ESA Space Situational Awareness services related to spacecraft charging

A. Hilgers, D. Rodgers, and J.-P. Luntama

- Needs
- Today's approach
- Future: ESA Space Situational Awareness programme

Charged particle interactions with space systems

Instrumental:

- Detection of particles and fields
- Remote sensing
- Propulsion

Detrimental:

- Contamination and interferences
- Electrostatic discharges
- Radiation effects

How to address them

- Orbit optimisation
- Protection
- Space weather monitoring and feed-back of information into operational processes

Needs

Service needs	End users
Statistical specification of the space plasma environment or of effects	Development Operation planning
Real-time information on environment or on effects	Operators
Reconstruction of the state of the plasma environment for event analysis	Development Operators
Forecast of the plasma environment	Operators

Today's approach

- Seek data from various sources e.g. (science programme)
- Use adhoc monitors in support to missions.
- Develop and operate models that are often r&d prototypes.

Data from solar-terrestrial missions

- Ulysses: out of the ecliptic solar observation
- SOHO: solar monitoring
- Cluster: magnetospheric dynamics
- Double star: magnetospheric dynamics
- To come: SWARM: low altitude magnetosphere; Solar orbiter; etc...

esa

TR&D programme on space weather effects - 1

 Models of environments and effects for specifications and analysis

- Space environment monitors to support operations
- Effects experiments

Technology sat

SCTC 2010 ABQ, USA, 20-24 Sept 2010

TR&D programme on space weather effects - 2

 Models of environments and effects for specifications and analysis

- Space environment monitors to support mission operations
- Effects experiments

NOAA Space Weather Prediction Centre

- •Full operational capability 24h/24h 7Day/7Day
- Continuity of space elements (GOES/SEM, POES, SEM)
- •Testing new space elements: ACE solar wind monitoring
- Modelling programme

ESA application programmes: space weather programme

- 1998: review of assets and capabilities
- 2000: review of requirements for a programme: customer requirements, system requirements, architecture study
- 2002: cost benefit analysis of a federative approach to space weather service provision
- 2008: adoption of a Space Situational Awareness (SSA) programme with a space weather element besides a survey and tracking element and a NEO element.

SSA programme

- Objective: to set-up an independent European SSA system in a 10 year-time scale and transfer it to an operator.
- Application domains:
 - Survey and tracking
 - (Imaging)
 - Space weather
 - Near Earth objects
- Phases:
 - Preparatory programme + TR&D: 2009-2011
 - Development phase: 2012-2019
- Participating countries:

Austria, Belgium, *Finland*, France, Germany, Greece, Italy, *Luxembourg*, Norway, Portugal, Spain, Switzerland, UK.

SSA Programme Tasks

2009 – 2011: Preparatory Programme

- Requirements analysis
 - User requirements
 - Governance Definition
 - Data Policy
- Architecture
- Precursor Services
- Federation
- Pilot Data Centres
- SSA/1/ah Radar Breadboard CTC 2010
 - Other TR&D from FSA relevant R&D

SSA SPACE WEATHER SEGMENT ACTIVITIES User Domains and Services

1. Spacecraft designers

Environment specification and post event analysis

2. Spacecraft operators

In orbit environment and effects monitoring/forecasting, post event analysis, mission analysis

3. Human space flights

In flight and cumulative crew radiation exposure, increased crew radiation exposure risk

4. Launch operators

In flight monitoring, estimates and forecasts of radiation effects in electronics, atmospheric density forecasts

5. Transionospheric radio link users

Near real-time and forecast TEC maps, scintillation maps, ionospheric disturbances monitoring

6. Survey and tracking

Atmospheric estimates, geomagnetic and solar indices archives and forecast for drag calculation

7. Data services

Space weather data archive, event based alarms, integrated space weather model platform,

8. Non Space Systems Operators

Power systems and pipeline operators, airlines, resource exploitation system operators, auroral tourism sector

SCTC 2010 ABQ, USA, 20-24 Sept 2010

SSA SPACE WEATHER SEGMENT ACTIVITIES Precursor Services

- More than 30 services identified.
- SN-1 contract: preliminary service segment work to begin soon.
 - Review of existing applications and assessment of maturity:
 - Cat-1: existing quasi-operational application
 - Cat-2: all building block exist in non-operational environment
 - Cat-3: critical building block is missing
 - A subset of existing applications and services to be re-deployed in Redu (B) in 2010.
 - ESA owned applications to be part of these precursor services:
 - Space Environment Data System (SEDAT)
 - European Impact Detector Database (EDID)
 - Space Environment Information System (SPENVIS)
 - Standard Radiation Environment Monitors (SREM)
 - Space Weather European Service Network (SWENET) portal
 - Space Environment System for Operations (SEISOP)
 - Ionospheric Monitoring Facility (IONMON)
 - Service assessment based on re-deployed or federated applications, prototypes or mock-up's.
 - More precursor services to be developed under future contracts (SN-4)

SSA SPACE WEATHER SEGMENT ACTIVITIES Measurement Infrastructure

System requirement and architecture study to be performed under Co-1 contract – started.

Re-use of existing (ground based and space based) Member States assets will be considered in priority – start soon.

Meanwhile preparatory work for piggy-backing on planned platforms is to be performed under SN-2 contract – started.

Platforms include ESA, MS and other (international, commercial, ...).

Baseline list of SWE Instrument types to be addressed in SN-2:

- •X/EUV imager
- •X-ray flux monitor
- •UV flux monitor
- •Wide Angle Coronagraph
- •3D Magnetometer
- Solar wind plasma monitor
- •Plasma spectrometer and
- •(Langmuir) density probe.

- Medium energy particle detector
- Compact Radiation Monitor
- •High energy particle spectrometer
- •GNSS dual frequency receiver in radio-occultation mode
- Micro-particle detector

Conclusions

- SSA PP is preparing for a full blown operational European space weather application system.
- As a first step SSA PP is transitioning relevant assets (including research models and instruments concepts based on science mission heritage) into operational elements.
- Many aspects need to be defined and an appropriate architecture found:
 - query handling
 - data system
 - measurement infrastructure
 - service provision

