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WHAT ARE THE ISSUES?

* Voyager 1 experienced 42 anomalies during closest
approach to Jupiter—believed to be due to charging
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o Jupiter has an extremely severe environment:
— Pronounced auroras easily visible from Earth!
— A complex magnetic field 2x104 that of Earth’s!
— The highest intensity electron radiation belts in the Solar System!

* |F we understand the jovian environment, THEN proper
mitigation techniques should allow us to limit its effects...
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emmeeeeses - Caracteristics

Earth
-equatorial radius (km) 6.38x10°
-magnetic moment (G-cm3) 8.10x10%°
-dipole tilt (°) 11.5

-rotation period (hrs)
-aphelion/perihelior

utibit

_—————--v-.__‘-‘.| " ACITHE

5.45/4.95

-equatorial radius (km) 6.00x10%
-magnetic moment (G-cm3®) 4.30x10%8
-dipole tilt (°) ~0
-rotation period (hrs) 10.23

-aphelion/perihelion (au) 10.06/9.01
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The jovian plasma environment is defined
by two distribution functions:*

(A) Convected Maxwell-Boltzmann:
N .

fi(v) — 72'3/2IV§ eXp(—(\7— \70 )2 /Vg)

(B) Kappa Distribution:

£ (E)= N_(m. /27, )22 T+ L
K T K K 0

D(x—1/2) (1+E/4E, )"

*[Divine and Garrett, 1983]
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Cold Plasma Density Hot Electron Density

*Based on [Divine and
Garrett, 1983]

Hot Proton Density
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Jovian Differential Plasma Fluxes vs Energy
Jovian Differential Plasma Fluxes vs Energy
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Main oval

Ganymede and Europa footprints

HST UV images of Jovian aurora. (a) Polar projections of main auroral ovals (left North
Pole, right South Pole) (b) Image of northern aurora, showing: Main oval and polar 9
emissions as well as footprints from three of the Galilean moons (c) lo field line.



National Aeronautics and Space

pomaen o Jovian Auroral

California Institute of Technology ZO n e S p eCt r a*

Ajello Maxwellian Fig. 4A
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Assume current balance for Aluminum in shadow:

(V) - [L(V) + 1se(V) + 15/(V) + lgse(V)] = 170

SURFACE CHARGING

CONCERNS!!
RJ |ALAT ([No A Max AK AK AK fube |Diffuse |Diffuse
Aurora +1/1 | +1.36 (T e WC/10 |WC/100
1.2| 70| -106 114 119] /-308| -102 113] _ -107 106
2 70| 293 652 732] \1465| -169 "396 45 37
\
15 0 8 2712 1034| -3984| /24834 3181\ 24 9

Estimates of surface potentials for: (1) Maxwellian or Kappa (“+I/1, +1/10, +1/100”
=> 100%, 10%, 1% of ion plasma); Diffuse aurora varied from 100 ergs/cm?-s to

1 erg/cm?-s

11
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Aurora: Surface Potentia Cpho = .08 nAmps/cm?

Rho =1.5cm?® Aurora:
61 T=25 K.EV, —— W-501--476 W-476-451 61 Rho=1.5 l::m"'
T=25KeV
4 4 i B 451426 B-426--401 4
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-
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Sun Off 10176 W-76-51 Sun On

MatOn o Mat On
BT - B 51 281 -6 o

Aur On e j ’ Aur On

Rad On -1-24 Rad On
-8 -8

A. Dark Side B. Sunlit Side

Meridional plots of the charging potentials in darkness
and sunlit for nominal auroral and plasma
environments.

12
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WE FIND:

Jovian auroral zone can cause ~300 V charging above background levels
over poles--charging is moderated by cold plasmasphere.

Lowering jovian cold plasma density (as observed for Earth aurora) increases
charging to ~1-2 kV.

For diffuse aurora, potentials are barely above the background levels (~100-
400 V) over poles.

At equatorial crossing of auroral field lines, “Worst Case” auroral fluxes may
cause significant charging (-2-5 kV) in the 15-25 R| equatorial region.

THIS IMPLIES:

Surface charging is a potential problem for spacecraft crossing through the
auroral zone though levels are within current mitigation techniques.

Equatorward extension of aurora will be of concern to missions passing
through the 15-25 Rj equatorial region--again, however, these levels are well
within levels we protect geosynchronous spacecraft against.

Surface charging will be of concern at Jupiter if standard mitigation
procedures are not followed!

13
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Temporal and spatial occurrences of the 42 Voyager 1 POR anomalies during the
March 5, 1979 flyby [Leung et al., 1986]

14
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1 OGhI/IzI\E//ﬁl?egP::r?:Tux Ll 1 I\?é?!ﬁni%igrlg[ux
(cm’-s)” =110°W (cm*-s)”
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1E2 . . | . . 1E3

16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16

Contour plots of >1 MeV electron and >10 MeV proton integral fluxes
at Jupiter. Coordinate system used is jovi-centric. Models are based
on Divine/GIRE models*. Meridian is for System IIl 110° W.

15
*[Divine and Garrett, 1983], [Garrett et al., 2003]
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Cumulative occurrence frequency of 42 Voyager 1 POR anomalies vs cumulative

high energy electron (E>1 MeV and E>10 MeV) and proton (15 MeV<E< 26 MeV)
fluences [Leung et al., 1986]. 16
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Jovian IESD
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An electron flence of <1010
cm=2in 10 hrs is considered
IESD “safe”

LOG,,(FLUENCE)

10

Distance from Jupiter (Rj)

Contour plot of Log electron fluence in (cm-?) versus flyby perijove distance
and energy [Evans and Garrett, 2002]. 17
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We find:

*The main radiation belt at Jupiter is dominated by 1-100 MeV electrons

*The time integrated flux of the high energy electons (e.g, the fluence vs time) is
consistent with the pattern of Voyager 1 PORs.

This implies:
*PORs were likely caused by IESD on Voyager 1

*The IESD threat is potentially very severe at Jupiter due to its intense, high energy
electron belt

*A thorough IESD mitigation program is a critical component of any mission to
regions inside ~16 R} at Jupiter

18
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Theory: An inductor
moving across an
electric field
generates a
potential difference
across the inductor:

$p=VxB:I

For lo:
B~0.02G
v~17.3 km/s

| ~ 3640 km
 ~ 125,000 V!!

VxB Effects at Jupiter

Jupiter Aurora
Hubble Space Telescope - WFPC2
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Juno

<« 20 m

For Juno:
B~10G
v~ 60 km/s
| ~20m
¢~ 1200V

Juno VxB

Potential (V)

100

-100

\ A /—Chassis Pot /
- / A ——MagBoom >§ N/

Rotation Angle (degrees)

Angular dependence of vxB
potentials for Juno surfaces

20
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We find:

*vxB induced electric fields at Jupiter are real and readily visible—Ilo has a field of over
125,000 V!

A polar orbiter skimming the upper atmosphere of Jupiter like Juno could see fields of
60 V/m producing as much as a 1200 V drop across the spacecraft

This implies:

*vxB effects will be measurable on Juno and will potentially affect low energy plasma
and electric field measurements (magnetic field measurements will not be affected)

Care must be taken in grounding the solar arrays though the likelihood of arcing

Is limited

21
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We Found:

*Charging effects in Jupiter’s environment first became of interest as a result of 42 POR
events during the Voyager 1 flyby.

*Surface potentials of ~1-5 kV might indeed be possible due to jovian auroras but the
PORs did not appear to be connected to surface charging.

*The jovian electron radiation environment using the Divine radiation models implied
that Voyager PORs were most likely the result of IESD which could be a real problem at
Jupiter.

*Visual observations of auroral spots associated with the jovian moons from the Earth
prove that vxB-induced electric fields are real.

*Estimates of the vxB fields showed that for the Juno mission the field will reach 60 V/m
giving potentials of ~1 kV across the 20 m structure.

*Finally, none of these effects has proven to be so severe that standard charging
mitigation techniques wouldn’t be adequate to limit them—there should be no serious
show stoppers due to spacecraft charging at Jupiter as long as care is taken in
preparing spacecraft for this harsh, challenging environment!

22
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