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Background: Basic idea
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How to mitigate the ESD ?How to mitigate the ESD ?
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Electron emitting Film (ELF)Electron emitting Film (ELF)

• Inverted Potential Gradient (IPG)
Pre-condition for operation

Inverted Potential Gradient (IPG)
• Existence of Triple Junction (TJ)

Advantages
_

_ _

•Passive in operation
•No sensor needed

Triple 
junction

No sensor needed
•No wire harness
•Lightweight (~1.4g)
A t f h i
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•Acts as surface charging 
monitor (SCM)Electric field Field EmissionIPG



Operational mechanism of ELF
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Background: Theory
Fowler-Nordheim (F-N) field emission current

j  A E 2 exp 
B
E





  

A
1.54106104.52/ 



  


B  6.531091.5

E: Field strength on surface (V/m)

: Work function (eV)

T h i bl t d l t i fi ld i th
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To have appreciable current, we need an electric field in the 
order of 109 V/m



How do we get high E. field ?g g
• By charging the insulator by ambient charged 

particle (e.g. electron)

m
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∆V = voltage across the insulator
d = thickness of insulator

B di l t i i it ( l l i i ti d
100x

• By dielectric impurity (e.g. local ionization and 
diffusion) or by micro-protrusion, local 
enhancement of electric field ( E=βE ) isenhancement of electric field ( E βE0) is 
possible. Therefore, macroscopic field can be 
enhanced microscopically by a factor of β that 
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p y y β
must be more than 100 to get the field emission.



Field enhancement factor, 

–If  =0, ideal flat surface



–If  > 0, surface will be rough 
with many sharp emission sites.

SFN= emission area 
at metal-insulator 
interface

Sreal= emission area 

ee e e at insulator-vacuum 
interface

Emission

 =0  > 0

No emission
Emission

Ph.D. thesis, Mengu Cho, MIT, 1992
Local ionization and diffusion 
effects the inside dielectric impurity 

 0  > 0
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p y
and increase the emission area (Sreal). 
Thus   > 1000 is possible.



Background: Practical situation
 measurement via field emission microscope (FEM)
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Measurement schematic (FEM)
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ELF before measurement
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After surface mapping
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Scanning resolution: dx = dy = 2μm



Emission current distribution
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Scanning resolution: dx = dy = 2μm



Superposition of two pictures
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There are many active sites on this emitter 

surface that should emit electrons



El i i f i (ELF)Electron emission from emitter (ELF)
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Experimental setup and electrical circuitry
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Electron gun
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Electron gun
V V l b
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ELF in vacuum chamber
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Beam Energy = 5.5 keV
Beam current  = 50 μA



Continuous Emission from ELF

Continuous 9 hours emission is also confirmedContinuous 9 hours emission is also confirmed

To check the emission longevity (Endurance), recently 
accumulated 100 hours emission is completed and result is
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accumulated 100 hours emission is completed and result is 
submitted for publication to Journal of Spacecraft and Rocket



Surface potential distribution 
(b f d ft i i )(before and after emission)
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23During emission, IPG is confirmed as well
kV



Vital parameters 
(must be examined)

Ch k d
• Contamination effect 
• Emission longevity (100 hours)

Checked 
and 

passedEmission longevity (100 hours) p

• Environmental durability
1 High energy Proton and Electron effect (101. High energy Proton and Electron effect (10 

solar years equivalent)
2. Effect of Thermal cycling (10 solar years 

equivalent)
3. Effect of VUV irradiation (10 solar years 

i l )
24

equivalent)



Environmental durabilityy

Effect of high energyEffect of  high energy 
Proton and Electron irradiation  

(10 solar years equivalent)
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Proton and Electron irradiation

• Dosing time : 800s

Experimental condition (equivalent to 10 years)

• Dosing time : 800s
• Proton fluence: 1x 1012 cm-2

• Proton energy : 10 MeV
• Electron fluence: 1x1016 cm-2

• Electron energy : 1 MeV
• Scan area : 10x10 cm2• Scan area : 10x10 cm2

• Pressure : ~10-4 Pa

26Performed in Japan Atomic Energy Agency (JAEA) 



ELF in the irradiation chamber
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27Performed in Japan Atomic Energy Agency (JAEA) 



Microscopic pictures
( after 100 hrs Endurance and Proton irradiation test) ( )
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28Area around Triple Junctions (TJ) 
found unaffected

Reddish due to outside 
light effect



Microscopic pictures
(after 100 hrs Endurance, Proton and Electron irradiation test) ( , )

29Area around Triple Junctions (TJ) 
found unaffected

x 200
Black spots are due to 

electron



Emission comparison 
( before and after Electron, Proton irradiation) 

Before

There is no effect of high energy particles on this emitter

After
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Environmental durabilityy

Effect of
Thermal cycling

(10 solar years equivalent)(10 solar years equivalent)
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Thermal Cycling experimenty g p
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Experimental condition
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ELF arrangement inside TC chamber

Hrs.



Emission comparison 
(before and after TC)(before and after TC)

Before TC

There is no effect of thermal cycling on this emitter

After TC
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Environmental durabilityy

Effect ofEffect of  
VUV irradiation  

(10 solar years equivalent)
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VUV irradiation
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Effect of VUV irradiation 
( d i l j i )(around triple junctions)
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x 200

No visual damage seen



Effect of VUV on emission

Although the emission level reduced with  time, after 10 years 
equivalent solar exposure this emitter is still active
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equivalent solar exposure, this emitter is still active.



Conclusion
After high energy Proton and Electron irradiation,
thermal cycling and VUV irradiation experimentsthermal cycling and VUV irradiation experiments
equivalent to 10 solar years,

 No physical damage is found 
 Little emission level deterioration is observed
 Emitter is still active.

Therefore, this electron emitting film is 
d bl d i h h hdurable and resistance to those harsh     

space environments.
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Future tasks

 Checking the emission longevity for longer period around 600 g g y g p
hours.

 Checking the effectiveness of ELF after setting on solar panel 
and measuring the discharge on it whether ELF help reduceand measuring the discharge on it whether ELF help reduce 
discharge or not. 

 Improving emission level (e.g.by changing the film materials, 
etching pattern thickness roughness etc )etching pattern, thickness, roughness, etc.) 

 Finding the mechanism, cause of off-time emission, role of 
other parameters (e.g.UV, beam current density, surface 

h ) i i f hi iroughness, etc.) on emission of this emitter.
 Flight demonstration: HORYU-2 (KIT student satellite)
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Thank youThank you
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