Spacecraft Charging Facts

- “The largest cause of mission failures related to the space environment is surface ESD.” [Koons, et al., 1999.]

- 200 annoying to serious and 10 critical operational anomalies due to electrostatic surface discharge are expected over the lifetime of a S/C in GEO. [Wrenn, et al., 1993.]
Why should we monitor S/C charging?

- Mission Safety - placing S/C in safe mode
- Post-Failure Analysis
- Evaluate charging mitigation techniques
- Study the S/C charging phenomenon
Monitoring Spacecraft Charge

- Few S/C are equipped with charge monitors
- Why don’t we have more?
 - Uncertainty?
 - Denial?
 - Ignorance?
- What is the cost/benefit analysis of placing monitors on S/C?
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Method</th>
<th>Major Limitations</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Probe</td>
<td>Spacecraft Electric field measured by potential difference between two probes mounted on booms</td>
<td>Biases due to changes in probe work function, probe photoemission, etc. Booms needed [Maynard, 1998]</td>
<td>100 Meter Boom</td>
</tr>
<tr>
<td>Langmuir Probe</td>
<td>Volt-Ampere characteristic of probe immersed in space plasma is measured</td>
<td>Biases due to changes in probe work function, magnetically induced probe potentials and so on [Brace, 1998]</td>
<td>Will not work in GEO</td>
</tr>
<tr>
<td>Retarding Potential Analyzer (RPA)</td>
<td>A current voltage curve from instrument is analyzed to determine ion drift velocity</td>
<td>Biases due to uncertainty in expected ion drift for spacecraft at zero potential. [Anderson, 1994]</td>
<td>Will not work in GEO</td>
</tr>
<tr>
<td>Ion Energy Analyzers</td>
<td>Ion Spectra of space plasma are analyzed for ‘low energy cutoff’</td>
<td>Biases due to uncertainty in the ‘low energy cutoff’ from such measurements [Moore, 1996]</td>
<td>Crude and slow as done today</td>
</tr>
</tbody>
</table>
Today…

- ‘Commercial off-the-shelf’ devices for monitoring charge do not exist
- Spacecraft charge has only been measured with unwieldy, one-of-a-kind, multi-million dollar, mission specific instruments
- Existing charge monitors return data of questionable accuracy and reliability
Spacecraft Charge Monitor (SCM)

- 14-year development effort...
- Far superior to anything that has flown before...
Pre-History of the SCM

- The Photoelectron Spectrometer (PES) Experiment on the Atmosphere Explorer satellites (1970’s)
GOEMBEL INSTRUMENTS

PES (1970’s)
PES Charge Sensing

‘Electron-spectroscopic Method’

S/C charge = + 2.5 V
PES Charge Sensing
‘Electron-spectroscopic Method’

S/C charge = 0.0 V
PES Charge Sensing
‘Electron-spectroscopic Method’

S/C charge = - 3.5 V
Goals for Goembel Instruments

- PES gathered data slowly
- A major goal for Goembel Instruments was to monitor charge more rapidly and accurately
- A fundamental design change to PES was needed
First Attempt at SCM (1996)

- Started at APL
- 3 times better than PES
Second Attempt at SCM (1997)

- Addition of another aperture
- 6 times better than PES
Third Attempt – A Breakthrough!

- If two apertures worked - why not more?

Arc-shaped Aperture
Traditional Aperture
New design is 60 times better than PES!
Applied for Patent in 2001
AFRL proposed using SCM on NPOESS in 2001
GOEMBEL INSTRUMENTS

Lab Prototype SCM 2001-2
SCM Delivered 2006

- 650 grams
- 2 watts
- FPGA on board
- RS422 S/C interface
- Ready to fly today!
SCM-2

- 2007-2009

- Goembel Instruments was asked to design a charge monitor for GEO

- SCM-1 is for minor charging (+/- ~100V)

- Charging up to -10,000V expected in GEO

- SCM-2 is a modified SCM-1 for GEO
SCM-2

- Two charge monitoring methods
 - Electron-Spectroscopic
 - Low Energy Ion Cutoff
SCM-2

- Chosen by both prime contractors for their proposals to build DoD’s TSAT in early 2009
- TSAT program cancelled in Spring 2009
- Development of SCM-2 continued into Fall 2009
SCM-2 Performance

- Accurate, No Calibration Drift, No Booms Needed
- Compact: ~1kg, 2W
- Determine charge +500 to -10,000 volts
- Two methods used to validate measurements within 5% under all conditions
- Determine charge ~ once a minute
SCM-3

- 2010
- Not for monitoring charge
- Spin-off of previous SCM technologies
- Designed to monitor solar wind
 - Speed
 - Direction
 - Temperature
 - Density
SCM-3 is 600 times better than the instruments used today to monitor the solar wind!
Conclusions

- Over the last 14 years, Goembel Instruments has developed innovative spacecraft charge monitoring technology
 - Outperforms Current Spacecraft Charge Monitoring Options
 - Costs are significantly less due to the minimal overhead and focused development of Goembel Instruments
Next Steps Ahead…

- SCM-2, for high level charging in GEO, is awaiting funds to be built.

- SCM, for accurately monitoring low level charge, is ready to fly today!
Thank You

For More Inquiries Please Contact
Luke Goembel

[Email Link]
[Website Link]