CALIBRATION REPORT For X-Ray Sensor System S/N 004 (GOES - G (LAUNCH FAILURE) P.O. No. 08-871102-LBP January 10, 1985 Telescope: Part No. 3540806 - 100, Serial No. 004 Part No. 3540805 - 100, Serial No. 004 Prepared By: J.L. Hunwaddl 1/10/85 ## TABLE OF CONTENTS - 1. Introduction - 2. Ion Chamber Calibration - 3. Electronics Calibration - 3.1 X-Ray Signal - 3.2 Wide Band Signal - 3.3 Background Signal - 3.4 Temperature Sensors - 3.5 Reference Voltage - 4. X-Ray Signal Composite Calibration - 5. In-Flight Calibrator #### 1. Introduction The X-Ray Sensor is primarily designed to measure the X-Ray flux from the sun in two (2) distinct spectral bands. They are: 1) .5 - 3% and 2) 1 - 8%. The electronics is, therefore, divided into two separate processing channels. Channel A processes the .5 - 3% X-Ray Signal, and Channel B processes the 1 - 8 % X-Ray Signal. The composite X-Ray calibration of the Sensor - Signal voltage out vs. X-Ray flux in - consists of two individual calibrations. One is the calibration of the ion chamber with Fe⁵⁵ sources of known intensity, the other is the X-Ray channel electronics calibration with simulated A.C ion chamber signals. A secondary function of the X-Ray Signal Sensor is to monitor the electron environment of the spacecraft. Two outputs per channel, Wide band (WB) and Background (Bkg) are provided for this purpose. The WB output measures spin modulated, and the Bkg output the mean steady state electron induced ion chamber currents. The WB channels are calibrated with simulated preamplifier output signals; the Bkg channels are calibrated with simulated D.C ion chamber currents. Temperature analog monitors for the DPU and the Telescope electronics were calibrated separately and before installation in the instrument. #### 2. Ion Chamber Calibration The detailed calculation of the ion chamber responses and of the calibration constants from the measured responses were described in the GOES G and H CALIBRATION REPORT - X RAY SENSOR, PANA-GOESX-CR6, March 12, 1984. The flight x-ray telescope, uses ion chamber S/N G-1652, with a beryllium light shield, S/N OO4-B, of thickness 1.74 mg/cm² (O.387 mils). The calculated responses G (λ) for chambers A and B of B-1652 are given in Tables 3.2 and 3.3 of PANA-GOESX-CR6, and the calibrated normalization factors are given in Table 3.8 of the same report. The X-Ray Telescope with ion chamber W2338 must have the detailed responses, G (λ) (A - m²/W), corrected for the Be light shield attenuation, for the electron baffle shielding, and for the measured Fe-55 source calibration. The calibrated response function is $$G_{cal}$$ (λ) = G (λ) B_m F_{el-bf} Tr (Be shield, λ) where Tr (Be shield, $\lambda)$ is the transmission of the beryllium light shield, B_m is the Fe-55 Calibration Constant, and $F_{e1}-b_f$ is the electron baffle shielding. | Chamber S/N B-1652 | <u>B</u> | F e 1 - b f | |--------------------|----------|-------------| | A | 1.038 | 0.920 | | В | 1.065 | 1.000 | The detailed responses are calculated using the Be absorption coefficients of PANA-GOESX-CR1 and are given in the tables below: F-4 Flight Unit, X-Ray Telescope S/N 004 Calculated Responses for the A Chamber (0.5 - 3%) | Wavelength
λ(β) | $G_{cal}(\lambda)*$
$(A-m^2/W)$ | Wavelength $\lambda(\c{R})$ | $G_{ca1}(\lambda)*(A-m^2/W)$ | |---------------------|------------------------------------|-----------------------------|------------------------------| | 0.1 | 1.22-7 | 3.1 | 9.28-6 | | 0.2 | 6.08-7 | 3.2 | 8.75-6 | | 0.3 | 1.30-6 | 3.3 | 8.22-6 | | 0.358- (Xe Kedge) | 1.64-6 | 3.4 | 7.61-6 | | 0.358+ | 7.29-7 | 3.5 | 7.03-6 | | 0.4 | 9.74-7 | 3.6 | 6.36-6 | | 0.5 | 1.76-6 | 3.8 | 5.16-6 | | 0.6 | 2.83-6 | 4.0 | 4.03-6 | | 0.7 | 4.16-6 | 4.2 | 3.05-6 | | 0.8 | 5.71-6 | 4.4 | 2.23-6 | | 0.9 | 7.41-6 | 4.6 | 1.56-6 | | 1.0 | 9.21-6 | 4.8 | 1.06-6 | | 1.1 | 1.11-5 | 5.0 | 6.92-7 | | 1.2 | 1.28-5 | 5.5 | 2.01-7 | | 1.3 | 1.44-5 | 6.0 | 4.50-8 | | 1.4 | 1.57-5 | 7.0 | 1.01-9 | | 1.5 | 1.65-5 | 8.0 | 5.81-12 | | 1.6 | 1.74-5 | | | | 1.7 | 1.80-5 | _ | | | 1.8 | 1.82-5 | G _{ca1} (0.5 | -3 %) = 1.67 | | 1.9 | 1.82-5 | | $(A-m^2/V)$ | | 2.0 | 1.81-5 | | | | 2.1 | 1.76-5 | | | | 2.2 (Xe LI edge) | 1.73-5 | | | | 2.3 | 1.63-5 | | | | 2.4 (Xe LII edge) | 1.58-5 | | | | 2.5 | 1.45-5 | W | | | 2.59-(Xe LIII edge) | | | | | 2.59+ | 1.09-5 | | | | 2.6 | 1.08-5 | | | | 2.7 | 1.07-5 | | | | 2.8 | 1.03-5 | | | | 2.9 | 1.01-5 | | | | 3.0 | 9.72-6 | | | $^{*1.22-7 = 1.26 \}times 10^{-7}$, etc. F-4 Flight Unit, X-Ray Telescope S/N 004 Calculated Responses for the B Chamber (1 - 8%) | Wavelength
λ(α) | G _{ca1} (λ)*
(A-m ² /W) | Wavelength $\lambda(\begin{subarray}{c}\lambda(\begin{subarray}{c}\lambda\end{subarray})$ | G _{ca1} (λ) * (A-m ² /Ψ) | |--------------------|--|---|--| | 0.2 | 2.10-8 | 6.2 | 3.34-6 | | 0.4 | 1.51-7 | 6.4 | 3.11-6 | | 0.6 | 4.51-7 | 6.8 | 2.63-6 | | 0.8 | 9.73-7 | 7.2 | 2.16-6 | | 1.0 | 1.65-6 | 7.6 | 1.71-6 | | 1.2 | 2.50-6 | 8.0 | 1.32-6 | | 1.4 | 3.44-6 | 8.4 | 9.87-7 | | 1.6 | 4.38-6 | 8.8 | 7.21-7 | | 1.8 | 5.22-6 | 9.2 | 5.09-7 | | 2.0 | 5.89-6 | 9.6 | 3.51-7 | | 2.2 | 6.37-6 | 10.0 | 2.24-7 | | 2.4 | 6.65-6 | 10.4 | 1.50-7 | | 2.6 | 6.78-6 | 10.8 | 9.32-8 | | 2.8 | 6.78-6 | 11.2 | 5.56-8 | | 3.0 | 6.72-6 | 11.6 | 3.21-8 | | 3.2 | 6.60-6 | 12.0 | 1.79-8 | | 3.4 | 6.46-6 | 13.0 | 3.31-9 | | 3.6 | 6.28-6 | 14.0 | 4.90-10 | | 3.8 | 6.10-6 | 15.0 | 5,79-11 | | 3.87- (Ar K edge) | 6.03-6 | 16.0 | 4.89-12 | | 3.87+ | 4.15-6 | $\overline{G}_{cal}(1-8)$ | (2) = 4.56-6 | | 4.0 | 4.27-6 | | (A-m ² /W) | | 4.2 | 4.40-6 | | | | 4.4 | 4.48-6 | | | | 1.6 | 4.51-6 | | | | 1.8 | 4.50-6 | \(\frac{1}{2}\) | | | 5.0 | 4.43-6 | | | | 5.2 | 4.32-6 | | | | 5.4 | 4.18-6 | | | | 5.6 | 4.00-6 | | | | 5.8 | 3.80-6 | | | | 5.0 | 3.58-6 | | | $^{*2.10-8 = 2.08 \}times 10^{-8}$, etc. The last entry in the preceding tables gives the calculated response to a flat x-ray spectrum, normalized to the nominal range for each ion chamber. The calibrated ion chamber responses are: .5 - 3 A band: $$I_{xA} = \frac{1.67 \times 10^{-5}}{1.67 \times 10^{-5}} J_{xA}$$ (A) Eq. 1 1 - 8 A band: $$I_{xB} = \frac{4.56 \times 10^{-6}}{10^{-6}} J_{xB}$$ (A) Eq. 2 where I_{x} is in amperes and J_{x} is in \mathbb{W}/m^{2} for the designated flux interval. Note that these response constants are for a flat x-ray spectrum. - 3. Electronics Calibration - 3.1 X-Ray Signal The X-Ray Channel output voltage is directly proportional to its input current according to $$V_{x} = S_{x}I_{x} + C_{x}$$ Eq. 3 where S_{x} = constant depending on channel, range and temperature $\mathbf{C}_{\mathbf{x}}$ = constant depending on channel and temperature I_x = simulated ion chamber A.C signal The constants $S_{\rm X}$ and $C_{\rm X}$ are tabulated for channel, range and temperature at the end of this section. Both were determined from test data of the preamplifier calibration (RTP-26, Sec. 7), the thermal integration test (RTP-29, Sec. 4.3) and the thermal vacuum test (RTP-29, Sec. 5.3). $C_{\rm X}$ was obtained by direct measurement of the particular channel bias voltage for zero input current. The bias voltage is fixed by a voltage divider consisting of two (2) precision metal film resistors. Therefore, very little variation with temperature is observed, with an almost negligible difference between channels. $S_{\mathbf{x}}$ was obtained by the measurement and calculation, representing the slope of the calibration curve in terms of output voltage $(V_{\mathbf{x}})$ versus simulated input current $(I_{\mathbf{x}})$. This slope is dependent on channel, range and temperature. A weighted average of $S_{\mathbf{x}}$ was used from the various measurements made during preamplifier PC BD calibration, thermal integration, and vacuum performance testing. The current I_{χ} was simulated by applying a negative ramp voltage of value ΔV and of ramp length ΔT to the preamplifier input via its effective input coupling capacitor. The simulated input current is then determined by: $$I_{x} = C_{eff} \frac{\Delta V}{\Delta T}$$ Eq. 4 During thermal integration and vacuum testing, the input coupling capacitance is not directly available except through a protective diode in the External Calibrate line. However, the ramp voltage which is applied to the preamplifier (after the diode) is available as a test output on the S/C Simulator. The voltage drop across the diode does not affect the ramp voltage since it has a constant offset of $-.7\,\mathrm{V}$. Thus, the simulated input for thermal integration and vacuum testing is again determined by Equation 4. C_{eff} is determined by the preamplifier PC BD tests (Section 5.5 for both ranges and each channel). ΔT is measured with a frequency counter and ΔV with a calibrated oscilloscope having an internal graticule to avoid parallax. -10° + 3°C +250 + 1°C +36°C + 2°C Temperature $S_x (V/A) C_x(V) S_x (V/A) C_x(V) S_x (V/A) C_x(V)$ Channel. Range 2.026E12 .511 1.876 E12 .516 .517 1.893 E12 A 1 1.824 E11 1.463E11 1.806 E11 2.460 E10 **2.**ኒሄያ**E10** 2.430E10 2.35z**E9** 2,268E9 2.274 E9 .516 6.540 E11 6.816E11 .513 6.500E11 .515 В 6.478E10 6.121 E10 4.203 E8 4.8 43 E8 Table 3.1 Values of S_x and C_x for X-Ray Channel Electronics Calibration ### 3.2 Wide band Signal The Wide band (WB) signal outputs are intended as a monitor of the preamplifier output signal before demodulation. The band width of this amplifier (200 Hz) allows the scanning of X-Ray signal pulses and the slower spin modulated signal from the electron induced background. Because these are A.C signals, the amplifier output is biased to about mid-scale. The only calibration provided for the WB output is given below: $$V_{w} = G_{w} V_{In} + C_{w}$$ Eq. 5 where $V_w = Wide$ band output voltage $G_w = Amplifier$ gain from PANA RTP-12, Sec. 5.1 C_w = Amplifier bias and V_{In} = Output voltage at attenuator The constants $G_{\overline{w}}$ and $C_{\overline{w}}$ for the two channels are tabulated below. The temperature coefficient of the two (2) constants is negligible. Table 3.2 Values of $G_{\mathbf{W}}$ and $C_{\mathbf{W}}$ for WB Channel Electronics Calibration | Channe 1 | G _w | $C_{W}(V)$ | |----------|----------------|------------| | A | 10,2 | 2.35 | | В | 10.2 | 2, 35 | Since the attenuator divides the preamplifier output by a factor of exactly 10 in ranges 2 and 4, $V_{\rm W}$ can be related to preamplifier voltage as follows: $$V_{PA} = \frac{V_{W} - \frac{C}{G}}{W} - \frac{C}{W}$$ for ranges 1 and 3, Eq. 6 $$V_{PA} = 10 - \frac{V_{W} - C}{G} - \frac{W}{W}$$ for ranges 2 and 4, Eq. 7 where V_{PA} = Preamplifier output voltage V_{w} = WB amplifier output voltage VpA is linked to the preamplifier input current through a complex conjugate bandpass transfer function, too cumbersome for purposes of analysis. ### 3.3 Background Signal The Background signal channels are calibrated in terms of output voltage (V_B) versus simulated ion chamber $\underline{D.C.}$ current. The relationship can be expressed as follows: $$I_{x} = \frac{V_{B} - C_{B}}{S_{D}}$$ Eq. 8 where S_B = constant, depending on channel and temperature C_B = constant, depending on channel and temperature I_x = simulated ion chamber D.C current c_B was obtained by direct measurement of the particular channel bias voltage at zero input current and over the temperature range. c_B was calculated as the slope of the calibration curve from data obtained during preamplifier PC BD calibration (PANA RTP-26, Sec. 7.2). The average slope of 5 data points is used. Note that c_B is independent of range. $I_{\rm X}$ is the D.C current applied to the input of the preamplifier. A precision current source (Keithley 261) was used to inject the current, the and output voltage (VB) was measured at the x 1 gain buffer output of the integration Null amplifier. This measurement requires that the ion chamber be disconnected from the preamplifier input. Thus, the calibration was performed at room temperature only, using the temperature measurements of the effective $R_{N\,u\,1\,1}$ resistance to calculate S_B for -20° and $+35^{\circ}\text{C}$. This is valid since it was shown by the Design Review Summary Report (PANA GOESX-DR) that the main components contributing to temperature dependence are the Hi-Meg resistors. In this case, it is $R_{N\,u\,1\,1}$. The constants S_B and C_B are tabulated below: Table 3.3 Values of S_B and C_B for Background Channel Electronics Calibration | Tempe | rature +250 <u>+</u> | 2 ° C | -20° <u>+</u> | 3 ° C | +30°C | + 3°C | |---------|----------------------|--------------------|-----------------|-------|-----------------|-------| | Channel | S _B (V/A) | c _B (v) | $s_B (V/A)^{1}$ | CB(A) | $s_B (V/A)^{1}$ | CB(A) | | A | · 3.33 E11 | .487 | 3.47 E11 | .985 | 3.30 E11 | . 986 | | В | 8. 95 E10 | 1.001 | 9,26 E10 | .995 | g.q: E10 | 1.002 | | | ' | | | i | | | Note: 1) Tabulated values are calculated from R_{Nu11} Tempco. # 3.4 Temperature Sensors Two temperature sensors are provided, one located in the Telescope measures the preamplifier temperature, the other, located in the DPU on the Auto-Range PC BD, measures the DPU electronics temperature. Calibration was performed for each sensor individually in a thermal chamber. The temperature was measured with calibrated thermocouples and the resistance of each sensor was measured with a calibrated DMM. The resistance vs. temperature data is shown Table 3.4, and in the graphs of Figure 3.1 and 3.2. ## 3.5 Reference Voltage The reference voltage monitor (Ref. V) measures the +8V DC/DC converter supply voltage of the X-Ray Sensor. The monitor output voltage is the buffered output from a 2:1 resistive divider network. Precision metal film resistors are used in the divider. Thus, +8V Supply Voltage = $2(Ref V) \pm .05V$ Table 3.4 Temperature Monitor Resistance versus Temperature | Temperature | Monitor | Resistance (ks.) | |--|---------------|------------------| | Temperature OC -30 -25 -20 -15 -10 -5 0 5 10 | DPU | TELESCOPE | | -30 | 1.413 | ٧. 4.42 | | | 1.486 | 1.516 | | | 1.560 | 1.592 | | -15 | 1.634 | 1.673 | | -10 | 1.717 | 1.752 | | -5 | 1.802 | 1.840 | | 0 - | 1.886 | 1.927 | | 5 | 1.950 | 1-413 | | 10 | ፘ₊ ወዛጊ | 2.012 | | · 15 | 2.125 | 2.175 | | 20 | 2.203 | 2.257 | | 2 5 | 116.5 | 2.370 | | 30 | 2.405 | 2.464 | | 3 5 | 2.483 | 2.553 | | 40 | 2.544 | 2.676 | | 4 5 | 27 ०६ | 2.784 | | 50 | 2784 | 7.871 | Monitor S/N 11 installed in DPU Monitor S/N 10 installed in TELESCOPE PANAMETRICS ن اه را PANA-GOESX-CR7 sn 004 Page 12 of 15 REV PANAMETRICS Page 13 of 15 REV # 4. X-Ray Signal Composite Calibration The main objective of the X-Ray Sensor is to measure the X-Ray flux emanating from the sun in two spectral bands. To help in evaluating this data, two (2) additional quantities are measured in each band, the spin modulated background, including the X-Ray pulse, and the steady state electron induced background. Calibration of these channels are described in Sec. 3.2 and 3.3. In order to present the X-Ray data in a convenient form, the two (2) calibrations (ion chamber and electronics) described in Sec. 2 and 3.1 must be combined. The general expression for the X-Ray signal can be shown to be: $$J_{x} = \frac{V_{x} - C}{S_{x} - K} - C$$ Eq. 9 where $J_x = X-Ray$ flux in designated spectral band V_x = Measured X-Ray analog output voltage S_x and C_x are the constants tabulated in Sec. 3.1. $$K = \frac{1.67}{1.67} \times 10^{-5} - \frac{A}{W/m^2}$$ for channel A (.5 - 3 %) $$K = \frac{4.56}{4.56} \times 10^{-6} - \frac{A}{W/m^2}$$ for channel B (1 - 8 %) ## 5. In-Flight Calibrator The on board In-Flight Calibrator (IFC) provides a complete check of the long-term stability of the electronics. Two calibration points are measured in each range, one at zero input current and one at $60\pm15\%$ of full scale. At the same time the IFC performs a functional test of the X-Ray Sensor. Baseline values of the calibration points for all 4 ranges and over the temperature ranges $-20^{\circ}\pm3^{\circ}\text{C}+35^{\circ}\pm3^{\circ}\text{C}$ were recorded during the thermal vacuum tests and the final buy-off performance test. A shift of the baseline values with time would indicate a similar shift of the calibration constants, S_{x} or C_{x} or both for the X-Ray signal. Thus, the IFC can be used to apply corrections to the baseline X-Ray signal calibration. For completeness, copies of the IFC data taken during thermal vacuum and during the buy-off performance test are attached. | | OMPANIA
NAM (| Buch | | | 784 | _ | | | · | Open melandagan mengan dan mengen dan pendan pendan mengen dan pendan pendan pendan pendan pendan pendan penda | ggere ^{agg} yn tei deilen deidennige | | | PER | FOF | AMS | NC | E T | M SN
EST | DA | T.A | |----------|------------------|------------|-----------------|------------|------------|------------|------------|-------------|-------------|--|---|------------------|------------|-----------------|-------------|--|------------|-------------|--------------|------------|-----| | P' [M]. | MAM! | 2 13416 | - 3 | | 7 | 151 | |)
)
/ | | ٠ | | | Pag | c 18 | 440 | of 2 | 8 78- | | REV
F 3a | 4 | B | | | | | | | | VEC ! | · | | ~ | , | | | | | | , | 18 18 V | | | _ | • | | | | | ₹
3 8 | | ⋪ | | | A | 双 | | | 1 | (| Ø | · · · · · · | A | | <u> </u> | A | × | 1 | | ED | X-Ray A | 2.957 | .520 | 2.879 | S30 | 2.513 | 2.624 | 025 | .520 | is used to | | X-Ray B | 3.732 V | .530 V | 3,632 1 | .520 | 2.638 | 2.717 | .520 | .578 | | | MEASURED | $2^0 A$ | / | / | 0 | 0 | 0 | 1 | / | 0 | | | 2 ⁰ B | / | 1 | 0 | 0 | 0 | \ | / | 0 | | | 7 | 2^{1} A | 1 | | \ | / | 0 | 0 | 0 | 0 | er tempe
nominal | | 2 B | 7 | / | / | / | 0 | Ø | 0 | 0 | | | | 2)
X-Ray A | 3.000+.75V | .495+.020V | 3.000±.75V | .495+,020V | 3.000+.75V | 3.000±.75V | .495+.020V | .495 ±.020V | OFF
The measured value at other temperatures
nd thus may be outside the nominal limits. | | X-Ray B | 3.000+.75V | . 495 +. 020V | 3.000±.75V | .495 + .020V | 3.000+.75V | 3.000±.75V | .495 + .020V | .495+.020V | | | 目 | 2 ⁰ A | _ | 1 | 0 | 0 | 0 | - | 1 | 0 | measured vinus may be | | 2 ⁰ B | 1 | 7 | 0 | 0 | 0 | 1 | p=-4 | 0 | | | | 2 A 2 | 4 | 4 | , | | 0 | . 0 | 0 | 0 | ○ | | 2 ¹ B | ¥ | | P | I | 0 | 0 | 0 | 0 | i | | 压C | Range | + ‡ | 4 | 3 | 3 | p=4 | 2 | 2 | 1 | ON; 0 =
temperat
libration | IFC | Range | 4 | 4 | 3 | 3 | 1 | 2 | 2 | щ | 1 | | ⋖ | CAL
Step | _ | 2 | 3 | 4 | ហ | 9 | 7 | 8 | l = LED
At room
obtain ca | Channel B | CAL
Step | H | 2 | *** | 4 | 5 | 9 | 7 | 8 | | | 7.1.2 Ch | T.P.
Section | 7.1.2.4 | 7.1.2.5 | 7.1.2.6 | 7.1.2.7 | 7.1.2.8 | 7.1.2.9 | 7.1.2.10 | 7.1.2.11 | Notes: 1) | 7.1.3 Ch | I P
Section | 7.1.3.4 | 7.1.3.5 | 7.1.3.6 | 7.1.3.7 | 7.1.3.8 | 7.1.3.9 | 7.1.3.10 | 7.1.3.11 | i, | | | Han | ac, | Me | Gra | at | D | at e | 12, | 127 | f.g | ΩΛ | | [(| ₹Ā.1.
7.0.5) | | (K, 84 K | 9 1 | _IAI
Dat | N 8 . | 198 | 5_ | | | | Visit Silver | | | • | K | | | | | | | | PER | FOF | <u>AM</u> S | | E T | A SN
EST | DΛ | | |-----------|------------------|--------------|------------|------------|-------------|------------|------------|------------|------------|---|-----------|---------------------------------------|------------|---------------|------------|----------------|------------|------------|--------------|--------------|----------------| | PA | NAM | | | | | 187-184 | 0 P | 1 | | | | | Pag | c 18 | 3 (| of 2 | | | REV | 4 | B | | | | | <u> </u> | | | 5/ 022 | | | | | | | | | | | (ECO) | (15/10 | | | | | - | | | ** | | * | | | * | <u>*</u> | | | Ι | | * | | * | , | <u> </u> | 内 | A |] | | ED | X-Ray A | 3.042 | .519 | 2.967 | 815. | 2.677 | 2,747 | ,517 | .513 | is used to | • | X-Ray B | 3.843 | 225. | 3.745 | .523 | 5-749 | 2.8.20 | , 522 | 1.517 | | | MEASURED | 2 ⁰ A | - | - | 0 | 0 | 0 | 1 | _ | 0 | ratures
limits. | · | 2 ⁰ B | - | _ | 0 | 0 | ٥ | } | | 0 | | | • • | 2 ¹ A | , | , | | | 0 | 0 | 0 | 0 | other temperature
the nominal limits | | 2 B | - | | - 1 | | ೦ | 0 | 0 | 0. | | | | 2)
X-Ray A | 3.000+.75V | .495+.020V | 3.000±.75V | .495+.020V | 3.000+.75V | 3.000±.75V | .495+.020V | .495±.020V | ralue at
outside | | X-Ray B | 3.000+.75V | . 495 + .020V | 3.000+.75V | . 495 + . 020V | 3.000+.75V | 3.000+.75V | .495 + .020V | 495 + . 020v | | | NOMINAL | 2 ⁰ A | 1 | 1 | 0 | 0 | 0 | 1 | ~ 4 | 0 | measured thus may be | | 2 ⁰ B | H | 7 | 0 | 0 | 0 | 1 | н | 0 | | | | 2 A A | - | | | 1 | 0 | . 0 | 0 | 0 | LED OFF
ture. The m
data and thu | | 2 ¹ B | М | , | - 4 | 1 | 0 | 0 | 0 0 0 | 0 | , | | IFC | Range | 4 | 4 | æ | 3 | | 2 | 2 | | <pre>l = LED ON; 0 = LED At room temperature, obtain calibration data</pre> | IFC | Range | 4 | 41 | 3 | m | - | 2 | 2 | p-4 | ı | | 4 | CAL
Step | | 2 | 3 | 4 | ഗ | 9 | 7 | 80 | l = LED
At room
obtain ca | Channel B | CAL | 1 | 2 | . ٤ | 41 | S | 9 | 2 | 8 | | | 7.1.2 Cha | Section | 7.1.2.4 | 7.1.2.5 | 7.1.2.6 | 7.1.2.7 | 7.1.2.8 | 7.1.2.9 | 7.1.2.10 | 7.1.2.11 | Notes: 1) | 7.1.3 Ch | T.P.
Section | 7.1.3.4 | 7.1.3.5 | 7.1.3.6 | 7.1.3.7 | 7.1.3.8 | 7.1.3.9 | 7.1.3.10 | 7.1.3.11 | | | | t. | <u>-</u> | Λι | h. | I | | | 12 ~ | ~ | - 84 | | | | | 6/17 | (S) | <u>-</u> - | IAN | 8 | 198 | 5 7 | | — | | P | | | | The | il e | | ۷-۱ | U 1 | QΛ | · · · · · · · · · · · · · · · · · · · | · | 1 | (CC) | <u>ت</u> - | | JAN | | | | Ž)