

Select SOLAR at the main menu, then SUDDEN IONOSPHERIC DISTURBANCES (SID)

Chapter 10: Solar Data

Sudden Ionospheric Disturbances (SID)

Sudden Ionospheric Disturbances (SID) are caused by solar flare x-rays in the 1 to 10 Angstrom range. Solar flares can produce large increases of ionization in the D-region of the ionosphere over the daylit hemisphere of the Earth. SIDs typically begin simultaneously or a few minutes after the start of a solar flare. They can have a time duration somewhat longer than the flare and a rise time more rapid than the decay time.

Types of SIDs:

SCNA — Sudden Cosmic Noise Absorption is a riometer-detected sudden daytime absorption increase;

SEA — Sudden Enhancement of Atmospherics are increases in signal strength on wideband equipment operated in the VLF (10 to 50 kHz) frequency range;

SES — Sudden Enhancement of Signal, observed on VLF frequencies in the 15 to 50 kHz range are nearly identical to SEA except that the receivers are narrowband receivers designed to pick up man-made VLF transmission. Like SEA, signal strength increase is the SID indicator;

SFD — Sudden Frequency Deviation is the sudden increase of high frequency radio waves which reaches a peak, and then decays back to the transmitting frequency;

SPA — Sudden Phase Anomaly is an abrupt shift in the phase of a radio signal on VLF frequencies received by ionospheric reflection;

User's Guide

SWF — Short Wave Fadeouts are abrupt decreases of radio signal strength observed at VLF frequencies.

The SID data include the date; beginning, maximum and ending times; type of SID; importance on a scale of 1- to 3+ where 3+ is the most important, and the definiteness on a scale of 1 to 5 where 5 is the most definite. Sometimes the monitored station is also included.

To access the SID data, the user should select SOLAR in the main menu, and then SID. Data files cover the time period March 1958 to August 1989. Several format changes have occurred during this time period.

The BROWSE mode will allow you to view the data on the screen for the months selected. The GRAPH mode will show you the monthly counts, monthly smoothed counts, and smoothed sunspot numbers in certain combinations.

Report Format for SID Data	80-Character Records
(Current - several format changes have occurred.)	

Columns	Fmt	Description
1-2	I2	Data code; always 40
3-5	3Х	Blank
6-11	I6	Date (yymmdd)
12-13	2X	Blank
14-17	I4	Start time; UT hours and minutes event began
18	A1	Start time qualifier; D=after, E=before, U=uncertain
19-22	I 4	End time; UT hours and minutes event ended
23	A1	End time qualifier; D=after, E=before, U=uncertain
24-27	I 4	Max time; UT hours and minutes of event maximum
28	A1	Max time qualifier; D=after, E=before, U=uncertain
29 -30	A2	Dropout rate of Short Wave Fadeout;
		S=Sudden, SL=Slow, G=Gradual, *=No Data
31- 32	A2	Importance of Short Wave Fadeout; sign in column 32.
		SWFs are observed on fieldstrength recordings of distant
		HF transmitters. *
33- 35	I3	Percentage decrease of Sudden Cosmic Noise Absorption
36- 37	A2	Importance of Sudden Cosmic Noise Absorption; sign in
		column 37. SCNAs measure decreases in galactic radio

column 37. SCNAs measure decreases in gal noise at about 18 to 25 MHz

Sudden Ionospheric Disturbances

-2

Chapter 10: Solar Data

or

A2	Importance of Sudden Enhancement or Decrease in
	Atmospherics; sign in column 39. SEAs and SDAs
	measure rises and falls in LF atmospherics at about
	27 kHz *
A4	Phase shift in degrees of Sudden Phase Anomaly at LF

VLF; sign in column 40. SPAs can have either a positive or negative phase change.
 44-46 A3 Importance of Sudden Enhancement of Signal Strength; sign in column 46. SESs are observed on fieldstrength

recordings of extremely stable VLF transmissions *

- 47-49 F2.1 Doppler frequency shift in Hz of Sudden Frequency Deviation; sign in column 47. SFDs measure the rapid change in received frequency of HF radio waves reflected from the E and F1 layers
- 50-51 A2 Definiteness; an integer value from 0 to 5; subjective estimate of confidence in identifying event
- 52-55 A4 Call letters and frequency (in kHz or MHz) of monitored transmitter. The field consists of either 2 letters and 2 numbers or 3 letters and 1 number 56-69 4X Blank
- 70-74
 A5
 Station code

 75-80
 6X
 Blank

* Importance: from 1-,1,1+ (weakest) to 3-,3,3+ (strongest).

SID			
Code	Call Ltrs	Frequency	Location
WI11	wwi	11 MHz	Havana, Illinois, USA
WI13	WWI	13 MHz	Havana, Illinois, USA
PM23	NPM	23 MHz	Honolulu, Hawaii, USA
LK18	NLK	18 MHz	Jim Creek, Washington, USA
PG18	NPG	18 MHz	Jim Creek, Washington, USA
ND11		11.3 kHz	North Dakota
WC22	NWC	22 MHz	Northwest Cape, Australia
LUX6		6.090MHz	Radio Luxembourg
MC10		9.82 MHz	Radio Mineria de Chile
RE11		11.3 kHz	Reunion
BR16	GBR	16 MHz	Rugby, England
OM12	Omega	12.0 kHz	Trinidad, West Indies
VH10	WWVH	1 0 MHz	University of Hawaii
WVH5	WWVH	5 MHz	University of Hawaii

Transmitters Monitored by Stations Reporting SIDs

Some Transmitters Monitored by Stations Reporting SIDs

Joint Frankminers Monitore by Blations Reporting Sids				
A ingen SA SA				
ir S.				

User's Guide

10-28