with the vdata (-vd) option. Each line in the missing data file has the form:

variable_name lower_limit upper_limit
The precision of the upper and lower limits matches the precision of the input data.

-dof HDF_file
Option flag followed by the name of the output HDF file. If you do not use the -dof option, the de-
fault output file name is input_file.HDF.

Example
You will use makehdf to store latlon.dat as an HDF file. The HDF file will consist of two SDS's, one
each for the two variables latitude and longitude . Each SDS will have four rows and five col-
umns.

To convert latlon.dat to an HDF file, enter the following command:

makehdf latlon.dat -r 4 -c 5

As makehdf translates latlon.dat into HDF, processing information is displayed on the screen:
1 Caches (1150 bytes) Processed: 800 bytes written to latlon.dmx

Writing latlon.HDF and calculating maxima and minima ...

Variable latitude:
Minimum: -86.432712 Maximum 89.170904
Variable longitude:
Minimum: -176.161101 Maximum 165.066193

67

HDF UTILITIES

The output from makehdf is an HDF file named latlon.HDF (by default). It contains the minimum
and maximum values for the two variables as well as the two SDS's.

A temporary file named latlon.dmx was also created. It contains the data from latlon.dat in demulti-
plexed form. The data was converted from its original multiplexed form to enable makehdf to write
sections of data to SDS's.

If you start with a demultiplexed file such as latlon.dmx, the translation process is much quicker, par-
ticularly for large data files. As an illustration, try this. Rename latlon.dmx to latlon.bin (renaming is
necessary for makehdf to find the format description file latlon.fmt by default). Enter the following
command:

makehdf latlon.bin -df -r 4 -c 5

The output file again is latlon.HDF, but notice that no demultiplexing was done.

splitdat
The splitdat program translates files with headers and data into separate header and data files or into
HDF files. If the translation is to separate header and data files, the header file can include indexing in-
formation.

The combination of header and data records in a file is often used for point data sets that include a
number of observations made at one or more stations or locations in space. The header records contain
information about the stations or locations of the measurements. The data records hold the observa-
tional data. A station record usually indicates how many data records follow it. The structure of such a
file is similar to the following:

Header for Station 1
Observation 1 for Station 1
Observation 2 for Station 1

.

.

.
Observation N for Station 1

Header for Station 2
Observation 1 for Station 2
Observation 2 for Station 2

.

.

.
Observation N for Station 2

Header for Station 3
.
.
.

Many applications have difficulty reading this sort of heterogeneous data file. One solution is to split
the data into two homogeneous files, one containing the headers, the other containing the data. With
splitdat, you can easily create the separate data and header files. To use splitdat for this purpose, the
input and output formats for the record headers and the data must be described in a FreeForm format
description file. To use splitdat for translating files to HDF, the input format must be described in a
FreeForm format description file. You should follow FreeForm naming conventions for the data and
format files. For details about FreeForm conventions, see chapter 4.

68

HDF UTILITIES

The splitdat command has the following form:

splitdat input_file [output_data_file > output_header_file]
input_file

Name of the file to be processed. Following FreeForm naming conventions, the standard exten-
sions for data files are .dat for ASCII format and .bin for binary.

output_data_file
Name of the output file into which data are transferred with the format specified in the applicable
FreeForm format description file. The standard extensions are the same as for input files. If an out-
put file name is not specified, the default is standard output.

output_header_file
Name of the output file into which headers from the input file are transferred with the format
specified in the applicable FreeForm format description file. If an output header file name is not
specified, the default is standard output.

Index Creation

You can use the two variables begin and extent (described below) in the format description for the
output record headers to indicate the location and size of the data block associated with each record
header. If you then use splitdat, the header file that results can be used as an index to the data file.

begin
Indicates the offset to the beginning of the data associated with a particular header. If the data is
being translated to HDF, the units are records; if not, the units are bytes.

extent
Indicates the number of records (HDF) or bytes (non-HDF) associated with each header record.

Example
You will use splitdat to extract the headers and data from a rawinsonde (a device for gathering mete-
orological data) ASCII data file named hara.dat (HARA = Historic Arctic Rawinsonde Archive) and
create two output files–23338.dat containing the ASCII data and 23338hdr.dat containing the ASCII
headers. The format description file hara.fmt should contain the necessary format descriptions.

hara.fmt
ASCII_input_record_header "ASCII Location Record input format"
WMO_station_ID_number 1 5 char 0
latitude 6 10 long 2
longitude_east 11 15 long 2
year 17 18 uchar 0
month 19 20 uchar 0
day 21 22 uchar 0
hour 23 24 uchar 0
flag_processing_1 28 28 char 0
flag_processing_2 29 29 char 0
flag_processing_3 30 30 char 0
station_type 31 31 char 0
sea_level_elev 32 36 long 0
instrument_type 37 38 uchar 0
number_of_observations 40 42 ushort 0
identification_code 44 44 char 0

69

HDF UTILITIES

ASCII_input_data "Historical Arctic Rawinsonde Archive input format"
atmospheric_pressure 1 5 long 1
geopotential_height 7 11 long 0
temperature_deg 13 16 short 0
dewpoint_depression 18 20 short 0
wind_direction 22 24 short 0
wind_speed_m/s 26 28 short 0
flag_qg 30 30 char 0
flag_qg1 31 31 char 0
flag_qt 33 33 char 0
flag_qt1 34 34 char 0
flag_qd 36 36 char 0
flag_qd1 37 37 char 0
flag_qw 39 39 char 0
flag_qw1 40 40 char 0
flag_qp 42 42 char 0
flag_levck 43 43 char 0

ASCII_output_record_header "ASCII Location Record output format"
.
.
.

ASCII_output_data "Historical Arctic Rawinsonde Archive output format"
.
.
.

To “split” hara.dat, enter the following command:
splitdat hara.dat 23338.dat > 23338hdr.dat

The data values from hara.dat are stored in 23338.dat and the headers in 23338hdr.dat.

Because the variables begin and extent were used in the header output format in hara.fmt to indi-
cate data offset and number of records, 23338hdr.dat has two columns of data showing offset and ex-
tent. Thus, it can serve as an index into 23338.dat.

HDF Translation

If output files are not specified on the splitdat command line, a file named input_file.HDF is created.
It is hierarchically named and organized as follows:
 vgroup
 input_file_name
 / \
 / \
 vdata1 vdata2
 "PointIndex" "input_file_name"

- vdata1 contains the record headers
- vdata2 contains the data
- If writing to a Vset (represented by a vgroup), both output formats are
 converted to binary, if not binary already.

70

HDF UTILITIES

Example
To create the file hara.HDF from hara.dat, enter the following abbreviated command:

splitdat hara.dat

The output formats in hara.fmt are automatically converted to binary, and subsequently the ASCII
data in hara.dat are also converted to binary for HDF storage.

pntshow
The pntshow program is a versatile tool for extracting point data from HDF files containing scientific
datasets and Vsets. The extraction can be done into any binary or ASCII format described in a Free-
Form format description file. Before using pntshow on an HDF file, you should pack the file using the
NCSA-developed HDF utility hdfpack.

You can use pntshow to extract headers and data from an HDF file into separate files or to extract just
the data. It's a good idea to define GeoVu keywords in an equivalence table to facilitate access to HDF
objects. For information about equivalence tables, see the GeoVu Tools Reference Guide. The input
and output formats must be described in a FreeForm format description file. You should follow Free-
Form naming conventions for the data and format files. For details about FreeForm conventions, see
chapter 4.

If a format description file is not specified on the command line, the output format is taken by default
from the FreeForm output format annotation stored in the HDF file. If there is no annotation, a default
ASCII output format is used.

Note! An equivalence table takes precedence over everything. (vdata=1963, SDS=702)

If you have not specified an HDF object in an equivalence table, pntshow uses the following sequence
to determine the appropriate source for output:

1. Output the first vdata with class name Data.

2. Output the largest vdata.

3. Output the first SDS.

If no vdatas exist in the file, but an SDS is found, it is extracted and a default ASCII output format is
used.

Extracting Headers and Data
The pntshow command takes the following form when you want to extract headers and data from
HDF files into separate files.

pntshow input_HDF_file [-h [output_header_file]] [-hof output_header_format_file]
[-d [output_data_file]] [-dof output_data_format_file]

input_HDF_file
Name of the input HDF file, which has been packed using hdfpack.

71

HDF UTILITIES

-h [output_header_file]
Option flag followed optionally by the name of the file designated to contain the record headers
currently stored in a vdata with a class name of Index. If an output header file name is not speci-
fied, the default is standard output.

-hof output_header_format_file
Option flag followed by the name of the FreeForm format file that describes the format for the
headers extracted to standard output or output_header_file.

-d [output_data_file]
Option flag followed optionally by the name of the file designated to contain the data currently
stored in a vdata with a class name of Data. If an output file name is not specified, the default is
standard output.

-dof output_data_format_file
Option flag followed by the name of the FreeForm format file that describes the format for data
extracted to standard output or output_data_file.

Example
You will extract data and headers from hara.HDF (created by splitdat in a previous example). This
file contains two vdatas: one has the class name Data and the other has the class name Index. Because
this file is extremely small, no appending links were created in the file, so there is no need to pack the
file before using pntshow, though you can if you wish.

To extract data and headers from hara.HDF, enter the following command:

pntshow hara.HDF -d haradata.dat -h harahdrs.dat

The data from the vdata designated as Data in hara.HDF are now stored in haradata.dat. The data are
in their original format because the original output format was stored by splitdat in the HDF file. The
header data from the vdata designated as Index in hara.HDF are now stored in harahdrs.dat. In addi-
tion to the original header data, the variables begin and extent have also been extracted to
harahdrs.dat.

Extracting Data Only
The pntshow command takes the following form when you want to extract just the data from an HDF
file:

pntshow input_HDF_file [-of default_output_format_file] [> output_file]

input_HDF_file
Name of the input HDF file, which has been packed using hdfpack.

-of default_output_format_file
Option flag followed by the name of the FreeForm format file that describes the format for data
extracted to standard output or output_file.

output_file
Name of the output file into which data is transferred. If an output file name is not specified, the
default is standard output.

72

HDF UTILITIES

Examples
You can use pntshow to extract designated variables from an HDF file. In this example, you will ex-
tract temperature and pressure values from hara.HDF to an ASCII format. First, the following format
description file must exist.

haradata.fmt
ASCII_output_data "ASCII format for pressure, temp"
atmospheric_pressure 1 10 long 1
temperature_deg 15 25 float 1

To create a file named temppres.dat containing only the temperature and pressure variables, enter ei-
ther of the following commands:

pntshow hara.HDF -of haradata.fmt > temppres.dat

or

pntshow hara.HDF -d temppres.dat -dof haradata.fmt

If you use the first command, pntshow searches hara.HDF for a vdata named Data. Since hara.HDF
contains only one vdata named Data, this vdata is extracted by default with the format specified in
haradata.fmt.

The results are the same if you use the second command. Now, try running pntshow on the previously
created file latlon.HDF, which contains two SDS's. Use the following command:

pntshow latlon.HDF > latlon.SDS

The latlon.SDS file now contains the latitude and longitude values extracted from latlon.HDF. They
have the default ASCII output format. You could have used the -of option to specify an output format
included in a FreeForm format description file.

73

DEVELOPING FREEFORM APPLICATIONS

10

Developing FreeForm Applications

As applications have become increasingly complex, the concept of layered application development
has gained wide acceptance. A series of layers, each of which is as self-contained as possible, is used
to interface between user and data. Interactions between layers are kept as simple as possible. Free-
Form applications use this model and also incorporate the object-oriented approach to increase appli-
cation power and efficiency while simplifying design and maintenance. As an application programmer,
you can use the FreeForm Data Access System to build your own FreeForm-based programs.

74

DEVELOPING FREEFORM APPLICATIONS

FreeForm Application Layers
FreeForm applications are composed of the layers shown below.

USER INTERFACE

APPLICATION SPECIFICS

FREEFORM LIBRARY

DATA

USER

FREEFORM DATA OBJECTS

The FreeForm Data Access System comprises the FreeForm Library and Data Objects layers. You, the
application programmer, write the application-specific code and the user interface that sit above and
make use of the FreeForm layers. The FreeForm Library sits closest to the data. It includes functions
for creating and interpreting format description files, and for reading, converting, and writing data.

The Data Object layer above the FreeForm Library consists of several types of objects that provide a
simplified interface to the Library. Many common data access tasks have been implemented as events
that the objects know how to accomplish. These objects are implemented as structures in the C pro-
gramming language. The members of a structure are attributes of the object described by the structure.

Building an Application
You build a FreeForm application using the FreeForm library functions and data objects. To use an
object in an application, you must complete three steps:

1. Create the object.

2. Set the object's attributes.

3. Send events to the object to trigger the desired action.

You can also include calls to show functions, e.g., db_show, to determine current characteristics of
objects as the application runs.

Example Program
The example FreeForm application getll.c extracts and converts latitude and longitude values in any
data file from their native format into a signed decimal degree representation. The program first de-
fines a data bin with the native input format for a data file that includes latitude and longitude variables
in any representation. Then it defines a compile-time format for just latitude and longitude, and refor-
mats the latitude and longitude variables from their native format into the decimal degrees format.

75

DEVELOPING FREEFORM APPLICATIONS

Compile-time formats are used to read data from any hard-coded format into memory, where the data
can then be accessed by applications. Unlike other formats, a compile-time format is not intended to be
written to a file (although it could be). The example program getll.c demonstrates how to implement a
compile-time format in a FreeForm-based application.

Source Code–getll.c
/*
 * NAME: getll
 *
 * PURPOSE: This program reads latitude and longitude in any recognized
 * format, converting to values in decimal degrees.
 *
 * AUTHOR: Ted Habermann, NGDC, (303) 497-6472, haber@mail.ngdc.noaa.gov
 * Modified (MAO)
 *
 * USAGE: getll data_file
 *
 * COMMENTS:
 *
 * FreeForm applications are designed to run on many different types of
 * computers. One of the differences between these computers is the names
 * of various include files. These differences are taken care of by defining
 * your environment by defining one of the following three preprocessor
 * macros: 1) CCMSC (PC, Microsoft C), 2) SUNCC (Unix workstation, ANSI C),
 * or 3) CCLSC (Macintosh, ANSI C).
 *
 */

#include <limits.h>

/* The FreeForm include file is surrounded by a definition of the
 * constant DEFINE_DATA in the main program so that extern arrays that
 * FreeForm uses get initialized. The DEFINE_DATA constant must not be
 * defined in any other files.
 */

#define DEFINE_DATA
#include <freeform.h>
#undef DEFINE_DATA

/* This include file defines the data objects */
#include <databin.h>

#define ROUTINE_NAME "getll"

/* An error call back routine -- it tells make_standard_dbin which events
 are okay if they fail. getll "dynamically" creates the output data
 format, and throws away any existing output data format, so we don't
 require an output data format in the format file. This function allows
 make_standard_dbin() to process other events, even if the OUTPUT_FORMAT
 event fails to produce an output format.
*/
#ifdef PROTO
static int mkstdbin_cb(int routine_name)

76

DEVELOPING FREEFORM APPLICATIONS

#else
static int mkstdbin_cb(routine_name)
int routine_name;
#endif

{
return(routine_name != OUTPUT_FORMAT);
}

/***
 * NAME: check_for_unused_flags()
 *
 * PURPOSE: Has user asked for an unimplemented option?
 *
 * USAGE: check_for_unused_flags(std_args_ptr);
 *
 * RETURNS: void
 *
 * DESCRIPTION: All FreeForm utilities do not employ all of the "standard"
 * FreeForm command line options. Check if the user has unwittingly asked
 * for any options which this utility will ignore.
 *
 * The following "standard" command line options are not used by this
 * application:
 *
 * -v variable file
 * -q query file
 * -p precision (checkvar only)
 * -md missing data flag (checkvar only)
 * -m maximum number of bins (checkvar only)
 * -mm maximum/minimum processing only (checkvar only)
 *
 * AUTHOR: Mark Ohrenschall, NGDC
 *
 * SYSTEM DEPENDENT FUNCTIONS:
 *
 * GLOBALS:
 *
 * COMMENTS:
 *
 * KEYWORDS:
 *
 * ERRORS:
 **/

#ifdef PROTO
static void check_for_unused_flags(FFF_STD_ARGS_PTR std_args)
#else
static void check_for_unused_flags(std_args)
FFF_STD_ARGS_PTR std_args;
#endif

{
if (std_args->user.set_var_file)

{
err_push(ROUTINE_NAME, ERR_IGNORED_OPTION,
 "variable file"
);
}

77

DEVELOPING FREEFORM APPLICATIONS

if (std_args->user.set_query_file)
{
err_push(ROUTINE_NAME, ERR_IGNORED_OPTION,
 "query file"
);
}

if (std_args->user.set_cv_precision)
{
err_push(ROUTINE_NAME, ERR_IGNORED_OPTION,
 "precision (checkvar only)"
);
}

if (std_args->user.set_cv_missing_d ata)
{
err_push(ROUTINE_NAME, ERR_IGNORED_OPTION,
 "missing data flag (checkvar only)"
);
}

if (std_args->user.set_cv_maxbins)
{
err_push(ROUTINE_NAME, ERR_IGNORED_OPTION,
 "maximum number of histogram bins (checkvar only)"
);
}

if (std_args->user.set_cv_maxmin_only)
{
err_push(ROUTINE_NAME, ERR_IGNORED_OPTION,
 "maximum and minimum processing only (checkvar only)"
);
}

if (err_state ())
{
err_disp();
}

}

#ifdef PROTO
void main(int argc, char *argv[])
#else
void main(argc, argv)
int argc;
char *argv[]
#endif

{
int error = 0; /* to hold error return values */

char *output_buffer = NULL; /* output data buffer */
long output_bytes = 0; /* bytes written into output buffer */

FFF_STD_ARGS std_args; /* holds command line information */
DATA_BIN_PTR input = NULL; /* the data bin */
FILE *pfile = NULL; /* output file */

if (argc == 1)
{
fprintf(stderr, "%s%s",

78

DEVELOPING FREEFORM APPLICATIONS

#ifdef ALPHA
"\nWelcome to getll alpha "FF_LIB_VER" "__DATE__\
" -- an NGDC FreeForm example application\n\n",
#elif defined(BETA)
"\nWelcome to getll beta "FF_LIB_VER" "__DATE__\
" -- an NGDC FreeForm example application\n\n",
#else
"\nWelcome to getll release "FF_LIB_VER\
" -- an NGDC FreeForm example application\n\n",
#endif
"Default extensions: .bin = binary, .dat = ASCII, .dab = dBASE\n\
\t.fmt = format description file\n\
\t.bfm/.afm/.dfm = binary/ASCII/dBASE variable description file\n\n\
getll data_file [-f format_file] [-if input_format_file]\n\
 [-of output_format_file] [-ft \"format title\"]\n\
 [-ift \"input format title\"] [-oft \"output format
 title\"]\n\
 [-c count] No. records to process at head(+)/tail(-) of
 file\n\
 [-o output_file] default = output to screen\n\n\
See the FreeForm User's Guide for detailed information.\n"

);
exit(EXIT_FAILURE);
}

 /* The FREEFORM system uses a hierarchical error handling system
 which allows each layer of an application to add error messages to
 a queue. err_push is the function which adds messages to the queue.
 It is called by any function which runs into an error. err_disp is
 the function that interactivly displays those errors to the user.
 It is called by the main application program when an error occurs.*/

 /* Allocate the output buffer:
 FREEFORM uses two types of buffers extensively and defines default
 buffer sizes in the include file freeform.h. The local or scratch
 buffers are used as temporary work space. The cache buffers are
 used for reading large blocks of data.*/

output_buffer = (char *)malloc((size_t)DEFAULT_CACHE_SIZE);
if (!output_buffer)

{
err_push(ROUTINE_NAME, ERR_MEM_LACK, "Output Buffer");
err_disp();
exit(EXIT_FAILURE);
}

/* Collect options entered on the command line, this information will be
 used in the call to make_standard_dbin(), below.
*/
if (parse_command_line(argc, argv, &std_args))

{
free(output_buffer);

err_disp();
exit(EXIT_FAILURE);
}

check_for_unused_flags(&std_args);

79

DEVELOPING FREEFORM APPLICATIONS

/* Create and initialize the data bin */
if (make_standard_dbin(&std_args, &input, mkstdbin_cb))

{
free(output_buffer);

err_disp();
exit(EXIT_FAILURE);
}

/* make_standard_dbin may have generated an incidental error, in case
 the OUTPUT_FORMAT event failed. mkstdbin_cb downgrades such an error
 from a terminal error to a warning, but an error message might still
 have been queued. If so, clear it.
*/
if (err_state())

err_clear();

/* Has user indicated an output file? */
if (std_args.output_file)

{
pfile = fopen(std_args.output_file, "wb");
if (!pfile)

{
free(output_buffer);

err_push(ROUTINE_NAME, ERR_CREATE_FILE,
 std_args.output_file);

err_disp();
exit(EXIT_FAILURE);
}

}
else

{
/* If not, write to standard output */
pfile = stdout;
}

/* Rather than using an output format con tained in a file, create a
 "dynamic" buffer, write an output format description into it, and
 use that to initialize the data bin's output format
*/

sprintf(output_buffer, "\
ASCII_output_data \"hard-coded in getll.c:main()\"\n\
longitude 1 11 double 6\n\
latitude 13 25 double 6\n"
);

 /* Use the FORMAT_BUFFER event to set the output format. The data bin
 knows that this is an output format because of the format type,
 "ASCII_output_data".
 */

if (db_set(input ,
 FORMAT_BUFFER, output_buffer, NULL, NULL,
 END_ARGS

)
)

{

80

DEVELOPING FREEFORM APPLICATIONS

/* Error in the output format creation -- this must never happen!
 Ensure that the output buffer is syntactically correct, since it
 is hard-coded into the program!
*/

free(output_buffer);
if (std_args.output_file)

fclose(pfile);

err_push(ROUTINE_NAME, ERR_MAKE_FORM, output_buffer);
err_disp();
exit(EXIT_FAILURE);
}

/* Display some information about the data formats */
db_show(input, FORMAT _LIST, FFF_INFO, END_ARGS);
/* db_show writes into data bin's working buffer */
fprintf(stderr, "%s", input->buffer);

/*
** process the data
*/

/* use PROCESS_FORMAT_LIST to fill cache and fill headers */
while ((error = db_events(input,

 PROCESS_FORMAT_LIST, FFF_ALL_TYPES,
 END_ARGS

)
) == 0
)
{
/* Make sure output buffer is large enough for the cache */
db_show(input,
 DBIN_BYTE_COUNTS, DBIN_OUTPUT_CACHE, &output_bytes,

 END_ARGS , END_ARGS
);

if ((unsigned long)output_bytes > (unsigned long)UINT_MAX)
{
error = 1;
err_push(ROUTINE_NAME, ERR_MEM_LACK,

 "reallocation size too big");
break;
}

if (output_bytes > DEFAULT_CACHE_SIZE)
{
/* The default cache size was too small for the number of
 output bytes needed. This contigency is coded for, but
 is extremely unlikely to happen. However, it is possible
 that the program will error out if it can not resize the
 output bu ffer.
*/
char *cp = NULL;

cp = (char *)realloc(output_buffer, (size_t)output_bytes);
if (cp)

{
output_buffer = cp;
}

81

DEVELOPING FREEFORM APPLICATIONS

else
{
error = 1;
err_push(ROUTINE_NAME, ERR_MEM_LACK,
 "reallocation of output_buffer");
break;
}

}

/* Convert the cache into the output_buffer -- this will perform a
 binary to ASCII conversion if necessary. (The example shows
 getll running on llmaxmin.dat, an ASCII file, but this program
 works equally well on llmaxmin.bin, which is created by running
 newform on llmaxmin.dat.)
*/
error = db_events(input,
 DBIN_DATA_TO_NATIVE, NULL, NULL, NULL,
 DBIN_CONVERT_CACHE, output_buffer, NULL,
 &output_bytes,
 END_ARGS
);
if (error)

break;

/* Write the contents of the output buffer to the file
 (or screen).
*/
if ((long)fwrite(output_buffer, sizeof(char),
 (size_t)output_bytes, pfile)
 < output_bytes
)

{
err_push(ROUTINE_NAME, ERR_WRITE_FILE, std_args.output_file
 ? std_args.output_file
 : "to screen"
);
break;
}

}/* End Processing */

if (std_args.output_file)
fclose(pfile);

free(output_buffer);

/* Deallocate all memory assocated with the data bin */
db_free(input);

/* The error stack is checked to see if anything went wrong du ring
 processing
*/
if ((error && error != EOF) || err_state())

{
err_push(ROUTINE_NAME, ERR_PROCESS_DATA, NULL);
err_disp();
exit(EXIT_FAILURE);
}

} /* end main() for program getll */

82

DEVELOPING FREEFORM APPLICATIONS

Using getll
In this example, you will use getll to extract latitude and longitude values from the ASCII data file
latlon.dat. Their native format is signed decimal degrees, so no conversion takes place. Enter the fol-
lowing command:

getll latlon.dat

This command prints format summary information and a list of longitude and latitude values to the
screen:
 -176.161101 -47.303545
 0.777265 -0.928001
 35.591879 -28.286662
 149.408117 12.588231

 .
 .
 .

As another example, use the following command to extract the latitude and longitude values from the
file calif.tap.

getll calif.tap -f eqtape.fmt

The latitude and longitude values are extracted and converted from their native representation as abso-
lute values with quadrant indicated. You should see the following signed decimal degree values written
to the screen:
-121.815000 37.852000
-121.740000 37.737000
-116.550000 33.517000

.

.

.

Writing out latitude and longitude values to standard output (the screen) is not a very impressive feat,
but you could create a similar program to use as the front end for a graphics package. In that case, you
might want to include a third output column which contains the values of a third variable. For example,
with a seismological application, you might want to include values for magnitude or depth. You can
easily add the third column to the getll program by changing the sprintf statement, which creates the
compile-time format, so it is similar to the following:
sprintf(output_buffer, "longitude 1 8 double 6\nlatitude 9 16 double 6\n

%s 17 24 double 2", *(argv+2));

The getllvar program incorporates a more general version of the sprintf statement and several other
small changes to the getll code; see getllvar.c. Now the second command line argument is the name of
the third variable (only with getllvar; this is at variance with standard FreeForm command line syn-
tax). Try the following command:

getllvar calif.tap depth -f eqtape.fmt

83

DEVELOPING FREEFORM APPLICATIONS

You should see the following output with values for depth given in the third column:
 -121.815000 37.852000 11
 -121.740000 37.737000 15
 -116.550000 33.517000 6
 -125.033000 40.600000 5
 -118.840000 37.600000 5
 -118.875000 37.609000 24
 -118.832000 37.527000 12
 -118.820000 37.569000 15

.

.

.

If you enter the following command:

getllvar calif.tap year -f eqtape.fmt

the year will be shown in the third column.

84

APPENDIX A CONVERSION VARIABLE NAMES

Appendix A

Conversion Variable Names

FreeForm can automatically perform conversions between various representations of space and time
values. When FreeForm encounters standard conversion variable names in a format description file, it
performs the appropriate conversion.

This appendix lists the conversion variable names that FreeForm recognizes. For conversions that oc-
cur in one direction only, the conversion variable names are listed in columns titled Input and Output.
Conversion names that you can use for either input or output variables are in untitled columns.

85

APPENDIX A CONVERSION VARIABLE NAMES

General
By adding the appropriate suffix to a variable name, you can perform several general (miscellaneous)
conversions. To convert between meters and feet, add _m and _ft to the relevant variable names. For
absolute and signed values, add _abs and _sign . For scientific notation, use _base and _exp to iden-
tify the base and exponent parts of a number. There may or may not be an 'E' or 'e' in the exponent; the
range of the E format is E+/-999. Be sure the output field is large enough for the converted number.

varname_m

varname_abs
varname_sign

varname_base
varname_exp

varname_ft

varname

varname

varname = any character string without blanks

Latitude/Longitude
FreeForm supports conversions between a number of representations of latitude and longitude values
with the use of the correct conversion variable names.

General Lat/Lon
By using the appropriate suffixes, you can perform conversions between a number of different repre-
sentations of latitudes and longitudes.

Input
varname_abs
varname_ns or varname_ew

varname or varname_abs
varname_ns or varname_ew

varname

varname or varname_abs

varname_deg
varname_min
varname_sec

varname_deg or _abs
varname_min or _abs
varname_sec or _abs
geo_quad_code _ns, _ew or _sign

Output
varname

varname_deg
varname_min
varname_sec

varname_abs or varname_sign

varname_deg_abs
varname_min_abs
varname_sec_abs

varname or varname_abs

varname

varname = latitude or longitude

86

APPENDIX A CONVERSION VARIABLE NAMES

Degrees, Minutes, Seconds
The following variables are used for conversions between degrees, minutes, and seconds (_deg , _min ,
_sec) or absolute degrees, minutes, and seconds (_deg_abs , _min_abs , _sec_abs) and decimal de-
grees (no suffix). If a conversion to degrees, minutes and seconds results in a value for degrees be-
tween 0 and -1, the minutes or seconds part is signed as appropriate to avoid a value of -0 degrees.

varname_deg
varname_min
varname_sec

varname_deg_abs
varname_min_abs
varname_sec_abs

varname

varname

varname = latitude or longitude

Geographic Quadrants
Use the following variables to convert from several different representations of latitude and longitude
to a geographic quadrant defined by DMA (Defense Mapping Agency) for their gravity data.

DMA defines four geographic quad codes as follows:

1 = Northeast 2 = Northwest

3 = Southeast 4 = Southwest

Input
latitude
longitude

latitude_ns
longitude_ew

latitude_sign
longitude_sign

Output
geo_quad_code

geo_quad_code

geo_quad_code

Longitude East
Use the following variables for conversions between east longitudes (longitude_east) and
longitude (no suffix) or longitude represented in degrees/minutes/seconds (_deg , _min , _sec) plus
hemisphere or geographic quadrant (_ns , _ew , geo_quad_code).

87

APPENDIX A CONVERSION VARIABLE NAMES

Input
longitude_east

longitude

varname_min
varname_sec
varname_ns
varname_ew
geo_quad_code

Output
longitude

longitude_east

longitude_east

Quadrant, Sign
Use the following variables to convert from lat/lon with quadrant to signed lat/lon or vice versa.

latitude_ns

longitude_ew

latitude_sign

longitude_sign

Earthquake Magnitude
FreeForm includes a conversion function that lets you extract one of the three magnitudes out of the
variable longmag , or create longmag from one, two, or more of the individual magnitudes.

The variable longmag is a long which contains three magnitudes:

ms2 has a precision of 2 and is multiplied by 10,000,000

ms1 has a precision of 2 and is multiplied by 10,000

mb has a precision of 1 and is multiplied by 10

longmag magnitude_mb
magnitude_ms1
magnitude_ms2
magnitude_ml
magnitude_local

88

APPENDIX A CONVERSION VARIABLE NAMES

Date and Time
FreeForm includes conversion functions that let you convert between various representations of date
and time including decimal year; serial date with January 1, 1980 as 0; any combination of year,
month, day, hour, minute, second; and IPE (Institute of Physics of the Earth) date in minutes AD.

year
month
day
hour
minute
second

serial_day_1980

serial_day_1980

year
month
day

ipe_date

ipe_date

date_dd/mm/yy

time_hhmmss

date_ddmmyy

time_hh:mm:ss

89

APPENDIX B ERROR HANDLING

Appendix B

Error Handling

The FreeForm error handling system captures errors, such as improper usage, code problems, and sys-
tem errors, and places them in an error queue. For each error captured, error type and a short message
are placed in the message queue. If a fatal error occurs, the program stops executing and displays all
error messages in the queue.

90

APPENDIX B ERROR HANDLING

Error Messages
The following is a list of some possible error messages with suggestions for corrections.

Problem opening, reading, or writing to file
Check that all file names and paths are correct.

Problem making format
Make sure there is a format file describing the data file formats.
Check that input and output format descriptions in the format file accurately describe the data.

Problem making header format
If a header exists in the data file, it must be described in a format file.
Check that the header description accurately describes the header in your data file.

Problem getting value
Problem processing variable list
The data formats may not be described correctly or there may be some inconsistencies in the data.
Check also for unprintable characters at the end of the data file.

File length / Record length mismatch
Record Length or CR Problem
This usually happens because the input format description is not correct.
Make sure the format description's last position is the last character before the end-of-line charac-
ter. If you have a header, make sure it is described correctly.
The header's length must include all characters up until the last end-of-line-character before the
data begins.

Binary Overflow
Try using a larger output variable type such as a long instead of a short.
Be sure you have given enough space for the values to be written.
See the section “FreeForm Variable Types” in chapter 3 for more information.

Variable not found
The variable names in your output format must match the variable names in the input format unless
you are using conversion variables.

Data Overflow:

Data overflow does not usually cause a fatal error and FreeForm functions try to anticipate them. If
overflow occurs for a particular value, ***'s are written to that value's location.

If you find these in your output, check your variable positions and precision. Increase field width
or use a “larger” data type.

Be sure the output format specifies space for the output variable. For instance, FreeForm adds a
leading zero in front of decimal points. If the original data did not have a leading zero, the output
will have one more digit than the input.

Insufficient memory allocation
The application has run out of memory. Try using the -b (local buffer size) option, or modify
autoexec.bat and config.sys and comment out devices, TSR’s, etc.

91

APPENDIX C QUERY SYNTAX

Appendix C

Query Syntax

This appendix lists the operators, symbols, and functions you can use to construct queries. The lists are
followed by definitions, rules for combining elements to form equations and queries, and brief usage
explanations.

Symbols and Operators–List

Arithmetic Operators

Rep. Meaning

^ exponentiation

% modulus

* multiplication

/ division

+ addition

- subtraction

92

APPENDIX C QUERY SYNTAX

Logical Operators

Rep. Meaning

! logical not (takes only 1 argument)

not logical not (takes only 1 argument)

& logical and

&& logical and

and logical and

| logical or

|| logical or

or logical or

x| logical exclusive or

xor logical exclusive or

= equal to

= = equal to

< less than

> greater than

!= not equal to

< > not equal to

> < not equal to

< = less than or equal to

> = greater than or equal to

Special Symbols

Rep. Meaning

~ negative sign

() indicate order in which expressions are evaluated

[] enclose variables

"" enclose string constants

Functions–List
Name Meaning

acosh inverse hyperbolic cosine

asinh inverse hyperbolic sine

atanh inverse hyperbolic tangent

93

APPENDIX C QUERY SYNTAX

asech inverse hyperbolic secant

acsch inverse hyperbolic cosecant

acoth inverse hyperbolic cotangent

acos inverse cosine (radians)

asin inverse sine (radians)

atan inverse tangent (radians)

asec inverse secant (radians)

acsc inverse cosecant (radians)

acot inverse cotangent (radians)

cosh hyperbolic cosine

sinh hyperbolic sine

tanh hyperbolic tangent

sech hyperbolic secant

csch hyperbolic cosecant

coth hyperbolic cotangent

sqrt square root

sign sign of argument (1 if pos, -1 if neg, 0 if 0)

cos cosine (radians)

sin sine (radians)

tan tangent (radians)

sec secant (radians)

csc cosecant (radians)

cot cotangent (radians)

abs absolute value

exp e to the power

log logarithm base 10

fac factorial

deg radians to degrees

rad degrees to radians

rup round to nearest larger integer

rdn round to nearest smaller integer

rnd round to nearest integer

sqr square

ten ten to the power

94

APPENDIX C QUERY SYNTAX

not logical not

ln logarithm base e

Definitions of Terms
Constant

A number whose value is explicitly stated in the query.

Predefined Constant

A number whose value is known explicitly by the equation interpreter, but is not stated in the
equation. The two predefined constants, with names preceded by a colon, are :e (2.71828182846)
and :pi (3.14159265359).

String Constant

A character string whose value is explicitly stated in the equation.

Variable

A number which is referenced by a unique name in the equation, but whose value is not stated in
the equation.

String Variable

A character string which is referenced by a unique name in the equation, but whose value is not
stated in the equation.

Domain Error

A problem which arises when a function or operation is undefined for certain input values, such as
division by 0. If a domain error is generated, the equation is evaluated to 0.

Rules
Equations or queries are formed by combining variables and constant values with operators or func-
tions in a meaningful way. The following set of rules applies to creating an equation.

• Variable names must be enclosed in [] (square brackets).
For instance, finding the sum of a variable named height and another variable named altitude is
expressed as:

[height] + [altitude]

• String constants must be surrounded by " " (quotation marks).
For instance, a query to see if a string variable latitude is equal to the string north is expressed as:

[latitude] = "north"

• Constants with negative values must be proceeded by ~ (tilde).
For instance, multiplying the variable altitude by a negative four is expressed as:

[altitude] * ~4

95

APPENDIX C QUERY SYNTAX

• At least one variable (numeric or string) must be referenced in the equation.

• Variable names cannot contain " (quotation marks), or [] (square brackets).

• Spaces are ignored in equations (except inside string constants and variable names), so you can use
spaces to separate the parts of your equation and make it more readable.

Pre-defined Constants
The names of the two predefined constants e and pi are preceded by a colon to differentiate them from
a function name or variable name.

Example

[degrees] * :e + :pi
multiplies the variable degrees by e (2.718…) and adds pi (3.141…)

Operators–with Definitions
Operators cause the indicated operation to be performed on two values (string or numeric) with a third
value resulting. The format for using operators is as follows:

value1 operator value2

Arithmetic Operators

Arithmetic operators cannot be used with string variables or string constants.

Symbol Meaning Explanation

^ exponentiation Raises value1 to the value2 power. Generates a
domain error if value1 is negative and value2 is not
an integer.

% modulus Returns the remainder when value1 is divided by
value2. If value1 = value2 * a + R, where a is an
integer and R is less than value2, the modulus
operator returns R. Generates a domain error if
value2 is 0.

* multiplication Multiplies value1 by value2.

/ division Divides value1 by value2. Generates a domain error
if value2 is 0.

+ addition Adds value1 and value2.

- subtraction Subtracts value2 from value1.

Logical Operators

Inputs to the logical operators are evaluated to FALSE if they are equal to 0. Any value other than 0
evaluates to TRUE. Outputs of the logical operators are 0 for FALSE, 1 for TRUE.

Some of the logical operators have a “word” which is synonymous with their symbol (C language
compatible), or multiple acceptable symbols. There is no advantage in speed to using any one of these

96

APPENDIX C QUERY SYNTAX

alternate names, but the equation may be more human-readable in one form than in another. For ex-
ample, the following equations, which evaluate to TRUE (i.e., 1) if the variables x and y are TRUE,
are all equivalent:

[x] & [y]

[x] && [y]

[x] and [y]

Symbol Meaning Explanation

& logical AND TRUE if value1 and value2 are both TRUE

&& logical AND TRUE if value1 and value2 are both TRUE

and logical AND TRUE if value1 and value2 are both TRUE

Logical AND accepts only numeric arguments.

Truth table for logical AND:

value1 value2 output

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

| logical OR TRUE if value1 or value2 are TRUE

|| logical OR TRUE if value1 or value2 are TRUE

or logical OR TRUE if value1 or value2 are TRUE

Logical OR accepts only numeric arguments.

Truth table for logical OR:

value1 value2 output

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

x| logical exclusive or (XOR) TRUE if value1 or value2 are TRUE, but not both

97

APPENDIX C QUERY SYNTAX

xor logical exclusive or (XOR) TRUE if value1 or value2 are TRUE, but not both

Logical XOR accepts only numeric arguments.

Truth table for logical XOR:

value1 value2 output

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE

= equal to TRUE if value1 is equal to value2

= = equal to TRUE if value1 is equal to value2

This operator can be used with both numeric and
string values as long as value1 and value2 are both
of the same type.

< less than TRUE if value1 is less than value2

This operator can be used with both numeric and
string values, as long as value1 and value2 are both
of the same type.

> greater than TRUE if value1 is greater than value2

This operator can be used with both numeric and
string values, as long as value1 and value2 are both
of the same type.

!= not equal to TRUE if value1 is not equal to value2

< > not equal to TRUE if value1 is not equal to value2

> < not equal to TRUE if value1 is not equal to value2

This operator my be used with both numeric and

string values, as long as value1 and value2 are both

of the same type.

< = less than or equal to TRUE if value1 is less than or equal to value2

This operator can be used with both numeric and
string values, as long as value1 and value2 are both
of the same type.

98

APPENDIX C QUERY SYNTAX

> = greater than or equal to TRUE if value1 is greater than or equal to value2

This operator can be used with both numeric and
string values, as long as value1 and value2 are both
of the same type.

! logical NOT TRUE if value is FALSE, FALSE if value is TRUE

not logical NOT TRUE if value is FALSE, FALSE if value is TRUE

Logical NOT accepts only numeric arguments.

Note! The logical NOT operator, unlike all other
logical operators, takes only 1 argument. Thus,
the format for a logical NOT statement is as
follows:

! value
not value

Functions–with Definitions
The functions take only a single argument, in the following manner:

name(value)

Please note that the parentheses implied above are not necessary unless the function is evaluating a
complex argument. In the definitions given below, the value is represented as x. Function definitions
which require functions themselves are given in a manner compliant with the equation evaluator.

Name Meaning Explanation/Definition

acosh inverse hyperbolic cosine ln(x + sqrt((x ^ 2) -1))
Domain error if x < 1.

asinh inverse hyperbolic sine ln(x + sqrt((x ^ 2) + 1))

atanh inverse hyperbolic tangent ln((1 + x) / (1 -x)) / 2
Domain error if x >= 1 or x <= -1

asech inverse hyperbolic secant ln((1 + sqrt(1 -(x ^ 2))) / x)
Domain error if x <= 0 or x > 1

acsch inverse hyperbolic cosecant ln(((1 / x) + (sqrt(1 + (x ^ 2))) / abs(x)))
Domain error if x = 0

acoth inverse hyperbolic cotangent log((x + 1) / (x -1)) / 2
Domain error if -1 <= x <= 1

acos inverse cosine (radians) Domain error if x < -1 or x > 1

asin inverse sine (radians) Domain error if x < -1 or x > 1

atan inverse tangent (radians)

asec inverse secant (radians) Domain error if -1 < x < 1

acsc inverse cosecant (radians) Domain error if -1 < x < 1

99

APPENDIX C QUERY SYNTAX

acot inverse cotangent (radians) Domain error if x = 0

cosh hyperbolic cosine

sinh hyperbolic sine

tanh hyperbolic tangent

sech hyperbolic secant

csch hyperbolic cosecant

coth hyperbolic cotangent

sqrt square root Domain error if x < 0

sign sign of argument Evaluates to 1 if x > 0, 0 if x = 0, and
-1 if x < 0

cos cosine (radians)

sin sine (radians)

tan tangent (radians)

sec secant (radians)

csc cosecant (radians)

cot cotangent (radians)

abs absolute value

exp e to the power :e ^ x

log logarithm base 10 Domain error if x <= 0

fac factorial Domain error if x <= 0
x is rounded to nearest smaller integer before
factorial is calculated.

deg radians to degrees 180 * x / :pi

rad degrees to radians :pi * x / 180

rup round to nearest larger integer

rdn round to nearest smaller integer

rnd round to nearest integer

sqr square x ^ 2

ten ten to the power 10 ^ x

not logical not This is the same as the logical NOT operator,
but is included here because of its
function-like behavior. Evaluates to
1 if x = 0, 0 otherwise.

ln logarithm base e Domain error if x <= 0

100

APPENDIX C QUERY SYNTAX

Order of Operations
An equation is evaluated in the following order:

1. anything inside parentheses (left to right, sub-parentheses given precedence)

2. functions (no explicit order to function evaluation)

3. exponentiation (left to right)

4. multiplication, division, and modulus (left to right)

5. addition and subtraction (left to right)

6. logical operators (no explicit order to logical operator evaluation)

For instance, the equation

4 + (cos[x] - [y] ^ 3) * (([y] + 4) / 7) + ([x] > 1)

is evaluated as follows: ([x] = 3.14159265359, [y] = 3, bold is changed value)

4 + (~1 - [y] ^ 3) * (([y] + 4) / 7) + ([x] > 1)

4 + (~1 - 27) * (([y] + 4) / 7) + ([x] > 1)

4 + ~28 * (([y] + 4) / 7) + ([x] > 1)

4 + ~28 * (7 / 7) + ([x] > 1)

4 + ~28 * 1 + ([x] > 1)

4 + ~28 * 1 + 1

4 + ~28 + 1

~24 + 1

~23

The similar equation

4 + (cos[x] - [y] ^ 3) * (([y] + 4) / 7) + [x] > 1

is evaluated as follows: (with the same values for [x] and [y])

4 + (~1 - [y] ^ 3) * (([y] + 4) / 7) + [x] > 1

4 + (~1 - 27) * (([y] + 4) / 7) + [x] > 1

4 + ~28 * (([y] + 4) / 7) + [x] > 1

4 + ~28 * (7 / 7) + [x] > 1

4 + ~28 * 1 + [x] > 1

4 + ~28 + [x] > 1

~24 + [x] > 1

~20.8584073464 > 1

0

101

APPENDIX C QUERY SYNTAX

General Suggestions
It is best to use the supported operators and functions in order to reduce the number of items to be
evaluated. This reduces the time it takes to evaluate the equation, perhaps negligible for each evalua-
tion, but with repeated evaluation, the time savings can be substantial. For instance, the equation:

ln(((1 / [x]) + (sqrt(1 + ([x] ^ 2))) / abs([x])))

is equivalent to:

acsch[x]

but the first equation takes much longer to evaluate than the second. There are a few cases where there
are various ways to state the same equation, such as:

[x] * [x]

[x] ^ 2

sqr[x]

All three equations above square the variable x. All three require only one evaluation each, and there-
fore require almost exactly the same amount of time to evaluate. The equations below are also com-
pletely equivalent:

[x] * [x] * [x]

[x] ^ 3

In this case, the first equation requires two evaluations ([x] * [x], and then the result of that * [x]),
while the second equation requires only one evaluation. The evaluation of the second equation will
therefore be approximately 2 times faster.

Avoid causing unnecessary evaluations. For instance, the following equation:

(1 / 2) * [base] * [height]

is faster if expressed as:

[base] * [height] / 2

Examples
Absolute Latitude
The following equation takes the variable abs_latitude and multiplies it by -1 if the value of
latitude_n_or_s is S, abs_latitude is multiplied by 1 otherwise.

[abs_latitude] * (([latitude_n_or_s] != "S") + ~1 * ([latitude_n_or_s] = "S"))

Distance Between Points
The following equation computes the distance between the points given by x1, y1, x2 and y2
(assuming all points lie on a plane).

sqrt(sqr([x2] - [x1]) + sqr([y2] - [y1]))

Quadratic Solution
The following equation computes one of the solutions to the quadratic formula:

(~1 * [b] + sqrt([b] ^ 2 - 4 * [a] * [c])) / (2 * [a])

102

APPENDIX C QUERY SYNTAX

Sine of Angle
The following 3 equations are all roughly equivalent, finding the sine of angle deg (which is measured
in degrees). The first equation is not recommended, because the value used for pi is not as accurate as
the value given by the pre-defined constant :pi. The second equation is better, but requires more time
to be evaluated than the third.

sin(3.141592 * [deg] / 180)
sin(:pi * [deg] / 180)
sin(rad[deg])

Volume of Sphere
The following equation finds the volume of a sphere:

4 * :pi * [radius] ^ 3 / 3

103

INDEX

Index

—A—
about this guide, 4
accessing conversion functions, 40
arguments

command line, 23
count, 25
filters, 25
format description source, 24
format file, 24
format title, 24
input and output files, 23
input file, 23
input format file, 24
input format title, 24
local buffer size, 24
output file, 23
output format file, 24
output format title, 24
query file, 25
run-time parameters, 24
variable file, 25

ASCII to ASCII conversion, 36
ASCII to binary conversion, 29, 31

—B—
band interleaved by pixel form. See multiplexed form
band sequential form. See demultiplexed form
binary archives, creating, 28
binary files, viewing, 9
binary to ASCII conversion, 30

—C—
case sensitivity, 23
changing formats, 8, 26
changing header formats, 56
checkvar, 59
checkvar command, 59
command line arguments, 23
commands

checkvar, 59
fillhdr, 54
gethdr, for changing header formats, 56
gethdr, for viewing headers, 55
makehdf, 65
newform, 27
pntshow, for extracting data only, 71
pntshow, for extracting headers and data, 70
readfile, 27
splitdat, 68

conventions
file name, 20
FreeForm, 19
typographic, 5

conversion
ASCII to ASCII, 36
ASCII to binary, 29, 31
binary to ASCII, 30
format, 8, 26
to HDF, 65

conversion functions, accessing, 40
conversion variables

names, 84
overview, 39

conversions
absolute degrees and minutes, 42
date, 44
degrees, minutes, and seconds, 41
latitude, 40
longitude, 40
serial dates, 45
time, 44
year, month, day, 44

converting formats, 8, 26
creating

binary archives, 28
indexed HDF files, 68
separate data and header files, 67
summary files, 9, 59

—D—
date conversions, 44
demultiplexed form, 66, 67
descriptions

format, 7, 12
variable, 18

descriptors, 17
determining input and output formats, 21
developing FreeForm applications, 73
diff, 30
downloading FreeForm files, 4

—E—
error messages, 90
example FreeForm application, 75
extensions, file name, 20
extracting point data, 70

—F—
file headers, 48
file names

case sensitivity, 23
conventions, 20
data, nonstandard, 34
extensions, 20
format description, nonstandard, 35
relationships, 20

FreeForm
You can click on a page number following an index entry to go to the appropriate section in the text.

If you want to use the Acrobat Go To Page function instead, you must add 5 to the page number in the index to go to the proper page, e.g., if the page number in the index is 40, go to page 45.

104

INDEX

file names and context, 33
file types

ASCII, 15
binary, 15
dBASE, 15, 52

fillhdr, 54
fillhdr command, 54
format conversion, 8, 26
format description files, 7, 16
format descriptions, 16

overview, 12
writing, 7, 16

format descriptors, 17
format files, locating, 21
format title, 16
format type, 16
formats

changing, 8, 26
FreeForm

files, 4
files, downloading, 4
overview, 1
quick tour, 6

FreeForm application layers, 74
FreeForm conventions, 19
FreeForm Data Access System. See FreeForm

—G—
gethdr, 55
gethdr command

for changing header formats, 56
for viewing headers, 55

getll.c source code, 75

—H—
HDF files, indexed, 67
HDF utilities, overview, 64
header files, separate, 51
header formats, 47

changing, 56
header types, 48
headers

file, 48
record, 49
viewing, 55

histogram files. See variable summary files

—I—
indexed HDF files, creating, 68
input and output formats, determining, 21
interpreting summary files, 10, 61

—L—
latitude conversions, 40
list files. See variable summary files
locating format files, 21
longitude conversions, 40

—M—
makehdf, 65
makehdf command, 65
multiplexed, 64
multiplexed form, 67

—N—
newform, 27
newform command, 27

—O—
options, readfile, 28

—P—
pntshow, 70
pntshow command

for extracting data only, 71
for extracting headers and data, 70

processing summary, 61
programs

checkvar, 59
fillhdr, 54
gethdr, 55
makehdf, 65
newform, 27
pntshow, 70
readfile, 27
splitdat, 67

—Q—
query syntax, 91
query, specifying, 32

—R—
read/write type, 21
readfile, 27
readfile command, 27
readfile options, 28
reading a binary file, 30, 32
record headers, 49
relationships, file name, 20

105

INDEX

—S—
search sequence, 22
separate header files, 51
specifying a query, 32
splitdat, 67
splitdat command, 68
summary files

creating, 9, 59
interpreting, 10, 61

—T—
time conversions, 44
typographic conventions, 5

—V—
variable descriptions, 18
variable summary files, 9, 59, 62
variable types, 13
viewing

binary files, 9
headers, 55

—W—
writing format descriptions, 7, 16

	Contents
	Introduction
	The Format Problem
	Standard Formats
	Smart Programs
	The FreeForm Solution

	The FreeForm System
	FreeForm Files
	About this Guide
	Conventions

	Quick Tour of FreeForm
	Writing Format Descriptions
	Changing Formats
	Viewing Binary Data Files
	Creating Summary Files
	Generating the Summaries
	Interpreting the Summaries

	Format Descriptions
	FreeForm Variable Types
	FreeForm File Types
	Format Description Files
	Format Descriptions
	Format Type and Title
	Format Descriptors
	Variable Descriptions

	FreeForm Conventions
	File Name Conventions
	File Name Extensions
	File Name Relationships

	Determining Input and Output Formats
	Locating Format Files
	Search Sequence
	Case Sensitivity

	Command Line Arguments
	Specifying Input and Output Files
	Specifying Format Description Source
	Changing Run-time Parameters
	Defining Filters

	Format Conversion
	newform
	readfile
	Creating a Binary Archive
	Simple ASCII to Binary Conversion
	Conversion to a More Portable Binary

	File Names and Context
	“Nonstandard” Data File Names
	“Nonstandard” Format Description File Names

	Changing ASCII Formats

	Conversion Variables
	Accessing Conversion Functions
	Latitude and Longitude Conversions
	Degrees, Minutes, and Seconds
	Absolute Degrees and Minutes

	Date and Time Conversions
	Year, Month, Day
	Serial Dates

	Header Formats
	Header Types
	File Headers
	Record Headers
	Separate Header Files
	The dBASE Format

	fillhdr
	gethdr
	Viewing Headers
	Changing Header Formats

	Data Checking
	Generating the Summaries
	Interpreting the Summaries

	HDF Utilities
	makehdf
	splitdat
	pntshow
	Extracting Headers and Data
	Extracting Data Only

	Developing FreeForm Applications
	FreeForm Application Layers
	Building an Application
	Example Program
	Source Code–getll.c
	Using getll

	Appendix A: Conversion Variable Names
	General
	Latitude/Longitude
	General Lat/Lon
	Degrees, Minutes, Seconds
	Geographic Quadrants
	Longitude East
	Quadrant, Sign

	Earthquake Magnitude
	Date and Time

	Appendix B: Error Handling
	Error Messages

	Appendix C: Query Syntax
	Symbols and Operators–List
	Functions–List
	Definitions of Terms
	Rules
	Pre-defined Constants
	Operators–with Definitions
	Functions–with Definitions
	Order of Operations
	General Suggestions
	Examples

	Index

