GREENWICH SPECTROSCOPIC AND PHOTOGRAPHIC RESULTS. 1882. # SPECTROSCOPIC AND PHOTOGRAPHIC OBSERVATIONS MADE AT THE ROYAL OBSERVATORY, GREENWICH, 1882. (EXTRACTED FROM THE GREENWICH OBSERVATIONS, 1882.) ## GREENWICH SPECTROSCOPIC AND PHOTOGRAPHIC RESULTS, 1882. #### INTRODUCTION. Spectroscopic Observations in the Year 1882. The spectroscopes used for these observations were mounted on the South-east equatoreal, the object-glass of which (made by Merz and Son of Munich) has a clear aperture of 12.8 inches, with a focal length of about 17^{tt} 10^{tn}. The direct-vision "half-prism" spectroscope, constructed by Mr. Hilger, has been used regularly since July 1877. In this form of spectroscope, either great dispersion or great purity of spectrum is obtained by the use of "half-prisms," according as the incident pencil falls first on the perpendicular or on the oblique face. Either one, two, or three "half-prisms" can be used at pleasure, according to the dispersion required, and each "half-prism" is compound, being composed of a flint "half-prism" and a crown prism cemented on the oblique face so as to form the half of a direct-vision prism, as cut by a plane perpendicular to the base. With one "half-prism" a dispersion of about 20° from A to H, equivalent to that given by four flint prisms of 60°, is obtained, with two "half-prisms" a dispersion of about 75° from A to H, equivalent to that given by fifteen flint prisms of 60°, with three "half-prisms" a dispersion of about 300°, equivalent to that given by about sixty flint prisms of 60°, the pencil in each case being incident on the perpendicular face of each "half-prism" and emerging at the oblique face. For observations of the Solar prominences, where great purity of spectrum is desired, the slit and eye-piece are interchanged, so that the pencil is incident on the oblique face and emerges at the perpendicular face of each prism. The cross section of the first prism is 2 inches in height by 2 inches in breadth, of the second prism 2 inches in height by 0.6 inch in breadth, and of the third prism 1 inch in height by 0.4 inch in breadth, the pencil being made narrower ^{*} A "half-prism" is the half of an isosceles prism cut by a plane perpendicular to the base, so that the rays fall perpendicularly on the face so formed. The general theory of this form of spectroscope is given in the *Proceedings of the Royal Society*, vol. xxvi., page 8. by the oblique emergence at each prism. The collimator and viewing telescopes have focal lengths of about 23-2 and 11-6 inches respectively with apertures of 2½ inches. Different parts of the spectrum are brought into the field by turning the "half-prisms," each through the same angle, about fixed centres, by means of a micrometer screw acting on a lever. For delicate measures a micrometer eye-piece is used. The spectroscope is carried by two rods, which are fixed to two collar-bearings on the eye-end of the telescope, giving the means of rotation round the axis, and carrying a position-circle. The spectroscope is held by two collars with lugs on the collimator and viewing telescope, which are fixed by clamping nuts on four strong elevator-screws fixed to the two rods and passing through slots in the lugs of the two collars; and an excentricity, either radial or tangential, can be given by altering the height of the nuts or by displacing the spectroscope laterally. The slit can thus be carried round the Sun's limb radially or tangentially, as may be desired. Occasionally for faint objects another spectroscope of smaller dispersive power is used. This spectroscope has a single prism of flint glass, with a collimator of about 20 inches focal length and a viewing telescope of about 10 inches. This section contains:—Observations of Solar Prominences; Observation of a Solar Storm; Observations of Spectra of Sun Spots; Measures of Displacement of Lines in the Spectra of Stars and Concluded Motions in the Line of Sight; and Observations of the Spectra of Uranus, of Sundry Stars, of Comets a and b 1882, and of the Aurora of 1882 November 17. For the observations of solar prominences, the Greenwich mean solar times are given; and the position-angle from the Sun's axis of the two extremities of each prominence, together with its height in seconds of arc. The Sun's image was always placed centrally with respect to the position-circle, a radial excentricity being given to the spectroscope, so that the slit swept round the Sun's limb. The position-angles have been first corrected for index-error of the position-circle, which is determined at the time of observation. The method employed for this purpose has been to set the position-circle to 90° plas the approximate index-error, so that the slit points approximately E. and W., and to move the telescope by the slow-motions until either the north or the south limb of the Sun just comes into the middle of the field. The position-circle is then read, and the spectroscope rotated through 180°, the telescope remaining rigidly clamped, and as the diurnal motion brings the Sun up to the slit again, the limb previously observed is again brought to the centre of the field by means of the rotation of the spectroscope. The position-circle is read a second time, and the mean of the two readings is taken as the zero of the position-circle. The corrected position-angles have then been converted into Heliographic N.P.D. by applying as a correction the position-angle of the Sun's north pole, taken from the "Auxiliary Tables for determining the Angle of Position of the Sun's Axis, and the Latitude and Longitude of the Earth referred to the Sun's Equator," by Warren De La Rue, F.R.S. The heights of the bright lines seen in the prominences or chromosphere were read off on a pearl scale, divided to 0.005 inch (corresponding to 2".4), and carried by the micrometer of the spectroscope. Other particulars are given in the note at the head of this section. The measures of displacement of lines in the spectra of stars were made with a micrometer in the viewing telescope of the "Half-prism" Spectroscope. The eyepiece used gives a magnifying power of 14. Estimations of the displacement, in terms of the apparent breadth of the bright comparison-line, were also made; the breadth corresponding to any given width of slit being determined by a careful observation under similar conditions. 1rev. of the screw for opening the slit corresponds to 0.01 inch, or 10". It has not been thought necessary to give in detail all these particulars of the reductions. The values used in each case may be inferred from the observed motion, which is the algebraic sum of the concluded motion and of the Earth's motion. One tenth-metre corresponds at D to a motion of 31.7 miles per second, at b to a motion of 36.1 miles, and at F to a motion of 38.4 miles. For comparison with the spectrum of hydrogen or other chemical element, an image of the vacuum tube or electrodes is formed on the slit, by means of a transparent plate of glass placed at an angle of 45° with the axis of the collimator, in connexion with a collimating lens, so that the cone of rays from the comparisonlight, as well as that from the star, fills the whole of the object-glass of the collimator. Whenever the star-line was sufficiently distinct to allow of its being seen at the same time as the bright comparison-line, a direct comparison of the two was made; in other cases the bright line was compared with the pointer or bright line of the micrometer which had just previously been placed on the star-line, giving an indirect comparison. The reading of the position-circle is given, as it is conceivable that the results might be affected by the position of the spectroscope. The slit lies north and south when the reading is 5°. With regard to the other observations contained in this section, it is sufficient to remark that curves have been laid down in the usual manner, connecting scale or micrometer readings and wave-lengths, and that for each series of observations a correction for index-error has been deduced from observations of comparison-lines and applied to the observed readings, to reduce them to the standard curve, from which the corresponding wave-lengths have been read off. The tabular wave-lengths of comparison-lines have been taken from Ångström's Spectre Normal du Soleil, or in the case of the spectra of carbon compounds, from Ångström and Thalén's Récherches sur les Spectres des Métalloides. Measures of Positions and Areas of Spots and Faculæ upon the Sun's Disk on Photographs taken at the Royal Observatory, Greenwich, and at Dehra Dûn in India in the year 1882; with the deduced Heliographic Longitudes and Latitudes. The photographs from which these measures were made were taken either at Greenwich or at Dehra Dûn, North-West Provinces, India. The photographs of the Greenwich series were taken with the Dallmeyer Photoheliograph returned from the Transit of Venus expedition to New Zealand. This instrument has an object-glass of 4 inches aperture and 5 feet focal length, forming an image of the Sun about half an inch in diameter; this image is enlarged by a secondary magnifier to 4 inches on the camera screen, where the sensitive plate is inserted, the whole length of the instrument being about 8 feet. The exposure is given by a shutter, having a slit of adjustible width, which is carried by a spring across the primary image. At the principal focus cross-wires are placed, which give facilities for determining the position-angles of spots on the photographs. The instrument is equatoreally mounted, though this is not absolutely necessary to its efficient action, as the exposure is practically instantaneous, amounting only to a few thousandths of a second in ordinary cases. In the process adopted up to 1882 November 28 iodized cadmium collodion was used in connexion with the pyro-gallic acid development. Since that date bromo-iodized gelatine dry plates with alkaline
development have been regularly used. The Indian photographs, which were used to fill the gaps in the Greenwich series, were taken under the superintendence of J. B. N. Hennessey, F.R.S., Deputy Superintendent, Trigonometrical Survey of India, with a Dallmeyer photoheliograph giving an image of the Sun 4 inches in diameter, except for the period from 1882 November 7 to December 8, when another secondary magnifier, giving an image of the Sun 8 inches in diameter, was adapted to the photoheliograph under the auspices of the Solar Physics Committee. In the process adopted at Dehra Dûn bromoiodized collodion has been used in connexion with iron development. Photographs of the Sun were taken at Greenwich on 221 days, and Indian photographs on 142 days were used to complete the total of 343 days for which there are either Greenwich or Indian photographs of the Sun available in 1882. The first column on each page contains the Greenwich Mean Solar Time at which each photograph was taken, expressed by the day of the year and decimals of a day, reckoning from Greenwich mean noon of January 1, and also by the day of the month (civil reckoning), which latter is placed opposite the total area of Spots and Faculæ for the day. The photographs taken in India are distinguished by the letter I. The second column contains the initials of the two persons measuring the photograph; the initial on the left being that of the person who measured the photograph on the left of the centre of the measuring instrument, and that on the right being that of the person who measured on the right of the centre. The following are the signatures of those persons who measured the photographs for the year 1882:— | E. W. Maunder | | - M | J. Knowles | 100 | | - K | |---------------|---|------|------------|-----|--------|------| | H. P. Hollis | | - H | F. Finch - | | Page 1 | - F | | J. Power - | - | - JP | J. Hawton | | - 4 | - JH | | H. T. James | | - J | | | | | The third column gives the No. of the group. The groups are numbered in the order of their appearance. The next two columns give the Distance from the Centre of the Sun in terms of the Sun's Radius, and the Position-Angle from the Sun's Axis, reckoned from the Sun's North Pole in the direction n, f, s, p, both results being corrected for the effects of instrumental distortion and astronomical refraction. The measures of the four-inch photographs were made with a large position-micrometer, specially constructed by Mr. Simms. The photograph is held with the collodion-side uppermost, on two cross-slides, which give the means of accurately centering it on the large position-circle, which rotates with it. A positive eye-piece, having at its focus a glass diaphragm, ruled into squares, with sides of one-hundredth of an inch (for measurement of areas), is carried by a micrometer-screw diametrically across the photograph, the diaphragm being nearly in contact with the photographic film, so that parallax is avoided. For the measurement of the eight-inch photographs a larger position-micrometer, constructed by Messrs. Troughton and Simms on the same principle but with some improvements, has been used. In this instrument the distance of a spot or facula from the Sun's centre is read off to 1-250th of an inch by means of a scale and vernier instead of a long micrometer-screw. The following is the process of measurement of a photograph:- By means of the cross-slides mounted on the position-circle, the image of the Sun is centred as accurately as possible by rotation. The position-circle is then set to the readings 0°, 90°, 180°, and 270° in succession, and the micrometer-readings taken for the two limbs. The mean difference of the readings for the two limbs is taken as the Sun's mean diameter on the photograph, and the mean of the half-sum as the reading for the Sun's centre. At the principal focus of the photoheliograph are two cross-wires which serve to determine the zero of position-angles on the photograph. The zero of the Dallmeyer Photoheliograph employed at Greenwich has been determined by allowing the diurnal motion to carry the spot or Sun's limb along the wire, a correction for the inclination of the Sun's path being applied to the reading of the position-circle so obtained, and also by running the image along the wire by the use of the R.A. slow motion, the mean of the two determinations being adopted as the zero. | Date. | | Gorrecte
of Position
from t | | Zero of Position-Circle
obtained when using
R. A. Slow Motion. | | | |----------------|----|-----------------------------------|---------|--|---------|--| | | | Wire a. | Wire b. | Wire a. | Wire b. | | | | | 0 1 | 0 / | 0 / | 0 / | | | 1881, December | 23 | 354. 0 | 83. 54 | 354. 0 | 83. 54 | | | 1882, January | 7 | 354. 7 | 84. 1 | 354. 6 | 84. 0 | | | March | 14 | 354. 5 | 84. 4 | 353. 57 | 83. 51 | | | March | 25 | 353. 16 | | 353. 10 | | | | April | 21 | 353, 36 | 263.36 | 353.36 | 263. 3. | | | May | 10 | 353. 9 | | 353. 6 | | | | May | 10 | 353. 27 | 83.30 | 353. 24 | 83. 2 | | | June | 17 | 353. 12 | 83. 10 | 353. 12 | 83. 1 | | | July | 26 | 353. 16 | 83. 10 | 353. 18 | 83. 1 | | | August | 24 | 353. 18 | 83.12 | 353. 15 | 83. | | | August | 24 | 353. 48 | 83. 42 | 353. 48 | 83. 4 | | | September | 15 | 353.16 | 83. 6 | 353. 10 | 83. | | | October | 20 | 353. 5 | 82.59 | 353. 8 | 83. | | | November | 18 | 353. 13 | 83. 13 | 353. 18 | 83. | | | December | 13 | 353. 6 | 83. 6 | 353. 9 | 83. | | | 1883, January | 2 | 353. 7 | 83. 6 | 353. 8 | 83. | | In the use at Greenwich of the Dallmeyer Photoheliograph the position-circle has usually been set to some convenient reading near that for zero, so that the wires are respectively parallel and perpendicular to the circle of declination, and a correction for zero of position of the photoheliograph for the mean of the two wires has been applied to the zero of the position-circle of the micrometer. This latter has been determined from the readings of the position-circle for the four extremities of the two wires. The resulting combined correction is applied to all position-circle readings for spots and faculæ, so as to give true position-angles. In the use of the Photoheliograph at Dehra Dûn the position-circle has always been set to the zero as determined by allowing the diurnal motion to carry a spot or the Sun's limb along the horizontal wire, and the accuracy of the adjustment has been tested at short intervals. No correction for zero of the photoheliograph has therefore been required for the reduction of the photographs taken in India. The uncorrected distance from the Sun's centre for the four-inch images of the Sun is given by the difference between the micrometer-readings for spots and faculæ, and the centre-reading. In the new micrometer used for the measurement of the eight-inch photographs the zero of the scale is adjusted to coincide with the centre, and the distance from the centre is given directly. Two sets of measures of the Sun's limb and of spots and faculæ on each photograph have been taken and the mean of the two sets adopted. The Greenwich photographs have been usually measured by Mr. Maunder and one of his assistants, the Indian photographs by Mr. Hollis and Mr. Power. Corrections are then applied for optical distortion of the photoheliographs and for refraction. The distortion has been determined for the Dallmeyer photoheliographs used in the Transit of Venus 1874 from measures of photographs of a scale of equal parts, 16 feet long, constructed by Mr. De La Rue, and lent by him for this purpose. The scale has eight plates of iron with edges carefully planed, the plates being each exactly one foot in breadth, and attached to a braced iron framework so as to leave equidistant spaces of exactly one foot between the plates. The scale was photographed at a distance of about 1,200 feet, and extended completely across the field of view. The following table gives the distortion for the Dallmeyer Photoheliographs for images of the Sun, of about four inches diameter thus determined for every tenth of an inch distance from the centre of the field:— | Distance Correction for Distortion. | | | Distance
from Centre. | | ection for
stortion. | Distance
from Centre. | Correction for
Distortion. | | | |-------------------------------------|---|------------|--------------------------|---|-------------------------|--------------------------|-------------------------------|-------|--| | r
o | | r
0.000 | r
9 | + | r
o o35 | r
18 | + | 0.010 | | | 1 | + | • 006 | 10 | + | • 036 | 19 | + | .004 | | | 2 | + | .012 | 11 | + | • 035 | 20 | - | .004 | | | 3 | + | *017 | 12 | + | . 034 | 21 | - | . 012 | | | 4 | + | .022 | 13 | + | . 032 | 22 | - | . 020 | | | 5 | + | . 026 | 14 | + | .028 | 23 | _ | . 029 | | | 6 | + | .029 | 15 | + | * 024 | 24 | - | • 038 | | | 7 | + | • 032 | 16 | + | * 020 | 25 | - | . 047 | | | 8 | + | • 034 | 17 | + | .016 | 26 | - | . 057 | | $1^{r} = 0^{\text{in}} \cdot 10$, corresponding to $49^{"} \cdot 3$. The distances as measured on the four-inch photographs whether taken at Greenwich or in India have been corrected for the corresponding distortion, and in cases where the centre of the Sun's image did not fall very close to the centre of the plate, a correction has been applied to the position-angles for the resolved part of the distortion. No correction has been applied to the measure of Sun's radius on account of distortion, the scales adopted in forming the tables having been so chosen that the distortion shall be 0 at the average place of the Sun's limb on the photographic plate; viz., 19^{r.}5. No correction has been applied to the eight-inch photographs on account of distortion. The correction for the effect of refraction has been thus found, the Sun's image being assumed to be sensibly an ellipse. The refraction being sensibly c tan z where $c =
\sin 57'' \cdot 5 = \frac{1}{3600}$ nearly, and z is the apparent zenith distance, we shall have— $$\frac{\text{Vertical Diameter}}{\text{Horizontal Diameter}} = \frac{1 - c \sec^2 z}{1 - c} = 1 - c \tan^2 z;$$ and thus the effect of refraction will be to diminish any vertical ordinate y by the quantity $c \tan^2 z$. Resolving this along and perpendicular to the radius vector r, and putting v for the position-angle of the vertex, we have for δr and $\delta \theta$, the corrections to radius vector and position-angle for the effect of refraction— $$\begin{split} \delta \ r &= + \ c \cdot \tan^2 z \times r \cdot \cos^2 \left(\theta - v \right) = + \ c \cdot \tan^2 z \times r \times \frac{1 + \cos 2 \left(\theta - v \right)}{2} \\ \delta \ \theta &= - \ c \cdot \tan^2 z \cdot \sin \left(\theta - v \right) \cdot \cos \left(\theta - v \right) = - \ c \cdot \tan^2 z \cdot \frac{\sin 2 \left(\theta - v \right)}{2} \end{split}$$ The quantity δ r thus found is the correction, on the supposition that a horizontal diameter of the Sun is taken as the scale. But, as the mean of two diameters at right angles has been used, the scale itself requires the correction $\delta R = +c \cdot \tan^2 z \times R \times \frac{1}{2} \left\{ \frac{1 + \cos 2 (\theta_0 - v)}{2} + \frac{1 + \cos 2 (\theta_\delta + 90^\circ - v)}{2} \right\} = + \frac{1}{2} c R \cdot \tan^2 z$, where R is the Sun's mean radius and θ_0 , $\theta_0 + 90^\circ$ the position-angles of the two diameters measured. Thus the final correction to r becomes— $$\delta r = + c \cdot \tan^2 z \times r \times \frac{\cos 2 (\theta - v)}{2}$$ The quantities $c \tan^2 z$, $-\frac{\sin 2 (\theta - v)}{2}$, and $\frac{\cos 2 (\theta - v)}{2}$ have been tabulated for use as follows, $c \tan^2 z$ being expressed in circular measure and in arc for application to distances and position-angles respectively:— $c \tan^2 z$. | z. | In Circular
Measure. | In Arc. | z, | In Circular
Measure. | In Arc. | z. | In Circular
Measure. | In Arc. | |----|-------------------------|---------|----|-------------------------|---------|----|-------------------------|---------| | 0 | 1 | , | 0 | | , | | | | | 80 | . 0089 | 31 | 70 | * 002 I | 7 | 60 | . 0008 | 3 | | 79 | .0073 | 25 | 69 | .0019 | 61/2 | 58 | . 0007 | 2 | | 78 | . 0061 | 21 | 68 | . 0017 | 6 | 56 | * 0006 | 2 | | 77 | . 0052 | 18 | 67 | *0015 | 51 | 54 | * 0005 | 2 | | 76 | . 0045 | 15 | 66 | . 0014 | 5 | 52 | * 0005 | 2 | | 75 | . 0039 | 13 | 65 | . 0013 | 41/2 | 50 | * 0004 | 1 | | 74 | . 0034 | 1112 | 64 | . 0012 | 4 | 45 | *0003 | 1 | | 73 | • 0030 | 10 | 63 | . 0011 | 4 | 40 | .0002 | 1 | | 72 | . 0026 | - 9 | 62 | .0010 | 3 | 30 | . 0001 | 0 | | 71 | * 0023 | 8 | 61 | . 0000 | 3 | | LIKE BURNE | and a | Factors for Refraction. | $\theta-v$ $\theta-v$ | $-\frac{\sin z (\theta - v)}{z}$ | $\frac{\text{Cos 2}(\theta-v)}{2}$ | $\theta - v$ | 0-v | $-\frac{\sin 2 (\theta - v)}{2}$ | $\frac{\cos z \ (\theta - v)}{2}$ | | | |---|--|---|--|--|---|---|--|--| | 0 180
5 185
10 190
15 195
20 200
25 205
30 210
35 215
40 220
45 225
50 230
55 235
60 245
70 250
75 250
75 250
80 85 265
90 270 | . 000 - 099 - 17 - 25 - 32 - 38 - 43 - 47 - 49 - 50 - 49 - 47 - 43 - 38 - 32 - 25 - 17 - 09 - 00 | + · · 50
+ · · 49
+ · · 47
+ · · 43
+ · · 38
+ · · 25
+ · · 17
+ · · · · · · · · · · · · · · · · · · · | 95
100
105
115
120
125
130
135
140
145
155
160
165
175
180 | 275
280
285
295
300
305
315
320
325
330
345
345
355
360 | + '09
+ '17
+ '25
+ '32
+ '38
+ '47
+ '49
+ '50
+ '47
+ '43
+ '38
+ '32
+ '25
+ '17
+ '09 | - '49 - '47 - '43 - '38 - '32 - '25 - '17 - '09 + '17 + '25 + '32 + '38 + '43 + '47 + '49 + '50 | | | The position-angle of the Vertex v is readily taken from a globe. The distance from centre in terms of the Sun's radius given in the fourth column is then readily found by dividing the measured distance r_0 , as corrected for distortion and refraction, by the measured mean radius of the Sun, R; and the Position-Angle from the Sun's Axis given in the fifth column is obtained by applying to then Corrected Position-Angle (from the N. point) the Position-Angle of the Sun's Axis derived from Warren De La Rue's Auxiliary Tables referred to in the preceding section. The sixth and seventh columns give the Heliographic Longitude and Latitude computed by the formulæ $\sin \lambda = \cos \rho$. $\sin D + \sin \rho$. $\cos D$. $\cos \chi$; $\sin (L - l) = \sin \chi$. $\sin \rho$. $\sec \lambda$; where L, l are the Heliographic Longitudes from the ascending node, and D, λ the Heliographic Latitudes of the Earth and the Spot respectively, referred to the Sun's Equator, ρ the True Angular Distance from centre, and χ the Position-Angle from the Sun's Axis. The quantities L and D are derived from Warren De La Rue's Auxiliary Tables previously referred to, and $\log \sin \rho$ and $\log \cos \rho$ are taken from "Tables for the Reduction of Solar Observations, No. 2" by Warren De La Rue, F.R.S. The Heliographic Longitude of the Spot is found from l, the Heliographic Longitude from Node, by subtracting the Reduction to Prime Meridian, which is the Longitude of the Node at the epoch of the photograph, referred to the assumed Prime Meridian, the latter being the meridian which passed through the ascending node at the epoch 1854.0. The period of rotation assumed is 25.38 days. The measures of areas given in the last three columns were made with a glass diaphragm ruled into squares, with sides of one hundredth of an inch, and placed nearly in contact with the photographic film. The integral number of squares and parts of a square contained in the area of a spot or facula was estimated by the observer, two independent sets of measures being made by two observers. The mean of the two sets of measures has been taken for each photograph. The factor for converting the areas, as measured in ten-thousandths of a square inch, into millionths of the Sun's visible hemisphere, allowing for the effect of foreshortening, has been inferred by means of a table of double entry, giving the equivalent of one square for different values of the Sun's radius, and for different distances of the spot or facula from the Sun's centre, as measured by means of the Position-Micrometer. The individual spots in a group have in some cases not been measured separately, but combined into a cluster of two or three small spots close together, the position of the centre of gravity and the aggregate area of the cluster being given. The actual number of individual spots is usually stated in the Notes. The Mean Areas of Spots and Faculæ and the mean Heliographic Latitude of Spots for each Rotation of the Sun, and for the year 1882, are given at the end of this section, and require no further explanation. W. H. M. CHRISTIE. ROYAL OBSERVATORY, GREENWICH. ### SPECTROSCOPIC OBSERVATIONS MADE AT THE ROYAL OBSERVATORY, GREENWICH, 1882. Position-Angles and Heights of Solar Prominences, observed with the Spectroscope, and Observations of Bright Lines in their Spectra, made at the Royal Observatory, Greenwich, in the Year 1882. Note.—The position-angles reckoned from the north pole of the Sun's axis in the direction N., E., S., W., N., are given for the two extremities of the prominence. The extreme height in seconds of are is given for each prominence. Where the estimated brightness of any of the bright lines seen is given, the average brightness of the line has been estimated in terms of the brightness of the corresponding part of the solar spectrum. The lines are usually fainter at the extremity than at the base. Where the estimated breadth is given, the average breadth of the line has been estimated in terms of the breadth of the corresponding dark line in the solar spectrum, except in the case of the bright line D₃, the breadth of which is estimated in terms of the dark line C. The bright lines are usually narrower at the extremity than at the base. The "Half-prism" Spectroscope with a train of two "half-prisms" was used throughout. For viewing the prominences and chromosphere the spectroscope is reversed end for end, the slit and eye-piece being interchanged, so that the pencil is incident on the oblique face and emerges at the perpendicular face of each "half-prism." Thus the breadth of the spectrum-lines, considered as monochromatic images of the slit, is diminished, and greater purity of spectrum is obtained. In order to view a prominence in its just proportions, the breadth can be afterwards magnified by means of a small "half-prism" (direct-vision) placed between the eye-piece and the eye. #### Observer, M. | Greenwich
Mean Solar Time,
1882. | Position-Angle
from
Sun's Axis. | Height in
Seconds of
arc on
the C Line. | REMARKS. | |---
---|--|--| | Mar. 1. 23. 33 22. 51 23. 32 23. 31 22. 42 23. 0 23. 3 23. 2 22. 58 22. 58 22. 58 22. 57 22. 56 22. 55 22. 55 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 24
72
36
29
48
29
43
22
17
17
29
24
19 | Faint jet. Not seen in the first search. Fine bright prominence; much detail. Partly detached. Bright straight jet. Forked jet. Straight jet. Forked prominence. Straight jet. Two small but bright elevations of the chromosphere. Straight faint jet. Straight faint jet. Straight faint pec. Straight faint prominence. Very narrow jet. The chromosphere averaged 8" in height. Definition variable; wind high; observation frequently interrupted by cloud. The entire limb of the Sun was examined twice with the slit radial on the C line only. | | Mar. 3. 0.33 0.35 0.38 0.39 0.41 0.45 0.47 0.50 0.52 1.12 1.11 1.10 1.10 1.9 1.8 1.5 | 63. 28 — 67. 48
75. 48 — 78. 38
81. 18 — 83. 28
86. 48 — 87. 38
121. 48 — 124. 8
130. 58 — 134. 3
149. 43 — 150. 18
157. 42 — 157. 59
193. 43
220. 58 — 223. 18
236. 58 — 238. 8
239. 48 — 240. 8
241. 3 — 242. 48
243. 48 — 245. 8
247. 58 — 249. 48
298. 4 — 301. 23 | 55
77
29
29
19
17
22
19
24
58
24
19
26
19
43
26
24 | Fine bright prominence; Fine bright prominence; portions detached; much detail. Faint; partly detached. Bright; partly detached. Straight jet. Partly detached; faint. Low bank. Partly detached. Straight jet. Fine prominence; partly detached. Partly detached. Observations frequently interrupted by cloud. Part of the limb of the Sun, viz., from 30° to 194°, and from 221° to 305°, was examined once with the slit radial on the C line only. | | Mar. 13, 23, 20 23, 21 23, 22 23, 2 23, 2 23, 2 23, 2 23, 2 23, 2 23, 2 23, 3 23, 1 | 16. 51 — 19. 11
2 60. 51 — 62. 1
124. 1 — 125. 41
7 133. 21 — 134. 11
7 139. 11 — 142. 51
8 162. 21 — 163. 11
9 167. 11 — 168. 41
9 233. 51 — 236. 21
4 301. 51 — 305. 11 | 34
77
29
19
19
38
48
36
31
29
96 | Faint. Faint. Partly detached. Small straight jet. Faint straight jet. Straight jet. Long bank with two jets. Fine tall prominence; much detail. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Greenwich
Mean Solar Time,
1882. | Position-Angle
from
Sun's Axis. | Height in
Seconds of
arc on
the C line. | REMARKS. | |---|---|--|--| | d h m Mar. 15. 2.22 2.23 2.23 2.24 2.24 2.25 2.26 2.27 2.27 2.28 2.8 2.3 | 302.37 - 306.37 | " 43 34 34 34 34 38 43 29 24 24 38 38 36 106 | Faint. Bright straight jet. Much broken. Very brilliant; in rapid motion. Very bright. Faint. Faint; partly detached. Straight jet. Faint. Fine bright prominence; much detail. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Mar. 15. 22. 13 22. 15 22. 16 22. 20 22. 21 22. 5 22. 6 | 220.41 — 223.51
245.51 — 247. 1 | 48
36
34
41
22
67
180 | Bright prominence. Straight jet. Faint straight jet. Bright straight jet. Small jet. Small jet. Fine bright prominence; partly detached; many jets. Very fine prominence; great detail; bright. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Mar. 18. 1. 5
1. 3
1. 1
0.59
0.58
0.57
0.57
0.55
0.55
0.55 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 17
19
31
48
41
48
41
22
65
29 | Low bank. A little tuft. Much broken. Partly detached. Very faint. Faint; partly detached. Height of greater part of prominence 29", but a jet at N. part rose to 65". Faint, but showing considerable detail. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Mar. 19. 23. 5 23. 6 23. 7 25. 8 23. 8 23. 9 23. 10 23. 11 23. 12 23. 13 23. 15 23. 17 25. 18 23. 0 23. 1 | 110, 39 — 111, 59
211, 19 — 212, 29
267, 39 — 268, 49
292, 19 — 293, 49
295, 39 — 297, 19 | 24
19
24
24
65
19
19
29
19
48
43
24
19
24 | Faint. Bright. Much detail. Bright; partly detached. Bright; bending over to N. Much broken; faint. Much broken; faint. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Mar. 21. 0. 5
0. 7
0. 8
0. 10
0. 11
0. 16 | 158. 23 - 162. 53 | 34
34
29
29
46
24 | Very faint. Straight jet. Partly detached. Bright straight jet. Very faint. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Apr. 1. 1.26 1.25 1.21 1.20 1.32 1.31 1.29 | 199.44 — 202.44
224.34 — 226.4 | 41
67
24
41
24
36
26
67 | Faint prominence, Fine bright prominence. Short bright jet. Faint. Faint. Very large, beautiful, and regular prominence. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Mean S | eenwich
Solar Time,
1882. | Position-Angle
from
Sun's Axis. | Height in
Seconds of
are on
the C line. | REMARKS. | |--------|---|--|--|--| | Apr. | d h m 4. 0. 22 0. 24 0. 25 0. 30 0. 20 0. 21 | 272.45 - 273.45 | 41
55
26
22
17
22 | Bright; partly detached. Bright; partly detached. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Apr. | 6. 1.46
1.40
1.43
1.44
1.45 | 16. 13 — 17. 23
78. 43 — 82. 3
197. 23 — 200. 3
297. 43 — 305. 23
333, 43 — 335. 33 | 24
41
53
48
41 | Faint. Faint cloud; completely detached. Exceedingly faint. Brilliant prominence. Bright prominence. The entire limb of the Sun was examined once with the slit radial on the C line only. | | Apr. | 7.21.45
21.44
21.43
21.42
21.58
21.52
21.49
21.48
21.48
21.47 | 293. 26 — 293. 36
302. 56 — 305. 56 | 26
29
19
19
55
34
29
29
19 | Straight jet; faint. Straight jet; very faint. Faint. Very narrow prominence. The C line wholly displaced towards the blue. The entire limb of the Sun was examined with the slit radial on the C line only. | | May | 1. 1.45
1.44
1.43
1.41
1.41
1.38
1.37
1.35
1.46 | | 34
36
22
34
34
36
29
19
22
77 | Partly detached. Bright straight jet; no detail. Bright straight jet. Straight jet. Faint; partly detached. Partly detached. Forked prominence; considerable detail. Fine tall prominence with considerable detail. The entire limb of the Sun was examined once with the slit radial on the C line only. | | May | 5. 0.39
0.23
0.24
0.25
0.36
0.31
0.32
0.33
0.34
0.35
0.37
0.35 | 17.52 — 21. 2 66.22 — 67.12 87.12 — 91.12 94.12 — 103.42 108.42 — 116.37 118.12 — 119.22 161.52 — 162.22 195.22 — 196.32 199.52 — 202.12 219.12 — 222.42 223.12 — 229.32 304. 2 — 309.12 | 31
22
29
29
24
22
17
19
34
43
41
34 | Very faint. Bending over to the North. Very faint. The chromosphere was very faint, averaging from 8" to 10" in height. The entire limb of the Sun was examined with the slit radial on the C line only. Several attempts were made to examine the limb on the other lines, but the Sun was always in a white haze, and no satisfactory results could be obtained. | | May | 13. 1. 3
1. 3
1. 4
1. 4
1. 5
1. 6
1.10
1.12
1.13
1.45 | 112. 32 — 118. 22
154. 22 — 156. 42
216. 22 — 219. 42
246. 52 — 249. 52 | 41
60
36
55
19
50
36
41
79 | Bright jet. Faint; considerable detail. Faint. Partly detached; much detail. Long low bank. Faint. Very faint. Very faint. Very faint. Detached cloud; highest point 79", lowest 46". Straight jet. The entire limb of the Sun was examined with the slit radial on the C line
only. | | Greenwich
Mean Solar Time,
1882. | Position-Angle
from
Sun's Axis. | Height in
Seconds of
arc on
the C line. | REMARKS. | |---|---|--|---| | 6.17 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 24
67
65
38
34
41
29
34
50
43
22 | Very faint. Faint. Forked prominence; considerable detail. Faint; considerable detail. Straight jet. Exceedingly faint. Bright jet. Very bright. Straight jet. Straight jet. The entire limb of the Sun was examined with the slit radial on the C line only. | | 6. 31
6. 32
6. 18 | 109. 22 — 117. 12
119. 27 — 123. 17
249. 42 — 250. 42
285. 17 — 288. 57
295. 52 — 298. 22 | 74
43
34
17
41
50
24
43
29 | Intensely bright. The entire limb of the Sun was examined with the slit radial on the C line only. | | May 16. 6.38
6.39
6.40
6.41
6.42
6.35
6.36
6.37 | 109. 42 — 117. 12
119. 52 — 123. 7
134. 42 — 135. 42 | 74
48
29
29
43
34
43
22 | The entire limb of the Sun was examined with the slit radial on the C line only. | | May 16. 20. 26 20. 25 20. 24 20. 32 20. 31 20. 31 20. 30 20. 29 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 84
19
46
41
19
19
24
31
26 | Bright jet. Bright prominence; considerable detail. Fairly bright; considerable detail. Small straight jet. Bright jet. The entire limb of the Sun was examined with the slit radial on the C line only. | | May 16. 20. 43 20. 45 20. 47 20. 48 20. 57 20. 38 20. 38 20. 40 20. 41 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 72
17
48
41
19
22
29
36
22 | The entire limb of the Sun was examined with the slit radial on the C line only. | | May 16, 22, 8 22, 10 22, 11 22, 12 22, 14 22, 15 22, 16 22, 4 22, 5 22, 6 22, 7 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 29
84
43
34
29
17
17
24
29
24
38 | Faint. The entire limb of the Sun was examined with the slit radial on the C line only. | | Greenwich
Mean Solar Time
1882. | e, | from
n's A | - | | Heig
Secon
are
the C | ds of
on | | | | | | | | REMARKS. | | | | |---|---|--|---|---|--|---------------------|---|--|------|-------|------------------------|-------|-----|---|--|--|--| | 0, 13
17, 23, 46
23, 47
23, 48
23, 49
23, 50
23, 50
23, 51
23, 58 | 9 13.58
17.48
29.18
55.33
56.33
75.28
89.58
89.58
111.8
134.18
151.33
1193.18
1213.48
257.28
265.58
268.38
276.28
290.48 | | 64. 2
82. 1
92. 5
100. 1
12. 2
36. 3
53. 1
95. 8
96. 48
17. 48
60. 28
67. 28
75. 38
92. 38 | 8 8 8 3 3 8 8 3 8 8 3 8 8 3 8 8 8 8 8 8 | 20
44
17
17
55
55
24
38
36
14
22
22
24
24
24
21
19
22
21
19
22
21
21
21
21
21
21
21
21
21
21
21
21 | 98877755 | Par Fire Smr Str Par Smr Exc | Fine arched prominence. Small straight jet. Partly detached. Fine bright prominence. Two jets bending over to the North. Bending over to the South. Small jet. Straight jet. Partly detached. Small straight jet. Small straight jet. Exceedingly narrow faint prominence. The entire limb of the Sun was examined once with the slit radial on the C lin | | | | | | | | | | | 2. 3 | 53. 30
70. 0
118. 30
124. 30
194. 50
212. 0
308. 30 | - 5
- 7
- 12
- 12
- 19
- 21 | 53. 20
53. 50
71. 20
10. 50
16. 30
7. 20 | | 43
53
22
19
29
43
17
62
14 | | Very fine forked prominence. Bright arched prominence; much detail. Bright straight jet. Straight jet. Bending over to the South. Fine bright forked jet. The entire limb of the Sun was examined once with the slit radial on the C line only. | | | | | | | | | | | | 23. 35
23. 36
23. 30 | 126. 21 -
147. 31 -
249. 41 -
275. 31 -
341. 31 -
357. 31 - | - 14
- 25
- 28
- 34 | 9.31
1.31
0.21 | | 22
36
22
14
29
22 | - 11 | Bright
Faint | y det | ched | prom | ie Su | n was | exa | amined on C, D_3 , and also on D_1 , D_2 , b_1 , b_2 , b_4 , E, and 1474 K. othing. | | | | | Greenwich
Mean Solar Time,
1882. | Position-
Angle
from
Sun's Axis. | in : | Heig
Second
D ₃ | ght
Is of a | F | C | Bright D ₃ | tness. | F | С | Brea
D ₃ | dth. | F | REMARKS. | | | | | | 0 / 14. 15 } 16. 45 } 47. 45 } 49. 15 } 60. 5 } 70. 5 } 71. 5 72. 45 } 78. 0 } 80. 25 } 130. 5 } | " 29 29 19 19 17 34 | " 31 34 19 19 17 34 | " 2? 5? | " 24
12 | 1 3 3 4 3 4 1 5 1 · | 1/3 3/4 1/2 1/5 I | | | | | | | | | | | | 23. 10 | 133. 25 {
243. 45 {
244. 15 } | 24 | 22 | | 34 | 3 4 | 1 | | 1 5 | 24 24 | 121 293 | | 23 | Bright straight jet. Faint short jet. | | | | | Greenwich | Position
Angle | in i | Hei | ght
is of a | no. | | Bright | | - 15 | | Brea | | | REMARKS. | |--------------------------------|--|------|-------|----------------|-----|---|--------|-----------|------|-----|---------|-----------|-----|---| | dean Solar Time,
1882. | from
Sun's Axis. | O | D_1 | 1474 | E | C | Da | 1474
K | F | С | D_3 | 1474
K | F | | | d h m
Sept. 7.23.2
22.41 | 263. 45 }
267. 55 }
283. 15 }
286. 25 } | 72 | 72 | 5 | 72 | 1 | 4 | 1001 | 10 | - | 10 30 | 1 | ? | Tall broken prominence. Broken jet. Whilst being watched at about 25 ^h , o ^m , on the C line, a filament rose from the prominence to the height of 41°. The C line on the southern edge of the prominence was displaced towards the red by o·5 tenth-metre, corresponding to a motion of recession of 14 miles per second. At 25 ^h , 50 ^m , it was very faint, and only 14" in height. | | 22.40 | 297. 45
302. 45 | 55 | 55 | | 55 | 1 | 1 | | 13 | 200 | 1/2 | | 1 | Fine bright tree-like prominence. The entire limb of the Sun was examined once with the slit radial on the C, D ₁ , D ₂ , D ₃ , E, b ₁ , b ₂ , b ₃ , b ₄ , 1474 K, and F lines. | | Nov. 7. 23. 43
23. 58 | 14. 4
64. 54
66. 29 | 29 | 17 | 100 | 177 | 1 | | | I | 1 | 242 242 | | 1 2 | Faint; seen only on the C and D ₃ lines, . The C line on the northern edge of the prominence was displaced towards the red by 1 o tenth-metre, on the southern towards the blue by about ½ tenth-metre, corresponding respectively to a motion of recession of 28 miles per second, and to a motion of approach of 9 miles. The F line appeared most unusually bright. The 1474 K line, the b, D, and E lines, and several others near E, were fuzzy and ill-defined near the limb, but the limb boiled too violently for any short bright lines to be certainly made out. No displacement was now detected on the C line, but the prominence was slowly increasing in height, and the upper portion seemed to be becoming detached from the lower. Long low prominence; no detail; seen only on C and D ₂ . | | 0.1 | 94, 54
161, 54
163, 49 | 1 , | 9 2 | 9 | 2 | | | | 489 | | 1 | 14 12 | | Faint; seen only on C and D ₃ . Bright straight jet. The F line was displaced o'l tenth metre towards the blue, corresponding to a motion of approach of 8 miles per second. Small prominence; seen only on the C and D ₃ lines. The entire limb of the Sun was examined twice with the slit radial on all the lines from B
to F. | OBSERVATION of a SOLAR STORM at Position-Angle (from Sun's Axis) 296° 20' on 1882 May 13. A very remarkable storm took place at the above position-angle from 1^h. 12^m. to 1^h. 15^m., and had evidently been in progress for some time previously. Whilst the spectroscope was being centred on the Sun, about 0^h. 45^m, a short straight jet had been noticed here, some 26" in height. At 1^h. 13^m, there was a prominence divided into three parts, and extending from 294° 32' to 298° 22'. The uppermost part was completely detached, its highest point being 79" from the limb, its lowest 46", its average distance 65". It showed a displacement on the C line of 1·5 tenth-metres towards the red, corresponding to a motion of recession of 43 miles per second. The middle part was on the C line of 1·5 tenth-metres towards the red, corresponding to a motion of recession of 43 miles per second. The middle part was on the C line of 1·5 tenth-metres towards the red, corresponding to a motion of recession of 43 miles per second. The middle part was on the C line of 1·5 tenth-metres towards the red, corresponding to a motion of recession of 45 miles per second. The middle part was on the C line of 1·5 tenth-metres towards the red, corresponding to 298° 22'. The uppermost portion as seen on the C line in the two from 14" to 17" in height, and extending from about 296° 22' to 298° 22'. The uppermost part manner, moving in a diagonal direction along the spectrum, so minutes between 1^h, 13^m, and 1^h, 15^m, developed in the most extraordinary manner, moving in a diagonal direction along the spectrum, so that it was at the same time travelling rapidly towards the red end of the spectrum and away from the Sun's limb, growing fainter and spreading out meanwhile, and becoming diffused at its edges as it extended itself, until at last it reached the line \(\theta\) 6573·5, a displacement of 11·4 tenth-metres, and attained a distance from the limb of 96", having moved through 18" in 2 minutes. By 1^h, 15^m, the entire prominence had disappeared. The uppermost part when first seen at 1^h, 12^m, was very bright, and ext OBSERVATIONS of SPECTRA of SUN SPOTS made at the ROYAL OBSERVATORY, GREENWICH, in the Year 1882. The numeration of the spots is taken from the Photographic Results. The observations were made by Mr. Maunder with the Half-prism Spectroscope mounted on the South-East Equatoreal. With the spectroscope in the direct position, one "half-prism" gives a dispersion of about 18½° from A to H, and two "half-prisms" a dispersion of about 80°. Occasionally the spectroscope was reversed end for end, the slit and eye-piece being interchanged. The spectroscope in this position gives great purity of spectrum. The wave-lengths of the lines observed and the corresponding elements are taken from Angström's Spectre Normal du Soleil. The wave-lengths of lines not given in Angström's map are inferred from the wave-lengths of the neighbouring lines. Lines not given by Angström are distinguished by an asterisk. The amount of broadening is expressed in terms of the normal breadth of the line, #### SPOT No. 718. 1882 April 4. The spectrum showed but little absorption, either general or selective. Not many lines were broadened, and these as a rule but to a slight extent. The "bands" first seen on 1880 November 27 were visible, but were faint. Definition poor. One-prism train direct. Magnifying power 28. The following lines between b and F were observed to be changed over the spot. The C and D lines were also examined. | Wave-
length. | Element. | Amount of Broadening. | Remarks. | Wave-
length. | Element. | Amount of Broadening. | Remarks. | |----------------------------|---|-----------------------------|---|-------------------|----------------|-----------------------|---| | Tenth-
metres. | FINE STATE | | ¥ . | Tenth-
metres. | | | | | 6562.1 | Hydrogen | | C. Not perceptibly
broadened. The edges
of the line were a little
fuzzy over the spot. | 5120'1 | Titanium | (| A "band," 1'o tenth-
metre in breadth, seen
only over the spot, lies
on the more refrangible | | 2882.1 | } Sodium | 1/3 | The D lines. | | | | side of this line. The
line seems to coincide | | 5183°1
5172°2
5166°9 | Magnesium Magnesium Iron and magnesium. | 2. | The b lines. These were very little affected. The edges of the lines were a little fuzzy over the spot. | | | | exactly with one edge
of the "band." If, there-
fore, the "band." is
only the line greatly
broadened, it is displaced | | 5158.6 | Iron
Iron | 1 1 | Displaced towards the red. Displaced towards the red. | | | | towards the blue by | | 5156.5 | | | One of the "bands" of | 5117.8* | } | | Two "bands," each 1'o | | | | | 1880 November 27.
Breadth o 7 tenth-metre. | 2116.0* | 1 | | tenth-metre in breadth,
seen only over the spot. | | 2 | N. 1 1 | | | 5115.0 | Nickel | | Not seen at all over the spot. | | 5155°2
5154°7
5153°2 | Nickel
Sodium | 44-14-1 | | 5112.5* | 3.5 | | Greatly broadened; 1.0
tenth-metre in breadth
over the spot. | | 5152'7
5151'4 | Sodium and copper
Iron | (+-(+-)c-)c | | 5110.0* | | | Greatly broadened; about | | 5150'3 | Iron | ** | Greatly broadened. About o 3 tenth-metre in | 5109.0
5109.0 | Iron | 1
2
2 | breadth over the spot. | | 5147.6 | Iron | 1. | breadth over the spot. | 5105'1 | Iron
Copper | 1 5 | PARTY NAME OF | | 5145.9 | Iron and nickel | 1 5 I | THE RESERVE TO A SECOND | 5103.8 | | 1 | | | 5138.8 | Iron | 1 5 | Marine Street | 2101.0 | | | Greatly broadened; about | | 5138.3* | | | Line about o'2 tenth-
metre in breadth, seen | 100 | | 1377 | o'2 tenth-metre in
breadth over the spot. | | 7.26 | | | only over the spot. | 5099.2 | Nickel | 671 To 1 | | | 5136·9
5136·4* | Iron and nickel | 1 5 | Line about o'2 tenth- | 50g8·3 | Iron | Slightly | A bread band or cluster of | | 5133.1 | Iron | 5 | metre in breadth, seen | 5093.5* | } | | lines, seen only over the spot. | | 5131.0 | Iron | 5 | only over the spot. | 5092.0 | | | A "band," 1 o tenth-metre | | 5128.7 | Titanium
Iron | Very slightly
broadened. | | | | | in breadth, seen only
over the spot. | | 5125.6 | | y sli | Contract of the second | 50go+5 | Iron | 1 5 | | | 5124.5 | Iron
Iron | Very | 10 Lane 15 15 1 | 5089.5*
5087.5 | } | 5 | Three "bands," each 1 o tenth-metre in breadth, | | 5121.5 | Iron | | Mary Street Street | 5085.5* | 1 | .) | seen only over the spot. | | Wave-
length. | Element. | Amount
of
Broadening. | Remarks. | Wave-
length. | Element. | Amount of Broadening. | Remarks. | |--|---|--|--|--|--|--|---| | Tenthmetres. 5083.7 5082.6 5081.9 5076.0 5074.2 5071.8 5070.0 5065.0 5062.6 5061.0 | Iron Iron Iron Iron Iron | Slightly
Slightly
1
1
2
2
2
1 | Four lines, each very faint
and narrow on the
general disk, but o'2
tenth-metre in breadth
over the spot. | Tenth-
metres.
4990'5
4988'5
4984'8
4977'9
4975'9
4975'2
4965'5
4964'8
4961'8 | Iron and titanium Iron Iron Nickel and titanium. Iron Iron | Slightly | | | 5055*g 5055*4* 5054*8* | Iron | | From this line to 2 5055 4 there extends in the spot-spectrum a broad band, apparently made up of a number of fine lines, but which the dispersion employed could not satisfactorily resolve. Another broad band, also apparently made up of | 4956 · 9
4954 · 4
4952 · 2
4952 · 0
4947 · 5
4947 · 5
4938 · 0
4938 · 0
4937 · 4
4936 · 5 | Iron Iron Iron Iron Iron Iron Iron Iron | Slightly | | | 5051°6
5049°5
5048°3
5047°9
5043°5
5041°3
5040°3
5057°7
5035°9
5035°5 | Iron Iron Iron Iron and calcium Iron Titanium Titanium Titanium | | a number of fine lines,
which could not be
satisfactorily isolated. | 4935·2
4933·6
4932·9
4931·3
4929·6
4927·0
4918·3
4913·4
4911·3 | Nickel Barium Iron Iron Iron Iron Iron Iron Iron Iron Iron | Slightly Slightly 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 5035.0
5032.3*
5030.3
5029.1
5027.4
5026.5
5024.2*
5023.8*
5021.9 | Nickel Iron Iron | 1 14 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A line o 6 tenth-metre in breadth, seen only over the spot. | 4904 1
4902 6
4896 5
4896 0
4892 3
4891 0
4890 2
4884 4
4888 1
4886 8
4886 0 | Iron Barium Iron Iron Iron Iron Iron Iron Iron Iron | خباه اخام واه واه واه احتاج اخم اخت | | | 5021 9
5021 3
5019 5
5017 8
5016 8
5013 6*
5014 4
5013 3
5009 0* | Iron (Iron and titanium Nickel Iron Titanium | Slightly? | Very greatly broadened over the spot. | 4884.7
4881.1
4879.2*
4877.6
4875.5
4872.7*
4871.4
4870.6
4869.1*
4867.7
4865.4 | Iron and calcium Iron Iron Iron Iron Iron Iron Iron Iron | Slightly I | Not shown in Fievez's map. | | 5000°7
5003°2
5002°1
4998°9
4997°5
4996°1
4993°4 | Iron Iron Iron Titanium Iron | Single 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 | | 4864.5*
4863.7
4860.7 | Iron
Hydrogen | 5-44-55 | F. Not perceptibly
broadened. The edges
of the line were a little
fuzzy over the spot. | Note.—Ångström's map shows only two of the four lines between λ 5138.8 and λ 5136.4, but Fievez's Spectre Solaire shows all four. Only the two lines given by Ångström, viz., λ 5138.8 and λ 5136.9, could be seen on the general disk, but all four were seen distinctly over the spot, although the dispersion employed was much less than that employed by M. Fievez. This observation was repeated on May 20. #### SPOT No. 729. 1882 April 14. The greater part of the spot showed scarcely any trace of absorption either general or selective, and it was only over the darkest part of the various nuclei that any marked difference in the spectrum could be perceived. The wind was so high and the interval of sunshine was so short that but little could be made out. The spectrum, however, did not differ greatly from that ordinarily shown by Sun-spots. The "bands" were seen to be fairly distinct, and two or three fresh bands near b on the red side were noticed. The spectrum of the largest nucleus gave evidence of an absorption both general and selective rather beyond the average. Most of the lines usually broadened between C and F were affected to a considerable extent. C, F, and the two D lines were broadened by about one-half. All four lines were very diffused at their edges over the spot. The b lines were in a part of the spectrum which was very dark over the spot, and appeared enormously broadened, an appearance probably due not so much to any change in the lines themselves as to the broadening and deepening of many of the fine faint lines in their immediate neighbourhood. The wave-lengths of the "bands" referred to above, and on April 21, are as follows:- Group I.—5120'1, 5117'8, 5116'0. Group II.—5096'4, 5095'3, 5094'2. Group III.—5092'8, 5092'1. Group IV.—5089'5, 5087'5, 5085'5. Group V.—5058'3, 5055'8, 5053'8, 5052'5. #### SPOT No. 729. rase April 21 The two principal nuclei of the spot were examined and their spectra showed much general absorption, but the selective absorption was not at all unusual in character or amount. A large number of lines were broadened, but none to any great extent. The D and b lines were broadened by about one-half, C and F by about one-third, and the E lines by about one-quarter. All these lines had very ill-defined edges over the spot. 1474 K was a little broader and darker, but as sharp as usual. The "bands" could just be detected. No difference was perceived between the two nuclei. The definition was very bad, the Sun being in white haze. One-prism train direct. Magnifying power 28. Position angle of slit 5°. #### SPOT No. 726. 1882 April 21. The general absorption was not so marked as for Spot No. 729; the selective absorption was therefore easier to observe. C and F were about half as broad again as usual; b_1 and b_2 were broader by about one-fourth; b_3 and b_4 were scarcely affected; the D lines were doubled. All these lines were much sharper than in the spectrum of Spot No. 729; whilst the E lines and 1474 K showed much the same appearance as over that spot. The "bands," though not prominent, were more easily seen over the present spot than over Spot No. 729. No displacements were noticed, nor was any difference detected between the spectra of the East and West nuclei. One-prism train direct. Magnifying power 28. Position angle of slit 348° . #### SPOT No. 759. 1882 May 20. Early in the morning it was believed that the spot spectrum showed several marked cases of twisting or displacement; but a more careful examination later on, made under more favourable circumstances, showed that this appearance was entirely due to fresh lines, of which a large number were seen over the spot, which were not distinguishable on the Sun. The "bands" were also strongly marked, and in some instances were traceable to a great distance from the spot. The definition was very variable, usually very bad. The following lines between b and λ 5043 were observed to be changed over the spot. The C and D lines were also examined. Nothing remarkable either as to displacement or great broadening of the lines of the spectrum or as to the appearance of new lines was noticed in the spectrum from λ 5043 to F. | Wave-
length. | Element. | Amount
of
Broadening. | Remarks. | Wave-
length. | Element. | Amount
of
Broadening. | Remarks. | |------------------|--|-----------------------------|--|------------------|--|-----------------------------
--| | Tenth- | | | | Tenth- | | | | | metres. | | | 1000 | metres. | | | | | 6562.1 | Hydrogen | 4 | C. | 5123.3 | Iron | + | | | 5895'1 | Sodium | 1 | D _i . | 5121.3 | Iron | 1 | | | 5889 1 | Sodium | 11 | D. The extension towards | 5120'1 | Titanium | 8 .0 | A "band," o'8 tenth- | | | | | the blue appeared to be | | 10.000 | | metre in breadth, seen | | | | | twice as great as that | | | | only over the spot, lies | | | | | towards the red. | | | | on the more refrangible | | E. 02 | Magazinia | 1 | b ₁ . Very ill-defined over | | | | | | 2183.1 | Magnesium | 4 | | | The second second | | side of this line. The | | - Barrer | March Control of Control | | the spot. | | | | line seems to coincide | | 5172.5 | Magnesium | 1 | b_2 . Very ill-defined over | | | | exactly with one edge | | | | | the spot. | | | | of the "band." If, there | | 5171'2 | Iron | *** | Very much broadened, | | | | fore, the "band" is | | | | | o'3 tenth-metre over | | | | really only the line | | | | | the spot. | | | | greatly broadened, it is | | 5168.5 | Iron and nickel | 1 | b ₅ . Very ill-defined over | | | | displaced towards the | | 0.00 | Tron and money | - 4 | the spot. | | | | blue by o 4 tenth-metre | | = | Trem and | 1 | b4. Very ill-defined over | 5117.8* | 3 | | Two "bands," each o's | | 5166.9 | Iron and | 4 | | | } | | touth motor in boardsh | | | magnesium. | 4 | the spot. | 2110.0 | 1 | | tenth-metre in breadth | | 5164.7 | Iron | 3 | | | | | seen only over the spot. | | 5164'2 | 0.000 | 3 | 100 S 200 S S 10 S T T T | 2112.0 | Nickel | ** | Not visible over the spot. | | 5162.3* | (***) | | A "band," o 8 tenth-metre | 5113.8* | | ** | A "band," o'8 tenth | | | | | in breadth, seen only | | | | metre in breadth, seen | | | | | over the spot. | | | | only over the spot. | | 5161.8 | Iron | 1 5 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5109'9 | Iron | Slightly | The state of s | | | | | A "band," o 6 tenth-metre | 2100.0 | 2000000 | Slightly | | | 5159.6* | (8.8) | ** | | | *** | | Greatly broadened; abou | | | | | in breadth, seen only | 2101,0 | *** | | | | | | | over the spot. | | | | 0.2 tenth-metre in | | 5156.2* | | 12.2 | A "band," o 7 tenth-metre | | 100 | 150 | breadth over the spot. | | | | | in breadth, seen only | 5098.3 | Iron | 1 | | | | | | over the spot. | 5096.5* | | | A broad "band" formed o | | 5153.2 | | Slightly | and the second second | Sales Sales | | 1 2 30 1 | three lines, connected by | | 5152.7 | Sodium and copper | 10 | | 0.00 | | | a dark haze, seen only | | | Iron | | | | | | over the spot, The | | 5151'4 | | 10 | | | > | | centres of the lines have | | 5150.3 | Iron | | A ((1 - 12) and double motion | 10,000 | | | wave-lengths 5096'4 | | 5190.5 | 2.5 | *** | A "band," 1 o tenth-metre | 1.5 | | | | | | | | in breadth, seen only | | | | 5095'3, and 5094" | | | | | over the spot. | 5094.0 | J | | respectively. | | 5147.6 | Iron | 1 | | 5092.8* | 17 | | Two "bands," each o | | 5145.9 | Iron and nickel | 1 | | 5092'1* | 1 | | tenth-metres in breadth | | 5144.6 | | 1 | | 520 | | | seen only over the spot. | | 5142'2 | ** | 1 | | 5090.5 | Iron | 4 | | | | Iron | 1 | The second secon | | | - CO. | Three "bands," each 1 'c | | 5141.8 | ARTON AND AND AND AND AND AND AND AND AND AN | 8 | - William Comments | 5089.5* | 1 | | tenth-metre in breadth | | 5141'4 | Tron | 6 | The second secon | 5087.5 | | 4 4 | seen on the Sun as wel | | 5138'8 | Iron | 4 | Tine about at 2 torth | 5087 5 | | | as over the spot, bu | | 5138'3" | | 7.7 | Line about o'3 tenth- | 5085.5* | , | 0 | much less distinctly. | | | | | metre in breadth, seen | 12752 | No. of the last | 011 1 41 | made sold distinctly. | | | 100 100 100 | 100 | only over the spot. | 5083.4 | | Slightly | 100 100 100 100 100 | | 5136.9 | Iron and nickel | 1/5 | | 5082.6 | Iron | Slightly | 100 | | 5136'4" | | | Line about o'3 tenth- | 5081'9 | | 1 | | | 1 | | | metre in breadth, seen | 5078.0 | Iron | 2 2 | | | | | 1000000 | only over the spot. | 5076.4* | | | Not shown in Fievez' | | 51221- | | I would be | Line about o'i tenth- | | | 1 | map. Seen only ove | | 5133.7* | | ** | metre in breadth, seen | 1 - 1 - 1 - 1 | | BAR BUTTO | the spot, o'2 tenth | | | | 1 2 2 3 | | | | | metre in breadth. | | | | 10 10 10 10 10 | only over the spot. | | 7 | 1 | | | 5133.1 | Iron | | | 5076.0 | Iron | 100 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 5131'0 | Iron | 1000 | | 5074.2 | Iron | - 5 | Very greatly broadened | | 5129'4* | | | Line about o'2 tenth- | 5071'8 | Iron | 1.5 | o.6 tenth-metre i | | 2222 1 | 100% | 1 | metre in breadth, seen | | | Total Control | breadth over the spot. | | | | | only over the spot. | | | The same of the same of | breadth over the spot. | | | Titanium | | | 5068.3 | Iron | 1 | Displaced slightly toward | | EARDAN | | 1 | | 0000 0 | | | the red. Diffused a | | 5128.7 | Take and | | | | | | | | 5126.8 | Iron | 3 | | | | | the edges. | | | Iron | Slightly | | 5066.5 | Iron | 1 2 | the edges. | | Wave-
length, | Element. | Amount
of
Broadening. | Remarks. | Wave-
length. | Element. | Amount of Broadening. | Remarks. | |-----------------------------|-------------------|-----------------------------|--|--------------------------------------|--------------------------|-----------------------|--| | Tenth-
metres,
5064.5 | Iron and titanium | 1/5 | Double line. The two components were not separated by the disper- | Tenth-
metres.
5053.8* | | | Line about o 4 tenth-metre
in breadth, seen only
over the spot.
Line about o 2 tenth-metre | | 5063.2* | | | sion employed. Line about o 2 tenth-metre in breadth, seen only over the spot. A "band," o 7 tenth-metre in breadth, seen only | 5051'1
5049'5
5048'3
5047'9 | Iron
Iron

Iron | 155
210144 | in breadth, seen only
over the spot. | | 5059°9
5058°3* | Iron | 1/2 | over the spot. A "band," o 7 tenth-metre in breadth, seen only over the spot. | 5046.0* | ** | | Line about o 2 tenth-metre
in breadth, seen only
over the spot.
Line about o 1 tenth-metre
in breadth, seen only | | 5055:8* | | | A "band," o 7 tenth-metre
in breadth, seen only
over the spot. | 5044.5*
5043.5
4860.7 | Iron
Hydrogen | Slightly | F. | #### SPOT No. 876. #### 1882 November 8. 22h. The spectrum of this spot was examined in a brief interval of sunlight, but only one or two lines could be observed. The D lines were doubled in breadth, the b lines were broader by one-half, whilst the F line was hardly, if at all, affected. One-prism train direct. Magnifying power 28. Position angle of slit 315°. #### 1882 November 9d. 23h. to 10d. 1h. The group was broken up into a great number of small spots, which proved very difficult to observe on account of their small size. The spectrum could only be mapped from about F to C. One-prism train direct. Magnifying power 28. Position angle of slit 95°. The following lines between λ 4854°9 and λ 4919°9 were observed to be changed over the spot:— | Wave-
length. | Element. | Amount of Broadening. | Remarks. | Wave-
length, | Element. | Amount
of
Broadening. | Remarks. | |--|---|-------------------------------------|----------------------------|---|---|-----------------------------|----------| | Tenth-metres, 4854'9 4859'3 4860'7 4863'7 4865'4 4867'7 4870'6 4871'4 4877'6 4878'0* 4881'1 4883'0 |
Iron and nickel Iron Hydrogen Iron Nickel Cobalt Iron Iron Iron Iron Iron Iron Iron | Slightly Slightly Slightly Slightly | Not shown in Fievez's map. | Tenth-metres. 4884 7 4888 1 4890 2 4891 0 4899 5 4902 6 4904 1 4907 1 4913 4 4916 6 4918 3 4919 9 | Iron and titanium Iron Iron Barium Iron Nickel Iron Iron Iron | Slightly | | #### SPOT No. 885. #### 1882 November 17^d, 23^h, to 18^d, 1^h, The following lines were observed to be reversed, i.e., bright instead of dark, over the principal nucleus of the spot:—C, D₁, D₂, D₃, and F. Of these, C and F were exceedingly bright, particularly F; and this, notwithstanding that the mist enfeebled the blue and violet portions of the spectrum. D₃ was only perceived for a short time, apparently when the mist was lightest, about 23^h 50^m. D₁ and D₂ were not only reversed but extravagantly broadened, each line forming a very broad and ill-defined dark band, quite six tenth-metres in breadth, with a sharp, narrow, bright line in the centre, apparently at the normal place of the line. This appearance and the reversal of D₃ were noticed whenever the definition and light were a little better than usual. The reversal of C and F took place over the bright tongue, which all but divided the largest nucleus of the spot into two nearly equal portions. The reversal of the sodium lines was not noticed at the point where C and F were brightest. The third and fourth lines of hydrogen could not be detected, but the mist made it impossible to observe the extreme ends of the spectrum. The b lines and 1474 K showed no appreciable change. The strong calcium lines between C and D were doubled in breadth. The E lines were less strongly affected, and were, perhaps, one-third as broad again as usual. The general absorption of the spot was small, that is, the continuous spectrum was not so much fainter than that of the general disk as might have been expected. The Sun was not well seen, the day being misty and cloudy. Two-prism train reversed. Magnifying power 28. 1882 November 19d. 23h, to 20d. oh. The spectrum of the principal nucleus was again examined. The general absorption was more marked than on November 18, and more lines were noticed to be broadened. The general absorption was not, however, uniform; here and there, there were broad ill-defined patches, noticeably darker than the rest of the spectrum. The district lying between \(\lambda \) 4850 was one of the most marked of these. The C line was seen reversed right across the great nucleus. D_3 and F were suspected to be reversed, but, owing to the mist, could not be clearly seen as bright lines. D_1 and D_2 also could not be seen as bright lines, but they presented exactly the same appearance as on November 18 at those times when the mist was too dense to permit the reversal to be clearly seen; that is, they were very much broadened, were very ill-defined, and much fainter than usual in the middle. Several other lines, amongst them λ 4957, λ 4920, and λ 4918, closely resembled the D lines. The 1474 K line did not appear to be affected, but one near it, either λ 5301 or λ 5307,—there was not time to properly identify the line, but it was believed to be λ 5307,—vanished over the spot. The calcium and iron lines between C and D were much broadened, and also those near λ 5600 and λ 5856. These were broader by about two-thirds; the E lines were broader by about one-half; the b lines by one-quarter. All these lines were, as a rule, well-defined, that is to say, they did not show the "smudged" appearance seen in the D lines and the three iron lines near F, mentioned above. Two-prism train reversed. Magnifying power 28. The spectroscope was afterwards placed in the direct position, as used for observation of stellar spectra, and only one "half-prism" was employed. With this dispersion, a remarkable reversion of the F line was noticed. At the preceding edge of the great nucleus there was a broad bright flame, which, touching the F line at the extreme preceding edge of the nucleus, sloped away from the nucleus in the preceding direction, and from the F line towards the blue. It was inclined to the F line at an angle of about 40°, was 1, or, perhaps, 1½ tenth-metre in average breadth, and extended to a distance from the F line of 3 or, perhaps, 3½ tenth-metres. It was pointed at each end, and was nearly but not quite straight, being a little twisted near its centre. A displacement of 3½ tenth-metres towards the blue would correspond to a motion of approach of 134 miles per second. Time of observation, November 19d. 23h. 20m. The Sun was not well seen, the day being misty. November 21. The Sun was only seen through fog and was very faint. The spot-spectrum was therefore a dense black band, in which it was very difficult to perceive any details. The C and F lines were reversed over the greater portion of the area of the spot, not, however, over the very darkest part of the principal nucleus, but over all its fainter portions. D₃ and, perhaps, 1474 K seemed to be reversed over the same region. The latter line seemed to be displaced nearly 1 tenth-metre towards the red. The D lines together covered quite 10 tenth-metres, and ran one into the other; they were very ill-defined, and appeared exactly as on November 20. They extended further towards the blue than towards the red; in fact, the broadening seemed traceable twice as far in the first direction as in the second. A very large percentage of the lines between D and F had a similar appearance to that shown by the D lines and the iron lines near F on November 20, i.e., they were very much broader than on the general disk, were very ill-defined, and were much fainter than the corresponding lines on the Sun, especially about their centres. It is therefore probable that a clearer day would have shown them as distinctly reversed, especially as the F line showed precisely the same "smudged" appearance whenever the fog became too thick for it to be seen as a bright line. Group α and the lines at λ 6200 were very much broadened, principally on the side nearer the blue. A momentary gleam of clearer sunlight showed F reversed in the most intricate and beautiful manner right across the great nucleus, not over its entire area, but at short intervals from one side to the other, even over its blackest portion. These stars of brilliant blue light were on the average about twice as broad as the dark F line on the general disk, sometimes four times as broad, and were but little, if at all, displaced. The Sun was in a yellow fog during the whole time of examination. Two-prism train reversed. Magnifying power 28. Measures of Displacement of Lines in the Spectra of Stars, as compared with those of Royal Observatory, Greenwich, Note.—The motion corresponding to the displacement actually observed may be inferred from the Concluded Motion by adding the Earth's Motion algebraically. The "Half-prism" Spectroscope was used throughout. The numerals in the third column denote the number of "Half-prisms" used. Each "Half-prism" is compound, and is composed of a flint "half-prism," (i.e., the half of an isosceles prism, cut by a plane perpendicular to the base,) and a crown prism, cemented on the emergent face, so as to form the half of a direct-vision prism. With one such half-prism, a dispersion of about $18\frac{1}{2}$ ° from A to H, equivalent to that produced by four flint prisms of 60°, is obtained; and with a train of two a dispersion of about 80°, equivalent to that produced by sixteen flint prisms of 60°. The dispersions have been inferred from measurements of the distance between b_1 and b_4 as compared with the wave-length measure. | Date, 1882, | | Number | | | | Disp | lacement. | Width | |-----------------------------|-----------|------------------------|---------------------------|---------------------------------|-------------------------|-----------|---|-------------| | Greenwich
Sidereal Time. | Observer. | of
Half-
Prisms. | of
Position
Circle. | Objects compared. | Micrometer
Readings. | Measured. | Estimated in Terms
of the Breadth of the
Comparison Line. | of
Slit. | | d h m | | | 0 | 25.02. 14.050 | r | * | | r | | Feb. 10. 5. 0 | M | 1 | 6 | γ Orionis F | 0.309 | + 0.103 | ½ towards red | 0.162 | | 5. 35
6. o | ,, | ,, | ,, | γ Orionis F
H β | o:379
o:293
o:335 | + 0.086 | g towards red | 0.162 | | 0. 0 | ,, | ,, | ,, | γ Orionis F
H β | 0.285 | + 0.020 | 1/4 towards red | 0.162 | | Feb. 10. 6.10 | м | 1 | 6 | β Tauri F | 0.298 | - o.oeo | 3 towards blue | 0.16 | | 6, 25 | ,, | | | β Tauri F | o:358
o:268 | - 0.000 | 3 towards blue | 0.10: | | | 2.2 | ,, | ,, | Ηβ | o·353 | — o·o85 | } towards blue | 0.16 | | 6. 40 | ,, | ,, | ,, | β Tauri F | o·346
o·372 | - 0.026 | 1 towards blue | 0.16 | | eb. 10. 7. 0 | M | 1 | 6 | Sirius F | 0*234 | | | - | | | | | | Η β | 0.222 | + 0.000 | 1 towards red | 0.16 | | | 1.3 | 3.3 | ,,, | Sirius F | 0.532 | + 0.028 | 1 towards red | 0'16 | | | 3.3 | ,, | ,, | Sirius F | 0.596 | | | | | | | | 1-12 | Η β | 0.224 | + 0.045 | 1/6 towards red | 0.19 | | | ,, | ,,, | .,, | Η β | 0.242 | + 0.056 | 1 towards red | 0'16 | | | 1.2 | 2.2 | 2.2 | Sirius F | 0.300 | 1 2016 | 1 towards red | 0.16 | | 8. 0 | ,, | | .,, | H 3 | 0.254 | + 0.046 | W 2000 | 0.10. | | | ,, | 9.9 | ,,, | Η β | 0.332 | - 0.034 | 1 towards blue | 0.19 | | Peb. 10. 8.50 | M | 1 | 6 | Procyon F | o·568 | | 9 | | | | 1 | Par | | $H \beta \dots Procyon F \dots$ | 0.429 | + 0.138 | ² / ₃ towards red | 0.19 | | 9. 0 | ,, | 7.7 | ,, | Η β | 0.430 | + 0.032 | ½ towards red | 0.16 | | Feb. 10. 9.20 | м | 1 | 6 | Castor F | 0.263 | The same | | | | | | | | H β | 0.346 | + 0.012 | 1 towards red | 0.19 | | | " | 9.9 | 1,7 | Castor F | 0.397 | + 0.144 | 2 towards red | 0.16 | | | ,, | ,, | ,, | Castor F |
0.412 | 1 0111 | å towards red | 0.16 | | 0.45 | | | - | Η β | 0.364 | + 0.140 | g towards red | 0.10 | | 9.45 | 9.2 | ,, | 3.3 | Η β | 0.524 | + 0.001 | % towards red | 0.16 | TERRESTEIAL ELEMENTS, and CONCLUDED MOTIONS in the Line of Sight, from Observations at the in the Year 1882. 1^{rev.} of the micrometer corresponds, with one "half-prism" to 1°03 tenth-metres or 372 miles per second for the b lines, and to 7°99 tenth-metres or 307 miles per second for the F line; and with two "half-prisms" to 2°0 tenth-metres or 73 miles per second for b and to 1°67 tenth-metres or 64 miles per second for F. 1 rev. of the screw for opening the slit corresponds to 0.01 inch, or about 10". The slit lies north and south when the reading of the Position-Circle is 6°. The estimations of the displacements have been made by indirect comparison with the comparison-line, except where the contrary is expressly stated. | Earth's
Motion in
Miles per | Concluded M
in Miles p | otion of Star
er Second. | REMARKS. | |-----------------------------------|---------------------------|-----------------------------|---| | Second. | Measured. | Estimated. | | | +16.0 | + 15.4 | + 11.9 | Star-line and spectrum faint. Light cloud interfered with the observations. Hence the measures were made with great difficulty. | | +16.0 | - 0.6 | - 2.1 | | | +16.4 | - 34.9 | - 33.1 | Definition good. Direct comparison showed an unmistakeable but small displacement towards the blue. | | +16.4 | - 42.6 | — 38·7 | | | +16.4 | - 24.4 | - 22.0 | | | + 9.3 | - 6.6 | - 3.8 | Repeated and careful direct comparisons failed to show any decided displacement at all. If there was any it was towards the red, in accordance with the measures. Direct comparison is, however, difficult when the amount of displacement is small. The clock | | + 9.3 | + 8.6 | + 4.6 | drove badly at the time of the last measure, rendering it doubtful. The second and three following measures seemed good. | | + 9.3 | + 3.6 | + 1.0 | | | + 9.3 | - 1:3 | - 3.8 | | | + 9.3 | + 4.9 | + 1.0 | | | + 9.3 | - 19.8 | - 20.5 | | | + 8.5 | + 34.3 | + 28.7 | Definition good. | | + 8.5 | + 20.8 | + 19'4 | | | +10:3 | - 5·o | - 4.7 | Star-line broad and ill-defined. Spectrum faint. Definition good for last measure. | | +10.3 | + 34.1 | + 26.9 | | | +10.3 | + 32.9 | + 26.9 | | | +10.3 | + 17.8 | + 12'0 | | | | | | | | Date, 1882, | | | Reading | | | Disp | placement. | Width | |-----------------------------|-----------|------------------------|---------------------------|-------------------------------------|-------------------------|----------------------|---|-------------| | Greenwich
Sidereal Time. | Observer. | of
Half-
Prisms. | of
Position
Circle. | Objects compared. | Micrometer
Readings. | Measured. | Estimated in Terms of the Breadth of the Comparison Line. | of
Slit. | | d h m | | | 110 | | r | T TE | | r | | Feb. 10. 9.55 | M | 1 | 6 | Pollux F | 0°188
0°242 | - 0.024 | ½ towards blue | 0.162 | | | 2.3 | ,, | " | H β
Pollux F | 0.538 | - 0.013 | Coincident | 0.162 | | 10.10 | 7.2 | 3.3 | 17 | Η β | 0'240 | + 0.028 | 1 towards red | 0.162 | | 10.10 | 2.3 | ,, | ,, | Pollux F | 0.166 | - o.oz8 | 1 towards blue | 0.162 | | Feb. 11. 0. 0 | M | 1 | 6 | Sky F
Η β | o:398
o:372 | + 0.026 | | 0.162 | | | ,, | ,, . | ,, | Sky F | 0.381 | | 200 | 324 | | | | ,, | ,, | Hβ
Sky F | 0.348 | + 0.010 | 1010-1114 | 0.162 | | | ,, | ,, | ,, | Η β
Sky F | o·368
o·384 | - 0'020 | 100 | 0'165 | | | 33 | ,, | ,, | Η β | o:388
o:378 | - 0'004 | | 0.162 | | | | | | Η β | 0.370 | + 0.008 | | 0.162 | | Mar. 14. 0. 0 | м | 1 | 5 | Sky F | 0.763 | | | 4 | | | 2.2 | 22 | ,, | H β
Sky F | 0.762 | + 0,001 | Coincident | 0'144 | | | ,, | ,, | 33 | Η β
Sky F | 0.428 | + 0.030 | Coincident | 0,144 | | | ,, | ,, | ,, | Η β | oʻ768
oʻ790 | + 0.010 | Coincident | 0.144 | | | ,, | ,, | ,, | Hβ
Sky F | oʻ793
oʻ775 | - 0.003 | Coincident | 0.144 | | | | | | Η β | 0.769 | + 0.000 | Coincident | 0,144 | | Mar. 14. 7.30 | M | 1 | 5 | Sirius F | 0.621 | | | | | 7. 45 | 3.7 | ,, | ,, | $H \beta \dots$
Sirius $F \dots$ | o·562
o·596 | + 0.059 | ½ towards red | 0'144 | | 7.55 | 2.2 | ,, | ,, | Η β | o·543
o·598 | + 0.023 | 1/3 towards red | 0.144 | | 8. 5 | ,, | ,, | ,, | Η β | o·536
o·582 | + 0.065 | 1/3 towards red | 0.144 | | 8. 15 | | | | Η β | o·548
o·531 | + 0.034 | ½ towards red | 0.144 | | 0,10 | 2.2 | ,, | ,, | Η β | 0.206 | + 0.025 | 1 towards red | 0.144 | | Mar. 14. 8.35 | M | 1 | 5 | γ Geminorum F | 0.398 | Page 1 | | ., . | | 8.45 | 2.2 | ,, | ,, | β | o·436
o·488 | - 0.038 | 1 towards blue | 0.144 | | g. o | 3.3 | ,, | ,,, | H β | 0°452
0°373 | + 0.036 | ½ towards red | 0.144 | | | | 1 | | Нβ | 0.443 | - o [.] 070 | 1 towards blue | 0'144 | | 9.10 | , , | ,, | ,, | γ Geminorum F
H β | 0.412 | - o·o37 | ½ towards blue | 0.14 | | Mar. 14. 9. 20 | M | 1 | 5 | Procyon F | 0.696 | | | | | 9. 25 | ,, | ,, | ,, | $H \beta \dots Procyon F \dots$ | 0.648
0.782 | + 0.048 | 1 towards red | 0.144 | | 9.35 | ,, | ,, | ,, | $H \beta \dots Procyon F \dots$ | o.686
o.418 | + 0.096 | ½ towards red | 0.144 | | 9.45 | 23 | ,, | 3.3 | Hβ
Procyon F | o:663
o:698 | + 0.055 | ½ towards red | 0.144 | | 3.10 | 1 | (2.2) | 1 30 | Ηβ | 0.654 | + 0'044 | 1/4 towards red | 0'144 | | | Earth's
Motion in
Miles per | Concluded M
in Miles p | fotion of Star
er Second. | REMARKS. | |--|--------------------------------------|---|-----------------------------------|--| | | Second. | Measured. | Estimated. | | | | + 9·3
+ 9·3
+ 9·3 | - 26°0
- 13°0
- 0°7 | - 20·5
- 9·3
- 3·7 | Definition good but spectrum and lines faint. | | | + 9:3 | + 8.0
+ 3.1
- 6.2
- 1.2
+ 2.5 | - 14'9 | The faintness of the hydrogen spectrum rendered direct comparison absolutely impossible and made fair and trustworthy measures difficult. There was, however, no sign of any displacement. The hydrogen spectrum was very well defined though faint. | | | | + 0·3 + 9·2 + 3·1 - 0·9 + 1·8 | | | | | + 13.6
+ 13.6
+ 13.6
+ 13.6 | + 4.5
+ 2.7
+ 5.4
- 3.2
- 5.9 | + 11.2
+ 11.3
- 3.0 | Line well seen though the spectrum was tremulous. Direct comparison showed a small but distinct displacement towards the red. | | | + 18.0
+ 18.0
+ 18.0 | - 29°7 - 6°9 - 39°5 - 29°4 | - 32·9 - 7·4 - 36·6 - 32·9 | | | TO STATE OF THE PARTY PA | + 15·5
+ 15·5
+ 15·5 | - 0.8
+ 14.0
+ 1.4
- 2.0 | + 3·1
+ 21·7
+ 9·3
+ 3·1 | Definition fair. | | Date, 1882, | | Number | Reading | | 3.0 | Disp | lacement. | Width | |-----------------------------|-----------|------------------------|---------------------|--|-------------------------|-----------|---|-------------| | Greenwich
Sidereal Time, | Observer. | of
Half-
Prisms. | of Position Circle. | Objects compared. | Micrometer
Readings. | Measured. | Estimated in Terms of the Breadth of the Comparison Line. | of
Slit. | | d h m | | | | | | r | | r | | Mar. 14. 10. 0 | M | 1 | 5 | Castor F $H \beta$ | 0°525
0°413 | + 0.115 | 3 towards red | 0.144 | | 10.10 | ,, | ,, | " | Castor F | 0.212 | + 0.096 | 3 towards red | 0.144 | | 10. 25 | ,, | ,, | ,, | Castor F | o·436
o·398
 + 0.038 | ½ towards red | 0.14 | | Mar. 14. 10. 40 | M | 1 | 5 | Pollux F | o·343
o·415 | - 0'072 | 1 towards blue | 0'144 | | , 10.55 | 2.2 | ,, | ,, | $H \beta$ | 0°324
0°408 | - 0.084 | 2 towards blue | 0.14 | | Apr. 5. 9.55 | M | 1 | 6 | Sirius F | 0'942 | | 3 towards and | | | 10.10 | ,, | 2.2 | ,, | $H \beta \dots \dots$
Sirius $F \dots$ | o:825
o:898 | + 0.112 | 3 towards red | 0,12 | | 10.20 | ,, | ,, | ,, | H β | 0.821 | + 0'077 | § towards red | 0,12 | | | | | | Η β | 0'798 | + 0.020 | 1 towards red | 0,12 | | Apr. 5. 10. 35 | M | 1 | 6 | Procyon F
H β | 0.955
0.825 | + 0.130 | 3 towards red | 0.12 | | 10.50 | 2.2 | 2.2 | * * * | Procyon F | 0.816
0.816 | + 0.106 | ½ towards red | 0.12 | | Apr. 5.11. 0 | м | 1 | 6 | Castor F | 0°906
0°776 | + 0.130 | 3 towards red | 0.12 | | 11. 15 | 3.7 | . , , | , ,, | Castor F | 0°943
0°809 | + 0.134 | 3 towards red | 0.12 | | Apr. 6. 0. 0 | М | 1 | 6 | Sky F | o·453
o·572 | - 0.110 | 1 | 0.12 | | | ,, | >> | ,, | Sky F | 0°429
0°484 | - o·o55 | 1 13 23 17 | 0.12 | | | ,, | ,, | ,, | Sky F | o·548
o·500 | + 0.048 | 1.0115 | 0.12 | | | ,, | ,, | ,, | Sky F | o·508
o·443 | + 0.062 | | 0.12 | | | ,, | ,, | ,, | Η β | 0°448
0°450 | - 0'002 | | 0.12 | | Apr. 8. 9.30 | м | 1 | 6 | Sirius F
Η β | 0°249
0°188 | + 0.061 | ½ towards red | 0.51 | | 9.40 | ,, | ,, | ,, | Sirius F
Η β | 0'251 | + 0.064 | 3 towards red | 0'21 | | 9.45 | 2.2 | ,, | ,, | Sirius F | 0.510 | | towards red | 0'21 | | 9. 55 | ,, | ,, | ,, | H β
Sirius F | 0.177 | + 0'042 | | | | 10. 5 | 2.3 | ,, | ,,, | H β
Sirius F | 0°172
0°242 | + 0.124 | 3 towards red | 0'21 | | 10. 15 | 111 | ,, | ,, | H β | 0.243 | + 0.022 | 1 towards red | 0.51 | | | | | | Ηβ | 0.184 | + 0.026 | 3 towards red | 0'21 | | Apr. 8. 10, 35 | M | 1 | 6 | θ Leonis F θ Leonis F θ | 0.828
0.810
0.838 | + 0.018 | Coincident. | 0'21 | | 10.45 | ,, | 27 | ,, | Ηβ | 0.814 | + 0'024 | 1 towards red | 0.51 | | 10.55 | 2.3 | 2.2 | 22 | θ Leonis F
Η β | o'908
o'788 | + 0.130 | 1 towards red | 0.31 | | | Earth's
Motion in
Miles per | Concluded M
in Miles pe | | REMARKS. | |----|-----------------------------------|----------------------------|------------------|--| | | Second. | Measured. | Estimated. | | | | | | | Definition fair. | | | + 16.7 | + 17.7 | + 27.9 | Definition fair, | | | + 16.7 | + 12.8 | + 27.9 | | | | + 16.7 | - 5:0 | - 1.8 | | | | | 20 | | | | | + 16.3 | - 38.4 | - 46.0
- 41.1 | | | - | + 16.3 | - 42.1 | | | | | + 14'1 | + 21.8 | + 28.3 | Spectrum very tremulous. Direct comparison showed little or no displacement. | | | + 14.1 | + 9.6 | + 14.2 | | | | + 14.1 | + 1.3 | + 3.6 | | | | + 17'4 | + 22.5 | + 25.0 | Spectrum fairly steady but faint for a star of this magnitude. | | 1 | + 17'4 | + 15.2 | + 17.9 | | | - | | | | Spectrum rather faint but steady, and definition fair. | | | + 18.0 | + 21'9 | + 24.4 | | | - | + 18.0 | + 23.2 | + 24.4 | | | | | — 36·6 | | | | | | - 16.9 | | | | | | + 14.7 | | | | | | + 20.0 | | | | | | - 0.6 | | | | 9. | + 14.0 | + 4.7 | + 4.7 | Spectrum very tremulous but star-line very distinctly seen and easy to bisect. Direct comparison showed a small displacement towards the red, just enough to be clearly | | | + 14.0 | + 5.7 | + 8.4 | made out. The last two measures were not made under such good circumstances as the first four. | | | + 14.0 | - 1.8 | - 4.0 | | | | + 14.0 | + 34.2 | + 30.8 | | | | + 14.0 | + 2'9 | + 4.7 | | | | + 14.0 | + 3.3 | + 8.0 | | | | + 10.0 | - 5.4 | - 10.0 | Spectrum faint. Star-line broad but faint. | | | + 10.0 | - 3.5 | - 3.5 | | | | + 10.0 | + 26.0 | + 26.4 | | | | | | | | | Date, 1882, | | Number | 16 | | | Dis | placement. | Width | |-----------------------------|-----------|------------------------|---------------------------|----------------------------|-------------------------|------------|---|-------------| | Greenwich
Sidereal Time. | Observer. | of
Half-
Prisms. | of
Position
Circle. | Objects compared. | Micrometer
Readings. | Measured. | Estimated in Terms
of the Breadth of the
Comparison Line. | of
Slit. | | d h m | 100 | | 0 | | | r | | 2 | | Apr. 8.11.20 | M | 1 | 6 | ð Leonis F | 0.376 | | 24-2-11 | | | 11.30 | - | | | H β | 0.468 | — o'og2 | 3 towards blue | 0.51 | | | ,, | ,, | 3.5 | Ηβ | 0.482 | - 0.063 | 1/4 towards blue | 0'21 | | Apr. 8. 11. 45 | м | 1 | 6 | Spica F | 1,108 | | | | | 11.55 | 1.7 | | | Η β | 1.099 | + 0.000 | Coincident. | 0'21 | | 11, 55 | 2.7 | 3.2 | 13: | Spica F | 0.993 | - 0.075 | 3 towards blue | 0'21 | | 12. 5 | 33 | 2.2 | ,, | Spica F | 0.978 | 1000000000 | | | | 12. 15 | ,, | | P 330 | Η β | 0.952 | - 0.110 | 3 towards blue | 0.51 | | | 3.9 | 3.3 | " | Η β | 1.063 | - 0.111 | ½ towards blue | 0.51 | | Apr. 8.12.30 | м | 1 | 6 | α Coronæ F | 0.861 | The gard | | | | 12.40 | | 1 | | Η β | 0.826 | + 0.032 | ½ towards red | 0'210 | | 12.40 | ,, | ,, | 33 | α Coronæ F
Η β | 0.821 | + 0.056 | 1 towards red | 0'210 | | June 12. 15. 50 | м | 1 | 2 | Arcturus F | 0.546 | | | | | | | | | Ηβ | 0.598 | — oʻo52 | 1 towards blue | 0.300 | | 16. 10 | 3.3 | ,, | ,, | Arcturus F
Η β | 0.248 | - 0.060 | 1 towards blue | 0.300 | | June 12. 16. 35 | м | 1 | 2 | V management of the second | | | *********** | | | | - | - | 4 | β Libræ F | 0.334 | - 0'122 | 3 towards blue | 0.300 | | 17. 0 | 2.7 | ,, | 2.2 | β Libræ F | 0.434 | | 11. 111 | | | | | | | Η β | 0'492 | — o.o28 | 1/8 towards blue | 0,500 | | June 14. 16. 15 | м | 1 | 2 | a Coronse F | 0.882 | / | | | | 16. 20 | ,,, | ,, | ,, | Hβ
α Coronæ F | o.808 | + 0.514 | 1 towards red | 0'200 | | 16.30 | | | | Ηβ | 0.676 | + 0'232 | 1 towards red | 0.500 | | | . , , | " | ,, | a Coronæ F
Η β | 0.702 | + 0.042 | 1 towards red | 0'200 | | 16.35 | 3.3 | 22 | ,,, | a Coronæ F | 0.814 | | | | | | | | | Η β | 0.652 | + 0.165 | 2 towards red | 0'200 | | June 14. 16. 50 | м. | 1 | 2 | α Ophiuchi F | 0.845 | | *************************************** | | | 16.55 | ,, | ,, | ,, | Hβ
α Ophiuchi F | 0'732 | + 0.113 | ½ towards red | 0'200 | | | 1000 | *** | | H 8 | 0.821 | + 0'142 | 2 towards red | 0.300 | | 17. 0 | ,, | 2.2 | ,, | α Ophiuchi F | 0°908
0°795 | + 0.113 | l towards red | 0.300 | | 17.10 | ,, | ,, | ,, | α Ophiuchi F | 0.769 | 7 0113 | g towards red | 0 200 | | | | | | Η β | 0.735 | + 0.034 | ‡ towards red | 0.500 | | June 14. 17. 25 | M | 1 | 2 | α Lyræ F | 0.552 | | | | | 17. 35 | Hara . | | 100 | Hβ
α Lyræ F | 0.617 | - 0.065 | 1 towards blue | 0.500 | | 7,00 | 2, | ,, | ,, | Η β | 0.423 | - 0.128 | 2/3 towards blue | 0'200 | | June 14. 17. 50 | м. | 1 | 2 | α Aquilæ F | 0.488 | | | | | M 12 | | 106 | 020 | Η β | 0.536 | - 0.048 | towards blue | 0'200 | | 18. 0 | 7.3 | ,, | ,, | α Aquilæ F | o*468
o*552 | - 0.084 | 1 towards blue | 0.500 | | 18. 15 | 2.2 | ,, | ,, | «Aquilæ F | 0.477 | - 0 004 | 3 towards blue | 0 200 | | 18.30 | | 100 | | Hβ | 0.242 | - 0.065 | 1 towards blue | 0.500 | | 10100 | 3.3 | ,, | " | α Aquilæ F | 0.348 | - 0'212 | ı towards blue | 0.300 | | | Earth's
Motion in
Miles per | Concluded M
in Miles p | lotion of Star
er Second. | REMARKS. | |-----|-----------------------------------|---------------------------|--|---| | | Second. | Measured. | Estimated. | | | | | | 17/4 | C | | | +11.3 | - 39·5 | - 41.1 | Spectrum fairly well defined and steady. | | - 1 | +11.2 | - 30.6 | - 29'9 | | | | | | | Spectrum bright but somewhat tremulous. Star-line faint and not well defined. | | | - 0.1 | + 5.9 | + 0.1 | | | | - 0.1 | - 22.9 | - 22:3 | | | | - 0.1 | - 30.6 | - 29.8 | | | | - 0.1 | - 34.0 | - 37.2 | | | | - 4.8 | + 15.6 | + 19.7 | Star-line dark. Spectrum faint. Definition poor. | | | - 4.8 | + 22.0 | + 23.5 | | | | | | | Star-line somewhat faint but sharp and well defined. | | | +13.5 | - 29.1 | - 28.6 | | | | +13.3 | - 31.6 | - 28.6 | | | | + 9.9 | - 47.3 | - 46.9 | Star-line broad. Spectrum very faint. | | | + 9'9 | - 27.7 | - 3o·5 | | | | | | | Definition good. | | | + 8.7 | + 57.0 | + 53.0 | | | | + 8.4 | + 62.5 | + 53.0 | | | | + 8.4 | + 4.3 | + 3.6 | | | | + 8.7 | + 41.0 | + 32.4 | | | | - o.8 | + 35.5 | + 31.6 | Definition fair. Star-line broad and nebulous. | | 1 | - o.8 | + 44*4 | + 41.9 | | | | - 0.8 | + 35.5 | + 31.6 | | | | - 0.8 | + 11.2 | + 9.6 | | | | _ 00 | | | The position for observing was very uncomfortable. The measures would otherwise have | | | - 2.9 | - 17.0 | - 17.6 | been much easier to make and probably more accordant. Definition good. | | - | - 2.9 | - 36·3 | - 38.2 | | | | - 9.2 | - 5·5 | 2:1 37 t min an astronom of hydrogen was compared with | Definition very good. Last measure rough, being made rather hastily. Note.—The spectrum of hydrogen was compared with the sky spectrum on June 16, and | | | - 9'2 | - 16.6 | - 11.3 | the H \(\text{\beta}\) in seemed to be perfectly coincident with the \(\text{F}\) line of the sky spectrum. The adjustments of the spectroscope had remained unchanged from June 12. | | | - 9'2 | - 10.7 | - 6.3 | | | | - 9.5 | - 55.8 | - 52.5 | | | | | | | | | Date, 1882, | 123 | Number | - | 100000000000000000000000000000000000000 | | Disp | Width | | |-----------------------------|-----------|------------------|---------------------------|---|----------------------------------|--------------------|---|-------------| | Greenwich
Sidercal Time. | Observer. | Half-
Prisms. | of
Position
Circle. |
Objects compared. | Micrometer
Readings. | Measured. | Estimated in Terms
of the Breadth of the
Comparison Line. | of
Slit. | | d h m
July 10, 18, 0 | M | 1 | 0 | - Onkinski E | 2 | | Toronto Si | | | 18. 20 | ,, | " | 9 | α Ophiuchi F | 0.320
1.031
0.318
1.043 | - 0'101
- 0'124 | 1 towards blue
2 towards blue | 0.588 | | July 12.17.15 | M | 1 | 9 | α Aquilæ F | 0.923 | - o'og6 | 1 towards blue | 0.380 | | 17, 30 | ,, | 33 | ,, | α Aquilæ F | 0'889
1'027 | - 1.038 | ½ towards blue | 0.580 | | July 15. 18. 25 | M | 1 | 9 | a Cygni F | 0.380 | | I towards bloo | | | 18, 55 | ,, | 5.5 | 9.9 | H β | o:536
o:492
o:558 | - 0.066 | ½ towards blue | 0.580 | | July 24. 19. 25 | м | 1 | 9 | β Cassiopeiæ F | o·673
o·648 | + 0.025 | , towards red | 0.580 | | 19.40 | .,, | ,, | ,, | β Cassiopeiæ F H β | 0.436 | + 0'124 | 1 towards red | 0,580 | | July 24. 20. 0 | м | 1 | 9 | α Pegasi F | 0.182 | | 1/2 towards blue | | | 20. 15 | ,, | ,, | ,, | α Pegasi F
H β | 0°324
0°337
0°370 | - 0.132
- 0.033 | 1 towards blue | 0.580 | | July 29. 18. 30 | м | 1 | 5 | α Lyræ F
Hβ | 0.572 | | 14 | | | 18. 45 | " | ,, | ** | α Lyræ F.
H β | 0.698
0.566
0.692 | - 0.136
- 0.136 | ½ towards blue | 0.222 | | July 29.19. 0 | м | 1 | 5 | Moon F | 0'253 | | | | | 19. 5 | > > | ,, | ,, | Ή β | 0°256
0°269
0°264 | - 0.003
+ 0.002 | | 0.227 | | 19. 10 | 9.9 | ,, | ,, | Moon F
Η β | 0.216 | - o o o 38 | | 0.227 | | 19. 15 | ,, | ,, | ,, | Moon F
Η β | 0.898 | - 0.014 | | 0.552 | | 19.20 | ,, | , | " | Moon F
Η β | 0.80g | + 0'002 | | 0:227 | | Aug. 2.19. 0 | М | 1 | 5 | α Aquilæ F H β | o.249
o.476 | + 0.013 | % towards red | 0,110 | | 19. 15 | 2.2 | ,, | ,, | α Aquilæ F H β | o:498
o:467 | + 0.031 | 1 towards red | 0.110 | | Aug. 2. 20. 15 | м | 1 | 5 | ζ Aquilæ F
Η β | o*258
o*338 | - 0.080 | - towards blue | 0,110 | | 20.40 | ,, | ,, | 3.3 | ζ Áquilæ F
Η β | o:388
o:373 | + 0'015 | 1 towards red | 0,110 | | Aug. 2.21.15 | м | 1 | 5 | α Delphini F
Hβ | 0'142
0'224 | - oʻo82 | 3 towards blue | | | 21.35 | ,, | ,, | " | α Delphini F
H β | 0.532 | + 0.002 | Coincident | 0.110 | | Aug. 2.21.50 | м | 1 | 5 | α Pegasi F
H β | 0.219 | - 01103 | 1 towards blue | | | 22. 0 | . ,, | 22 | ,, | α Pegasi F
H β | o-828
o-855 | - 0.103 | ½ towards blue | 0.110 | | | Earth's
Motion in
Miles per | | | DEMARKS | |-------------------|-----------------------------------|-----------|------------|---| | The second second | Second. | Measured. | Estimated. | REMARKS. | | | | | | Definition good but spectrum faint. | | ı | + 6.7 | - 37.7 | - 41.7 | | | | + 6.7 | - 44.8 | - 48.6 | | | | - 2.6 | — 26·9 | - 32.4 | Spectrum faint. Clouds forming. Line not so well seen in the second as in the first observation. | | | - 2.6 | - 3g·8 | - 49'9 | | | | _ 5.8 | - 42.0 | - 46.7 | Definition variable. Spectrum bright. | | | - 5.8 | - 14'4 | - 15.2 | | | | - 11'2 | + 18.9 | + 21.7 | Cloud passing. Observation difficult and unsatisfactory. | | | - 11.3 | + 49.3 | + 46.2 | | | | - 12.8 | - 29*4 | - 39.7 | Cloud passing. Observation difficult and unsatisfactory. Note.—The spectrum of hydrogen was compared with the sky spectrum on July 27; the H β line seemed to be perfectly coincident with the F line of the sky spectrum. The | | | - 12.8 | + 2.7 | + 2.3 | adjustments of the spectroscope had remained unchanged from July 10. | | | + 3:3 | - 42'0 | - 45·o | Spectrum faint for so bright a star, but fairly steady. | | | + 3.3 | - 42.0 | - 45.0 | | | | | - 0.9 | | Coincidence appeared perfect. Moon spectrum faint. Definition fair. | | | 100 | + 1.5 | 32 - | | | | | - 11.7 | 5 | | | | 1000 | - 4.3 | 2 - 1 | | | | | + 0.6 | | | | | 4- 2.8 | + 19'6 | + 23.2 | Definition good, | | | + 2.8 | + 6.7 | + 10.2 | Definition good. | | | | | 1000 | Spectrum so faint that bisection of the line was all but impossible. The definition of the | | | + 5.5 | — 3o·o | - 31·5 | star-line was, however, good and the spectrum steady. | | | + 5.5 | - 0.9 | + 1.0 | | | 9 | - 14 | - 23.8 | - 24.6 | Spectrum so faint that bisection of the line was almost impossible. The definition of the star-line was, however, good and the spectrum steady. | | | - 14 | + 2.0 | + 1.4 | | | | - 1111 | - 20.5 | - 21.4 | Definition good. Spectrum steady and not too faint for work. | | | - 11.1 | + 2.8 | + 1.8 | | | | | | | | | Date, 1882,
Greenwich
Sidercal Time. | Observer. | Number
of
Half-
Prisms. | Reading of Position Circle. | Objects compared. | Micrometer
Readings. | Displacement. | | Width | |--|-----------|----------------------------------|-----------------------------|--|-------------------------|---------------|---|-------------| | | | | | | | Mensured. | Estimated in Terms
of the Breadth of the
Comparison Line. | of
Slit. | | d h m | | | 9 | | | | | | | Aug. 2. 22. 10 | M | 1 | 5 | Moon F | 0.038 | + 0.034 | 1 100000 | 0'119 | | | ,, | 23 | 1.7 | Η β
Moon F | 0.867 | | | | | | ,, | -,, | ,, | Η β
Moon F | 0.888 | - 0.031 | | 0,118 | | | | | - 3 | Ηβ | 0.800 | - 0.013 | 100000000000000000000000000000000000000 | 0,110 | | | 33 | 3.3 | 1, | Moon F | 0.888 | + 0.013 | | 0.110 | | 22.30 | ,, | ,, | 1,7 | Moon F
Η β | 0.962 | + 0.030 | | 0.110 | | Aug. 4.21.50 | м | 1 | 5 | α Lyræ F | 0.213 | | | | | 21.55 | 33 | ,, | 11 | Η β | o·599
o·456 | - o.o86 | § towards blue | 0.133 | | | 118 | | | Η β | 0.568 | - 0.113 | 1 towards blue | 0.133 | | Aug. 4. 22. 25 | M | 1 | 5 | α Cygni F | o.484
o.885 | - 0'095 | 1 towards blue | 0'133 | | 22.30 | 22 | ,, | 9.9 | α Cygni F | o:865 | | - | 100000 | | | | | | Η β | 0.005 | - 0.037 | ‡ towards blue | 0.133 | | Aug. 4. 22. 40 | N | 1 | 5 | α Cygni F | 0.817 | - 0.079 | 1 towards blue | 0.133 | | 22.50 | 7.2 | 3.3 | 2.2 | α Cygni F | 0.839 | - 0.020 | towards blue | 551151515 | | Aug. 8, 19, 30 | M | 1 | 5 | $H \beta \dots \dots$ Arcturus b_1, \dots | 0.112 | - 0.030 | 8 towards blue | 0.133 | | 19.45 | | - | | Mg ₁ | 0.300 | - o·185 | 1/3 towards blue | 0.121 | | 19.40 | ,, | 3.3 | 33 | $Mg_1 \dots Mg_1 \dots$ | 0.220 | - 0.034 | ½ towards blue | 0.171 | | Aug. 8. 20. 0 | N | 1 | 5 | Arcturus $b_1 \dots \dots$ $Mg_1 \dots \dots$ | 0'172 | - 0'107 | 1/3 towards blue | 0.141 | | Aug. 8, 20, 20 | M | 1 | 5 | γ Aquilæ b_1 | 0.844 | 2 " | | | | 20.30 | ,, | ,, | ,, | $Mg_1 \dots \dots$ γ Aquilæ $b_1 \dots \dots$ | 0.881 | - 0'047 | 10 towards blue | 0.171 | | A | | | | Mg ₁ | 0.052 | - 0.046 | 1 towards blue | 0.121 | | Aug. 8. 20. 50 | N | 1 | 5 | γ Aquilæ b_1 | 0.962 | - 0.031 | Coincident | 0.171 | | Aug. 8. 21. 15 | N | 1 | 5 | η Pegasi b ₁ | 0.080 | | | | | 22. 25 | ,, | ,, | ,, | Мg ₁ | 0.361 | - 0'029 | 1 towards blue | 0.171 | | Ana 9 | | | | Mg ₁ | 0.374 | - 0.013 | Coincident | 0'171 | | Aug. 8. 21. 45 | М | 1 | 5 | η Pegasi b ₁ | 0.828 | + 0.014 | Coincident | 0'171 | | 22. 0 | (9)9 | ,, | ,, | η Pegasi b_1 | 0.40 | - 0,011 | Coincident | 0'171 | | Aug. 21, 20, 0 | M | 1 | 5 | γ Draconis b ₁ | 0.681 | | | | | 20. 15 | ,, | .,, | ,, | $Mg_1 \dots \dots$ | 0.682 | - 0,011 | Coincident | 0.120 | | A | | | | Mg ₁ | 0.686 | - 0.022 | 1 towards blue | 0.120 | | Aug. 21. 20. 45 | М | 1 | . 5 | β Cygni b ₁
Mg ₁ | 0.600 | + '0.084 | % towards red | 0.120 | | 21. 0 | 2.2 | 2.2 | 1,9 | β Čýgni b ₁ | 0.204 | - 0.082 | 1 towards blue | 0.120 | | 21.20 | 1, | | 2.2 | β Cygni b ₁ | 0'461 | | S S | | | 21.35 | ,, | 31 | ,, | β Cygni b_1 | o·579
o·448 | - 0.118 | ½ towards blue | 0.120 | | | | | | Mg1 | 0.268 | - 0'120 | 3 towards blue | 0.120 | | Earth's Motion in Miles per | Concluded M
in Miles pe | | REMARKS. | |-----------------------------|----------------------------|------------------|--| | Second. | Measured. | Estimated. | | | | + 10.4 | | Coincidence appeared perfect. | | The same | - 6.5 | | | | | + 3.7 | | | | | + 9'2 | W 188 | | | + 4.1 | - 30.5 | - 26.1 | Spectrum steady and bright. Definition very satisfactory. | | + 4.1 | - 38.5 | - 31.6 | | | - 3.2 | - 25.9 | - 24:3 | Spectrum steady and bright. Definition very satisfactory. | | - 3.3 | - 8.1 | - 10.5 | | | - 3·2
- 3·2 | - 21°0
- 12°2 | - 24·3
- 7·8 | | | | | | Definition poor. Spectrum very tremulous. Measures rough. | | + 14.1 | - 82·9
- 26·7 | - 69.1
- 69.1 | | | | | | | | + 14.1 | - 53.9 | - 69.1 | Definition good. Spectrum steady but faint. Star-line exceedingly faint. | | + 4.2 | - 22.0 | - 20.9 | | | + 4.2 | - 21.6 | - 20.9 | | | + 4.5 | - 16.0 | - 4.5 | Definition fair. Spectrum fairly bright but somewhat tremulous. | | - 9.0 | - 1.8 | - 7.4 | | | - 9.0 | + 4.5 | + 9.0 | | | - 9.0 | + 14'2 | + 6.0 | | | - 9.0 | + 4.9 | + 9.0 | Wind high; spectrum somewhat tremulous and lines rather faint and ill-defined for this star, | | + 4.3 | - 4.6 | - 4.3 | which usually shows them very distinctly. | | + 4.3 | - 13.5 | - 16.2 | Definition poor. Wind high, spectrum tremulous. The star-line was decidedly better | | + 5.8 | + 25.4 | + 42.1 | seen in the three later observations than in the first. | | + 5.8 | - 38.1 | — 35·7 | | | + 5.8 | - 49·6 | - 65.7 | | | + 5.8 | - 50.4 | — 77·6 | | | Date, 1882, | | Number | | | | Disp | lacement. | Width | |-----------------------------|-----------|------------------------|---------------------------
---|-------------------------|-----------|--|-------------| | Greenwich
Sidereal Time. | Observer. | of
Half-
Prisms. | of
Position
Circle. | Objects compared. | Micrometer
Readings. | Measured. | Estimated in Terms
of the Breadth of the
Comparison Line. | of
Slit. | | đ h m | | | 0 | | r | r | | r | | Aug. 21. 22. 15 | M | 1 | 5 | γ Cygni b_1 | 0.662 | - 0.000 | Coincident | 0.120 | | 22.30 | ,, | ,, | ,, | γ Cygni b_1 | 0.601 | - 0.081 | 1 towards blue | 0'150 | | Aug. 21. 22. 50 | м | 1 | 5 | α Cygni b ₁ | 0.623 | | | | | 23. 0 | ,, | ,, | ,, | $\begin{array}{c} \operatorname{Mg}_1 \dots \\ \alpha \operatorname{Cygni} b_1 \dots \end{array}$ | o:689
o:576 | - o.oee | 1/3 towards blue | 0,120 | | | 22 | 7.7 | 22 | Mg ₁ | 0.681 | - 0.102 | ½ towards blue | 0'150 | | Aug. 21. 23. 30 | м | 1 | 5 | ζ Cygni δ ₁ | o·656
o·644 | + 0.012 | 1 towards red | 0.120 | | 23.45 | ,, | 23 | ,, | ζ Cygni b ₁ | 0.631 | | 2 11 11 11 11 11 | Val | | | | | | Mg ₁ | 0.642 | - 0,011 | 1 towards blue | 0.120 | | Oct. 8. 22. 35 | M | 1 | 5 | α Cygni b ₁ | 0.692 | - 0.081 | 3 towards blue | 0,100 | | 22.50 | ,, | ,, | ,, | α Cygni b ₁ | 0'722 | 10000 | The state of s | | | | | | | Mg ₁ | 0.608 | - 0'114 | 3 towards blue | 0.100 | | Nov. 8, 23, 23 | N | 1 | 5 | α Lyrae F | o.200 | - 0.160 | 3 towards blue | 0.11 | | | ,, | 2.3 | ,, | α Lyræ F | 0'294 | | | 0,144 | | 0. 4 | ,, | ,, | ,, | Hβ
α Lyræ F | o.360 | — o.066 | ½ towards blue | 0.144 | | | | 100 | 100 | Ηβ | 0.313 | - 0.132 | ½ towards blue | 0'144 | | | " | 33 | ,, | α Lyræ F
Η β | 0.084 | - 0.134 | ½ towards blue | 0.144 | | Nov. 8. 1.10 | N | 1 | 5 | α Persei F
Η β | 0.341 | - 0.113 | ½ towards blue | 0.144 | | Nov. 9. 0. 10 | м | 1 | 5 | α Pegasi F | 0.889 | | | | | 0.30 | ,, | | 1 | Hβ
α Pegasi F | 0'907 | - 0.018 | 1 towards blue | 0.333 | | 20000000 | | 22 | 2.7 | Ηβ | 0.878 | - 0.144 | ½ towards blue | 0.535 | | 0.45 | 3.2 | 2:2 | ,, | α Pegasi F
H β | 0.72
0.863 | - 0.110 | } towards blue | 0.232 | | 1, 0 | ,, | ,, | 2.2 | α Pegasi F
H β | o'722
o'868 | - 0.146 | ½ towards blue | 0.535 | | Nov. 9. 1.30 | м | 1 | 5 | γ Pegasi F | 0.876 | | | | | | 0.00 | | | Нβ | o·958
o·853 | — oʻo82 | ½ towards blue | 0.535 | | 1.45 | ,, | 3.3 | ,,, | γ Pegasi F | 0.962 | - 0.100 | 2 towards blue | 0.535 | | Nov. 9. 2. 0 | M | 1 | 5 | β Persei F | 0.618 | | | | | 2, 10 | 1 | Tue ! | - | Η β | o:518
o:478 | + 0.100 | g towards red | 0.535 | | | " | 33 | 3.3 | Η β | 0.482 | - 0.004 | Coincident | 0.535 | | Nov. 9. 2.30 | M | 1 | 5 | Capella F | 0'999 | 1 0.066 | 1 toward and | 015.25 | | 3. 5 | ,, | ,, | ,, | H β
Capella F | o.872 | + 0.066 | 1/4 towards red | 0.535 | | | | | | Ηβ | 0.855 | + 0.050 | 1 towards red | 0.535 | | Nov. 10. 0.55 | N | 1 | 5 | Capella F | 0.343 | + 01033 | 1 towards red | 0.002 | | 1. 3 | ,, | ,, | ,,, | Η β | 0.339 | + 0.032 | | | | | 100 | 200 | | Ηβ | 0.301 | + 0.038 | 1 towards red | 0.002 | | Earth's
Motion in
Miles per | Concluded M
in Miles p | otion of Star
er Second. | REMARKS. | |-----------------------------------|--------------------------------------|--------------------------------------|---| | Second. | Measured. | Estimated. | | | + 1.0 | - 1.0
- 31.1 | - 1·o | Definition poor. The first measure appeared the better. | | - o.8 | - 23·7
- 38·2 | - 39°1 | Definition fair. Wind still high and spectrum unsteady but bright. | | - o.e | + 5·1
- 3·5 | + 12.6 | Definition poor. Spectrum faint and unsteady. | | + 6.0 | - 36·1
- 48·4 | - 47°0
- 60°7 | Spectrum faint for so bright a star. Thin cloud or light mist. Spectrum rather too narrow. Lines steady but faint. Definition fair. | | + 7·5
+ 7·5 | - 56·6
- 27·7 | - 59°3
- 42°0 | Star spectrum very bright. | | + 7.5 | - 48·6
- 48·6 | - 42°0 | Satisfactory observation. | | - 4'2 | — 3o·2 | — 30.3 | Considered good. The sky clouded up suddenly before another measure could be obtained. | | +14.6 | - 20°1
- 58°8
- 48°4
- 59°4 | - 22·2
- 52·5
- 44·9
- 52·5 | Star spectrum faint. Star-line ill-defined. Definition poor. | | +11.8 | - 37°0
- 45°2 | - 37·1
- 42·1 | Definition poor. Spectrum faint. | | - 2·1 | + 32.8 | + 32.4 | Definition fair. Spectrum bright. | | - 9·3 | + 29.5 | + 28.3 | Spectrum faint, but definition fair. Sky clouding over. Last measure bad. Interrupted by cloud. | | - 3.1
- 3.1 | + 18.9 | + 24·8
+ 24·8 | A good measure. Tolerably good. Line fairly distinct. | | (F for the | Star or | Moon is co | | | ydrogen, and b | | with Mg1, Mg2, | Mg _s of Magnesi | ium.) | |-------------|-----------|------------------------|-------------------|----------|----------------|--------|--------------------------------|-----------------------------|---------------------------| | | | | | | ession; — Ap | | | | | | Date, 1882. | ver. | Number of
Measures. | ber of | Position | Width of | Line. | Earth's Motion
in Miles per | Concluded Mo
in Miles pe | tion of Star
r Second. | | 2,310,30021 | Observer. | Numb | Number of Prisms. | Circle. | Slit. | "Line. | Second. | Measured. | Estimate | | | | | | βC. | ASSIOPEIÆ. | | | | | | July 24 | м | 2 | 1 | 9 | r
0°289 | F | - 11.2 | + 34.1 | + 33 | | | | | | | December | | | | T I I | | | | | | γ | PEGASI. | | | | | | November 9 | М | 2 | 1 | 5 | 0.535 | F | + 11.8 | - 41.1 | - 39 | | | | | | β | Persei. | | | | | | November 9 | м | 2 | 1 | 5 | 0.535 | F | - 2.1 | + 16.8 | + 17 | | | | | | a | Persei. | | | | | | November 8 | N | 1 | 1 | 5 | 0.144 | F | - 4.3 | - 30.2 | - 3o | | | | | | α Aurie | GÆ (Capella). | | | | | | November 9 | M | 2 2 | 1 | . 5
5 | 0°232
0°097 | F | - 9·3
- 9·1 | + 22.5
+ 19.9 | + 22 | | | | | - | γ (| ORIONIS. | | | | | | February 10 | м | 3 | 1 | 6 | 0.162 | F | + 16.0 | ⊥ 8·5 | + 5% | | | 3 | | | β | TAURI. | | | | | | February 10 | м | 3 | 1 | 6 | 0.162 | F | + 16.4 | - 34°o | - 31.3 | | Date, 1882. | | Observer. | Number of
Measures. | Number of
Prisms. | Position
Circle. | Width of
Slit. | Line. | Earth's Motion
in Miles per | Concluded Mee
in Miles per | tion of Star
Second. | |-------------|----|-----------|------------------------|----------------------|---------------------|-------------------|-------|--------------------------------|-------------------------------|-------------------------| | | | Op | Nur | N. N. | | Sitt | | Second. | Measured. | Estimated. | | | | | | | γ Gi | EMINORUM. | | | | | | March | 14 | м | 4 | 1 | 5 | 0.144 | F | + 180 | - 26.4 | - 27'4 | | -11 | | 4 | | | a Canis M | AJORIS (Siriu | 1). | | | 979 | | February | 10 | м | 6 | 1 | 6 | 0.162 | F | + 9.3 | - 17 | - 3:3 | | March | 14 | at | 5 | 1 | 5 | 0'144 | F | + 13.6 | + 0.7 | + 64 | | April | 5 | м | 3 | 1 | 6 | 0.120 | F | + 141 | + 10.9 | + 154 | | 7,18 | 8 | м | 6 | 1 | 6 | 0.310 | F | + 14.0 | + 8-2 | + 8.9 | | | | | 7. | | а Симін | ORUM (Caston | r). | | | | | February | 10 | м | 4 | 1 | 6 | 0*165 | F | + 10.3 | + 19'9 | + 15.3 | | March | 14 | м | 3 | 1 | 5 | 0'144 | F | + 16.7 | + 8.5 | + 18.0 | | April | 5 | м | 2 | 1 | 6 | 0.120 | F | + 18.0 | + 22.5 | + 24'4 | | | | | | | a Canis I | Minoris (Proc | yon). | | CHIE | | | February | 10 | М | 2 | 1 | 6 | 0.162 | F | + 8.5 | + 27.6 | + 241 | | March | 14 | M | 4 | 1 | 5 | 0.144 | F | + 15.5 | + 3.3 | + 9.3 | | April | 5 | м | 2 | 1 | 6 | 0'159 | F | + 17'4 | + 18.8 | + 21% | | 67-1 | | | | | а Семіне | ORUM (Pollux |). | | | | | February | 10 | M | 4 | 1 | 6 | 0165 | F | + 9.3 | - 14'4 | - 12' | | March | 14 | м | 2 | 1 | 5 | 0.144 | F | + 16.3 | - 40.3 | - 43'6 | | | | | | | | E Leonis. | | 1.09 | | | | April | 8 | м | 2 | 1 | 6 | 0.510 | F | + 11'2 | —
35·o | - 35% | | | | | | | 6 | Leonis. | | | | | | | | | | | 1 | | 1 | | | 4,744 | | Date, 188 | 7 | ver. | er of | Number of
Prisms. | Position | Width of | Line. | Earth's Motion
in Miles per | Concluded Mo
in Miles pe | tion of Star
r Second. | |-----------|----|-----------|------------------------|----------------------|----------|----------------|-----------------------|--------------------------------|-----------------------------|---------------------------| | Date, 188 | 2 | Observer. | Number of
Measures. | Numb | Circle. | Slit. | James. | Second. | Measured. | Estimated | | | | | | | a Vire | einis (Spica). | | | | | | April | 8 | м | 4 | 1 | 6 | r
0'210 | F | - 0.1 | - 21.2 | - 22:3 | | | | | | | а Воот | ns (Arcturus). | | | | | | June | 12 | м | 2 | 1 | 2 | 0'200 | F | + 13.2 | - 30.4 | - 28.6 | | August | 8 | M
N | 2
I | 1 | 5
5 | 0,141 | $b_1 \\ b_1$ | + 14.1 | - 54.8
- 53.9 | - 69° | | | | | P (15) | | β | Libræ. | | | | | | June | 12 | м | 2 | 1 | 2 | 0.300 | F | + 9.9 | - 37:5 | - 38 | | | | | | | a (| Coronæ. | | | | Tes. | | April | 8 | м | 2 | 1 | 6 | 0'210 | F | - 4.8 | + 18.8 | + 21' | | June | 14 | м | 4 | 1 | 2 | 0.300 | F | + 8.7 | + 41.2 | + 35% | | | | | | | α O | рніисні. | | | | 120 | | June | 14 | м | 4 | 1 | 2 | 0.300 | F | - 0.8 | ÷ 31.6 | + 28" | | July | 10 | м | 2 | 1 | 9 | 0.588 | F | + 6.7 | - 41.3 | - 45·s | | | | 1 : | 4315 | | γD | RACONIS. | | | | I A | | August | 21 | м | 2 | 1 | 5 | 0.120 | <i>b</i> ₁ | + 4.3 | - 9.0 | - 10.3 | | | | | | | a Ly | RÆ (Vega). | | | | | | June | 14 | М | 2 | 1 | 2 | 0.200 | F | - 2.9 | - 26.7 | - 27'9 | | July | 29 | м | 2 | 1 | 5 | 0.227 | F | + 3.3 | - 42.0 | - 45.0 | | August | 4 | M | 2 | 1 | 5 | 0*133 | F | + 4.1 | - 34.5 | - 28.8 | | November | 8 | | 4 | 1 | 5 | 0.144 | F | + 7.5 | - 45.5 | - 46.4 | | | | | | 5-76 | ζ. | AQUILÆ. | | | | | | August | 2 | м | 2 | 1 | 5 | 0.110 | F | + 5.5 | - 15.5 | - 15.3 | | Date, 1882. | | Observer. | Number of
Measures. | Number of
Prisms. | Position
Circle. | Width of
Slit. | Line. | Earth's Motion
in Miles per
Second. | Concluded Mot
in Miles per | ion of Star
Second, | |-------------|-------|-----------|------------------------|----------------------|---------------------|-------------------|-----------------------|---|-------------------------------|------------------------| | | | OB | M | Nu | | | | Second. | Measured. | Estimated. | | | | | | | β | CYGNI, | | | | | | August | 21 | м | 4 | 1 | 5 | 0.120 | b_1 | + 5.8 | - 28.2 | - 34.2 | | | | | | | у А | QUILÆ. | | | | | | August | 8 | M
N | 2 | 1 | 5
5 | 0.121 | b_1 b_1 | + 4.5
+ 4.5 | - 21.8
- 16.0 | - 20'9
- 4'5 | | | | | | | ∝ Aqui | LÆ (Altair). | | 100 | W. S. | Contract of the second | | June | 14 | M. | 4 | 1 | 2 | 0.500 | F | - 9.2 | - 22'2 | - 18.3 | | July | 12 | м | 2 | 1 | 9 | 0.588 | F | - 2.6 | — 33·3 | - 41'1 | | August | 2 | М | 2 | 1 | 5 | 0.110 | F | + 2.8 | + 13.1 | + 16.7 | | | 11 12 | 93 | | | 2 | CYGNI. | | | | | | August | 21 | м | 2 | 1 | 5 | 0150 | <i>b</i> ₁ | + 1.0 | - 16.1 | - 21'0 | | THE ST | | | | | α] | DELPHINI. | | | | | | August | 2 | м | 2 | 1 | 5 | 0.118 | F | - 1'4 | — 10'9 | - 11.6 | | | | | | | a | CYGNI. | | | | | | July | 15 | м | 2 | 1 | 9 | 0.588 | F | - 5.8 | - 28.2 | - 30'9 | | August | 4 | M
N | 2 2 | 1 | 5
5 | o.133 | F | - 3·2
- 3·2 | - 17.0
- 16.6 | - 16.0 | | August | 21 | M | 2 | 1 | 5 | 0.120 | b_1 | — o.8 | - 31.0 | - 49 | | October | 7 | м | 2 | 1 | 5 | 0.100 | <i>b</i> ₁ | + 6.0 | - 42.2 | - 53 | | | | | | | | ζ Cygni. | | | | G BAR | | August | 21 | M | 2 | 1 | 5 | 0.120 | b ₁ | - 0.6 | + 0.8 | + 0.0 | | THE. | | | | | | PEGASI. | | | | | | August | 8 | N | 2 | 1 1 | 5 5 | 0.121 | b_1 b_1 | - 9.0
- 6.0 | + 1.2 | + 9' | | | No. | rer. | ar of ures. | er of | Position | Width of | - | Earth's Motion
in Miles per | Concluded Mo
in Miles pe | tion of Star
r Second. | |----------------|-----|-----------|------------------------|----------------------|----------|------------|--------|--------------------------------|-----------------------------|---------------------------| | Date, 1882 | | Observer. | Number of
Measures. | Number of
Prisms. | Circle. | Slit. | Line. | Second. | Measured. | Estimated | | | | | | | a | Pegasi. | | | | | | July | 24 | м | 2 | 1 | 9 | r
0°289 | F | - 12.8 | - 13:3 | - 18: | | August | 2 | м | 2 | 1 | 5 | 0.110 | F | - 11.1 | - 8.9 | - 9. | | November | 9 | M | 4 | 1 | 5 | 0.535 | F | + 14.6 | - 46.7 | - 43 | | July | 20 | м | 5 | 1 | | Moon. | F | | - 3·o | | | July
August | 29 | M | 5 | 1 | 5 | 0'227 | F
F | | - 3·o
+ 2·6 | | | | | | | | | 09 | | ••• | | | | | | | | | Sky | SPECTRUM. | | | | | | February | 11 | м | 5 | 1 | 6 | 0.162 | F | | + 1'2 | | | March | 14 | M | 5 | 1 | 5 | 0'144 | F | | + 2.7 | ** | | April | 6 | M | 5 | 1 | 6 | 0.120 | F | | - 3.9 | | OBSERVATIONS of the SPECTRA of URANUS, of sundry Stars, of Comets a and b 1882, and of an Aurora, made at the ROYAL OBSERVATORY, GREENWICH, in the YEAR 1882. URANUS. 1882, March 16d. 71h. Single-prism Spectroscope. Micrometer B. Observer, M. The spectrum showed four broad dark bands, and two or three very faint lines. The bands seemed to be shaded at the edges on both sides. The measures of the positions of the faint lines are very rough. The following wave-lengths for the bands and lines were inferred from a curve formed from measures of the lines in the solar spectrum; the index error for the time of observation being determined by measures of the positions of the D lines of sodium and of the sharp edges of the principal bright bands in the spectrum of a Bunsen flame. | Band or Line. | Wave-length | | |--|---------------|--| | The state of s | tenth-metres. | | | Spectrum begins about | 5960 | | | Band I. Diffused, broad and dark band | 5714 | | | Band II. | 5430 | | | Faint line | 5232 | | | Faint line | 5039 | | | Faint line | 4906 | | | Band III., probably F | 4857 | | | Band IV. | 4593 | | | | 4450 | | | Spectrum ends about | 4400 | | Types of Stars. 1882, March 16. Single-prism Spectroscope. Observer, M. The spectra of the four following stars, of which the three last are not in Secchi's Catalogo delle Stelle di cui si è determinate lo Spettro luminose, were examined to determine the type to which they belong. - δ Leonis. Type I. F and g strongly marked. F broad and diffused. - θ Leonis. Type I. F and g strongly marked. F narrow, darker, and more condensed in the centre than in δ Leonis. - μ Ursæ Majoris. Type II. A fine example. The b lines very strong, and the E group distinct. - ψ Ursæ Majoris. Type I. apparently. The F line very faint and diffused. The lines in the spectrum seen with great difficulty. COMET a 1882 (WELLS). 1882, April 22. Single-prism Spectroscope. Position Circle, 348°. Observer, M. Only a continuous spectrum could be detected. This was very fairly bright from the star-like nucleus, and a faint spectrum could also be traced for some distance down the tail. With a fairly narrow slit the spectrum could be traced from a little below D to a little below F, say from a 5900 to a 4900. The sky clouded before any more definite observations could be secured. 1882, April 24. Single-prism Spectroscope. Position Circle, 348°. Width of Slit, oin o3 and oin og. Observer, M. Only a continuous spectrum could be detected. This was not equally bright throughout, there being two ill-defined maxima in the green and greenish-blue. The spectrum was traceable from about λ 6000 to λ 4400. 1882, May 11. Half-prism Spectroscope. One "half-prism" reversed. Magnifying power, 28. Position Circle, 270°. Observer, M. The Comet gave simply a continuous spectrum, which was easily traceable from about λ 6100 to about λ 4700. No bright bands or break of continuity was detected either with a wide or
narrow slit. The continuous spectrum seemed remarkably bright from the nucleus, considering the comparative faintness of the Comet, and the high dispersion, 5° from A to H, employed. 1882, May 13. Half-prism Spectroscope. One "half-prism" reversed. Magnifying power, 15. Position Circle, 270°. Observer, M. Very careful and repeated examination failed to show any definite bands. Once or twice an ill-defined maximum was suspected, a little to the red of the green band of the Bunsen-flame spectrum, in other words near E; but as the spectrum is naturally brightest about this point, but little weight can attach to the suspicion. The spectrum was traced for a distance from the centre of the nucleus of nearly one minute in each direction, and from about λ 6150 to about λ 4300. 1882, May 20. Half-prism Spectroscope. One "half-prism" reversed. Magnifying powers 15 and 28. Position Circle, 270°. also Single-prism Spectroscope. also Eyepiece-prism. Observer, M. With none of these dispersions could any bright bands, properly so called, be distinguished; but two faint broad dark bands, or what gave that impression, crossed the spectrum. Practically the same observation as on April 24, when two maxima of light were noticed, the maxima observed on that occasion lying respectively between and on the blue side of the two minima observed now. A third dark band was suspected near D on the blue side of that line. These dark bands seemed to be sharp at the edges, but were all exceedingly faint, the most refrangible least so, the middle one much fainter, the third by far the faintest of the three. The spectrum described above was that from the nucleus and head. The tail showed a very short continuous spectrum visible only in the green. At least it gave that impression. It might be mistaken for the bright green band of carbon, but it seemed too regular for this to be the case, there being no trace of a sharp edge towards the red to be detected. It also extended too far towards the red. The spectrum from the nucleus was traced from about $\lambda\,6150$ to $\lambda\,4300$. The following measures were obtained with the Single-prism spectroscope of two of the dark bands, as compared with the sharp edges of the bright bands in the blue and green of the spectrum of a Bunsen-flame, the wave-lengths being inferred by means of a curve formed from measures of the lines in the solar spectrum. tenth-metres. 4818 4811 and 4855. Band in the blue..... 5493. Band in the green 1882, May 22. 9h. to 101h. Single-prism Spectroscope. Observer, M. The continuous spectrum alone was visible, but the sky spectrum in its neighbourhood was so strong that no bright bands could possibly have been seen unless they had been exceedingly bright. Only the spectrum from the central nucleus could be examined, and this was too narrow to show dark bands. The sky clouded over at half-past ten. 1882, May 31. Single-prism Spectroscope. Micrometer B. Observer, M. The hindrances to observation were very great, the Comet being in a very awkward position. It was also very difficult to keep it on the slit. The spectrum from the nucleus was a bright but very narrow ribbon of light of irregular intensity. The spectrum of the Comet was compared with those of sodium and of a Bunsen-flame. | Nature of Object. | Wave-length. | |-----------------------|---| | A bright point near D | tenth-metres.
5902.7

5328
5146
4862 | The above measures are exceedingly rough. These irregularities were only seen at times. At times, however, the whole spectrum seemed full of bright lines, but the hindrances to observation were so great that no continued view could be obtained of them. The general appearance of the spectrum was not altered from May 20, except that its greatly increased brilliancy allowed the details to be better seen. 1882, June 7. Half-prism Spectroscope. One "half-prism" direct. Magnifying power, 14. Position Circle, 92°. Observer, M. The moment the Comet came on the slit the exceeding brilliance of the line in the yellow was remarked. There was also a continuous spectrum, but no lines either bright or dark were noted in it. The yellow line was, however, so exceedingly brilliant, and so far outshone the rest of the spectrum, that it would be scarcely an exaggeration to say that the Comet shone by monochrematic light. The Comet rose in cloud, and was not seen in the spectroscope until 15^h, 30^m.; it was clearly seen in the 3ⁱⁿ finder, as a planetary disk of very nearly the same colour as Mars, until 15^h, 50^m, four minutes after sunrise, when it was accidentally lost, and the sky clouded over before it could be picked up again. The tail was masked by the daylight. A very rough measure of the position of the bright line gave its wave-length as 5894.5 tenth-metres, or 2.5 tenth-metres to the red of the D lines, a displacement which, assuming its identity with the pair of yellow sodium lines, would correspond to a receding motion of 79 miles per second. The actual movement of recession of the Comet at the time was 18.5 miles per second. 1882, June 10, 18h-22h. Observer, M. The Comet was seen in full daylight just after perihelion passage at 20h, with the 12\frac{3}{4} inch equatoreal, using negative eye-pieces with powers of 60, 130, 220, and 310. With the lowest power, a light red glass was necessary, but with the powers 220 and 310 the light of the sky was not too strong for the eye, and the Comet could be easily seen as a dull yellow stellar point of light, the disk being no larger than that of a star. It was judged to be not so bright as Capella, which had been seen previously, making every allowance for the much brighter background on which the Comet was seen. On putting in the transit micrometer (which has a much larger field) to determine its place, the Comet was lost, after having been seen distinctly for a quarter of an hour, and it was not picked up again afterwards. A white haze had gradually formed round the Sun, and the sky became overcast about noon. COMET & 1882. 1882, October 25, 15h-18h. Half-prism Spectroscope. One "half-prism" direct. Width of Slit, or 732. Observer, M. The Moon was so bright, and there was so much mist, that the Comet was not seen until 17th. At 18th it was lost in The spectrum showed the usual three bands, but no sodium lines. The bands, which were, as usual, sharp and very bright at their less refrangible edge, and gradually faded away towards the blue end of the spectrum, each extended so far in that direction as almost to touch the next band, and rendered it very difficult to ascertain whether there was a continuous spectrum or not. It was believed that there was one, but that it was faint. Direct comparison showed that the three bands were generally coincident with the three principal bands given by a Bunsen-flame. But a small displacement towards the red was noticed in the case of the green band. It was also suspected that different parts of the nucleus showed very considerable displacements inter se, but the faintness of the spectrum and the short time available for observation prevented the suspicion from being verified as thoroughly as could have been wished. The cometary band was very sharp at the less refrangible edge, most unusually so for a comet, and was much better defined than the band of the flame spectrum, and the individual measures each seemed very satisfactory, but, as will be remarked, they gave widely differing results. It was also noticed that when the telescope was moved by means of the slow-motion rods the edge of the band would seem to shift its position with regard to the occulting bar, by an extreme amount of or 1, or perhaps even or 2 in one or two instances. ### Measures of the Green Band. | OV: de amount | Micrometer | Displa | cement. | Inferred
Wave-length
of Comet Band. | Motion in Miles
per Second
corresponding | | |-------------------|------------|-----------------|-----------------|---|--|--| | Objects compared. | Readings. | In Revolutions. | In Wave-length, | | to observed
Displacement. | | | | r | r | tenth-metres. | tenth-metres. | | | | Comet | 1,000 | | | | 2 | | | Bunsen-flame | 1'052 | - 0.02 | - 0.24 | 5163.5 | - 19.5 | | | Comet | 1.008 | | | | | | | Bunsen-flame | 0.018 | + 0.180 | + 1.85 | 5165.9 | + 66.8 | | | Jomet | 0.945 | 1.400000000 | 1 | 5-6 | 1 =16 | | | Bunsen-flame | 0.862 | + 0'020 | + 0.51 | 5164.2 | + 7.6 | | | Comet | 1.013 | - 0.120 | - r·55 | 5162.5 | - 56·o | | | Comet | 0.001 | -0130 | 100 | 01020 | | | | Bunsen-flame | 1.013 | - o.o2 | - o.24 | 5163.5 | - 19'5 | | | Comet | 0.383 | | 2000 | | 100000 | | | Bunsen-flame | 0.380 | + 0.003 | + 0.03 | 5164.0 | + 1.1 | | | Comet | 0.339 | V | 142 | 2 22 | 190 | | | Bunsen-flame | 0'432 | - 0.093 | - o·96 | 5163.0 | - 34.7 | | | Comet | 0.22 | | | - /- | | | | Bunsen-flame | 0.369 | + 0.183 | + 1.88 | 5165.9 | + 67.9 | | | Comet | 0.200 | | - 0.10 | 5163.0 | - 3.6 | | | Bunsen-flame | 0.219 | - 0.010 | - 0.10 | 3103.9 | - 30 | | | Comet | 0.570 | + 0.038 | + 0.30 | 5164.4 | + 9.0 | | | оппен-паше | 0 332 | 7 0 0 3 8 | 1 0 39 | 01044 | , 90 | | | Means | | IVI CONTRACTO | + 0.69 | 5164.1+0.55 | + 2.5 | | 1882, October 30, 151h. to 18h1. Half-prism Spectroscope. One "half-prism" direct. Width of Slit, 1"-183. Observer, M. The usual three cometary bands were seen, and a faint continuous spectrum, but nothing further could be made out. The blue and yellow bands were too faint for measurement, but closely coincided in position with the corresponding bands of the spectrum of the Bunsen-flame. No displacement of the green band could be detected with any degree of certainty; nor could any bright lines be detected upon it. ## Measures of the Green Band. | 01: | Micrometer | Displa | cement. | Inferred | Motion in Miles
per Second |
-------------------|------------|-----------------|-----------------|-------------------------------|-------------------------------| | Objects compared. | Readings. | In Revolutions. | In Wave-length. | Wave-length
of Comet Band. | to observed
Displacement, | | | * | | tenth-metres. | tenth-metres. | | | Comet | 0'419 | - | | | | | Bunsen-flame | 0.372 | + 0'047 | + 0.48 | 5164.5 | + 17.3 | | Comet | 0.353 | | 1 | | | | Bunsen-flame | 0.334 | + 0.018 | + 0'20 | 5164.2 | + 7.2 | | Comet | 0.254 | - 0.044 | - 0.45 | 5163:5 | - 16.2 | | Comet | 0.318 | | | 01000 | -102 | | Bunsen-flame | 0'214 | + 0.004 | + 0.04 | 5164.0 | + 1'4 | | Comet | 0.188 | | | | | | Bunsen-flame | 0.198 | + 0.050 | + 0.51 | 5164.3 | + 7.6 | | Comet | 0.320 | 1 00000 | 1 -1.2 | 5.6. | | | Bunsen-flame | 0.302 | + 0.045 | + 0.43 | 5164.4 | + 15.5 | | Bunsen-flame | 0.323 | - 0'020 | - 0.51 | 5163.8 | - 7.6 | | Comet | 0.388 | | | 01000 | 7.0 | | Bunsen-flame | 0.322 | - 0.034 | - o·35 | 5163.6 | - 12.6 | | Comet | 0.521 | | | | | | Bunsen-flame | 0.335 | - 0.064 | - 0.66 | 5163.3 | - 23.8 | | Comet | 0.306 | 1 01010 | 1 2172 | E.C | | | Bunsen-flame | 0.588 | + 0.018 | + 0.10 | 5164.5 | + 6.9 | | Means | | - 0.001 | 0'12 | 5164.0±0.00 | - 0'4 | 1882, November 10, 17h. Half-prism Spectroscope. One "half-prism" reversed. ## Observer, M. The blue band was no longer visible, the yellow band was exceedingly faint, and even the green band was too faint for measurement. The latter showed a very sharp edge on its less refrangible side, a circumstance noticed on both the former occasions when the spectrum of the Comet was observed, and the more remarkable that the bands in the spectra of comets are generally somewhat diffused. It is probable, therefore, that on a better view the band might have been resolved into fine lines. The mean of all the measures of the less refrangible edge of the Green Band in the Comet's spectrum gives the following result for its wave-length. 5164.0 \pm 0.1 tenth-metres. Thalén's wave-lengths for the less refrangible edges of the bands in the spectrum of the Bunsen-flame have been assumed throughout, as follows:— | Band. | Wave-length, | |-------------|---| | Yellow band | tenth-metres.
5633°0
5164°0
4736°0 | #### AURORA. 1882, November 17, 5h. 20m. to 9h. 0m. Hand Spectroscope ("half-prism"). One "half-prism." Observer, M. The Aurora at the commencement of the observation was a red one, of no particular shape, a ruddy glow extending all over the N.W. About $5^{\rm h}$, $30^{\rm m}$, a brilliant arm shot up from the N. horizon to the zenith, principally red but with a green vein in it. The rosy colour disappeared soon after this. The principal red display lay between Vega and ϵ and η Ursæ Majoris, a broad band of light. A fainter band, at right angles to the first, went down to Boötes,— α Coronæ Borealis shining in the centre of it,—and up toward and nearly to the zenith. The green Aurora during the time of observation consisted, with one remarkable exception, of little else than a pale green light fringing the upper edge of the London smoke cloud. The exception was the sudden appearance of a magnificent streak of light, much more brilliant than the great Comet, and about one-quarter as long again. When first seen it had already risen some 20°, and just at that moment it bore a great resemblance to the Comet in general outline. Rising in the E.N.E., and slowing mounting, it seemed nearly to follow a parallel of declination, passed just above the Moon, and sank with an even regular motion down to the W. It faded somewhat after passing the meridian, and disappeared at about 6^h. 5^m. 59^s. G. M. T. It took about two minutes to cross the sky. It slowly increased in length up to meridian passage and decreased after it, its greatest length being perhaps about 30°. No view was obtained of the spectrum of the red Aurora, nor of this great bright cloud. The single-prism Spectroscope, when pointed to the pale green light in the north, showed the green Auroral line very brilliantly, and also a great number of faint lines further to the blue. But it was quite impossible to see the pointer, and no measures could be made. The Hand "half-prism" Spectroscope showed only the green line, and the following determinations were obtained of its position as compared with that of the D lines given by a sodium-flame, the wave-length being inferred by means of a curve formed from measures of lines in the solar spectrum between D and b:— | 1 | Auroral Line
Centre. | D Lines Centre. | Wave-length of
Auroral Line
inferred. | |---|-------------------------|-----------------|---| | F | r | r | tenth-metre s. | | | 0.810 | 1.532 | 5531 | | | 0.299 | 1.338 | 5524 | | | Auroral Line. | | | D Lines, | | | |------------------------------|-------------------------|------------------------------------|------------------------------|------------------------------|------------------------------------|---| | Blue Edge. | Red Edge. | Inferred
Reading for
Centre. | Blue Edge. | Red Edge. | Inferred
Reading for
Centre. | Wave-length of
Auroral Line
inferred. | | r
o·565
o·535
o·444 | o:6o3
o:715
o:755 | r
0.584
0.625
0.600 | r
1.177
1.203
1.172 | r
1.464
1.432
1.322 | r
1:321
1:318
1:247 | tenth-metres.
5525
5542
5561 | Mean wave-length of Auroral line...........5537 \pm 4.5 tenth-metres. ROYAL OBSERVATORY, GREENWICH. # MEASURES OF POSITIONS AND AREAS OF SPOTS AND FACULÆ UPON THE SUN'S DISK ON PHOTOGRAPHS TAKEN WITH THE PHOTOHELIOGRAPHS AT GREENWICH AND IN INDIA; WITH THE DEDUCED HELIOGRAPHIC LONGITUDES AND LATITUDES. 1882. MEASURES of Positions and Areas of Spots and Faculæ upon the Sun's Disk on Photographs taken at the Royal Observatory, GREENWICH in the Year 1882, and at DEHRA DUN in INDIA from 1881 Dec. 22 to the End of the Year 1882. Norg.—The Greenwich Mean Solar Time at which the photograph was taken is expressed by the Day of the Year and decimals of a day, reckoning from Greenwich Mean Noon of January 1. For convenience of reference the Month and Day of the Month (Civil Reckoning) are added. The letter L signifies that the photograph was taken in India; the time given is Greenwich Mean Solar Time. The position-angles are reckoned from the North Pole of the Sun's Axis in the direction N., E., S., W., N. | 4243 | | | | Sun's | Нвило | GRAPHIC | Sr | ors. | FACULE. | 41 14 | | | m , | Sun's | Неггос | RAPHIC | Sec | ors. | FACULAE. | |--------------------------------------|------------|---------------------------------|--|---|---|--|--|--|---------------------------------------|--|------------|--------------------------|---|--|------------------------------|----------------------------------|--|--|---------------------------------------| | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each*Group
(and for Day). | | 1881.
354 ^d ·778
I. | н, м | 628
631
631
632
632 | 0.950
0.893
0.412
0.436
0.512
0.547 | 0
300.7
289.3
207.8
198.1
50.4
55.4 | 245'4
238'8
189'7
186'4
153'4 | +28·2
+16·1
-23·3
-26·5
+17·1
+16·7 | 55
0
0
2
2
2 | 377
16
12
19
9 | 363 f | 1881.
359 ^d ·690
I
Dec. 27 | н, м | 634
634 | | 245.9
288.9
172.3
165.1
58.9 | 109:5 | -26·3
-28·2 | 18
19
(37) | 93
73
(166) | 815
105 | | Dec. 22 | | 63o
63o | | 118'4 | 136.4 | -19.6
-19.6 | (61) | 9
13
(462) | 237 n f
(600) | 360·705
I. | н, м | 635
634
634 | 0.817
0.986
0.419
0.436 | 292.0
287.9
292.0 | 178.4
109.8
104.1 | +17°1
-25°4
-28°2 | o
16
8 | 31
97
81 | 220
187 s
108 c | | I. | п, л | 627
631
631
632 | 0.302
0.302
0.302 | 287.0
299.5
226.8
215.1
36.9 | 244'1
190'6
185'3
151'6 | +28.7
-23.3
-27.2
+16.1 | 10
0
2
0 | 365
3
6
8 | 547 f | Dec. 28 | н, м | | 0.773 | 118.0 | | | (24) | (209) | 672
974
(2161) | | Dec. 23 | н, м | 633 | 0.368 | 51°0
283°5
69°8 | 148.8 | +11.2 | (16) | (411) | (1692)
711
253 | I.
Dec. 30 | | 634
634
636 | o.820
o.820 | 233·7
224·9
57·3 | 103.0
103.0 | -25.5
-28.2
+25.5 | 17
13
0
(30) | 103
25
11
(139) | 1163 f
(1863) | | I.
Dec. 24
357.684 | н, м | | 0.989 | 109'4 | | 7 | (0) | (0) | 354
(1318)
286 | 363 [,] 76 ₂ | н, м | 634
634
637
638 | 0.803
0.738
0.582
0.691 | 24C'2
234'9
324'3
63'1 | 109.6
102.0
103.0 | -25'4
-27'4
+25'2
+15'8 | 10
0
3
0 | 103
14
14
87 | 788 n p | | I. | | 631 | 0.804
0.767
0.931
0.975 | 242'1
237'4
64'2
112'1 | 182.1 | -23.6
-26.1 | 6
| 38 7 | 258 c
121 c
457
689 | Dec. 31 | | | 0.821
0.982
0.982 | 52.6
73.9
119.4 | | - | (13) | (218) | 727
377
94
(2091) | | Dec. 25
358.700 | н, м | 631
631
634 | 0'904
0'881
0'490 | 244.8
241.6
147.6 | 189°1
185°4 | -23.8
-26.0
-26.8 | (7)
0
0 | (45)
43
29
26 | (1811)
407 e
204 e | 364 [.] 672 | м, н | 634
637
637 | 0'918
0'901
0'712
0'671 | 290.5
243.2
310.0
315.8 | 110.0
84.0
78.5 | -25.5
+24.5
+25.9 | 0 0 | 63
9
6 | 255
410 n p | | Dec. 26 | | 634 | o:527
o:863
o:915 | 144.6
63.3
113.6 | 105.9 | -27.7 | 7 | 15 | 236
569
(1416) | | | 638
638
638
638 | o·506
o·532
o·566
o·577 | 52·3
51·5
55·7
53·5 | 22.9
21.7
18.4
18.4 | +16.3 | 2
8
8
7 | 8
33
32
17 | | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 627. Regular spot with several small markings north of it. Group 631. A number of small faint spots. These spots undergo great changes, and are not seen on the photograph on December 24, but are seen again on December 25 and 26. Group 632. Several small faint spots in a straight line. Group 633. Several small scattered spots. Group 634. Two spots. The following spot breaks up into two on December 27, the lower portion of which disappears before December 31, and the upper before January 1. Group 635. A small faint spot, seen only as it passes off the Sun at the West limb. Group 636. Small faint spot, seen only on one day. Group 638. An irregular cluster of many very small spots on December 31. These increase somewhat in size until January 5 and 6, after which they rapidly decrease, and the group has nearly disappeared before it reaches the W. limb. | | | | | M | Leasures | of Posit | ions and | l Areas | of Spots a | nd Faculæ | upon | the S | un's Di | sk—con | tinued. | | | | 4 | |---|--------------|--|--|---|---|--|--|---|-------------------------------------|-------------------------------------|-------------|--|---|--|------------------------------|---|--|--|---| | | | | ii ii | Sun's | Helio | GRAPHIC | SP | OTS. | FACULÆ. | | | | H. H. | Sun's | Herro | PRAPHIC | Sro | TS. | FACULÆ. | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1881.
364 ^d ·672
I.
1882.
Jan. 1 | м, н | 639 | o·928
o·843
o·877 | 0
119.3
45.8
73.2 | 340.7 | -28.3 | (36) | 18 (186) | 153 f
243
132
(1193) | 1882.
4 ^d ·666 | м, н | 644
643
643 | 0.907 | o
231.1
46.3
49.6
61.3
107.4 | o'1
317.8
314.4 | °
-17.7
+18.0
+18.3 | 1 90 | 11
24
4 | 209
32 | | 0.690
I.
Jan. 2 | Ј, Н | 634
638
638
638
639
639 | 0.357
0.387
0.422
0.819 | 244.6
28.6
29.9
37.9
122.3
122.3
72.2 | 109'9
23'9
22'5
18'4
342'5
335'5 | -25.4
+14.9
+16.2
+16.1
-28.1
-29.8 | 37
6
14
16
0
0
(73) | 84
17
64
70
12
8
(255) | 214 sf
65f
203
(482) | Jan. 6 | J, M | 638
642
642
643 | 0.949
0.878
0.855
0.783
0.726
0.396
0.857 | 305.0
290.2
295.5
297.4
18.2
54.9 | 20.7
12.2
6.9
317.4 | +16.2
+16.2
+12.0 | (150)
14
76
7
0 | (467)
193
310
61
22 | 142
(859)
392
399 c | | 2.012
Jan. 3 | Ј, М | 638
638
638
639
639 | 0.341 | 298.4
237.1
336.4
345.1
354.3
130.3
128.2
69.1 | 24.6
21.7
18.6
342.9
337.2 | +15.7 | 10
20
7
4
0
(41) | 17
153
62
9
8
(249) | 303
272
115 f
284
(974) | Jan. 7
6.709
I. | J, н | 638
642
642
645 | 0.877 | 304.5
287.6
292.2
292.9
60.3
53.4 | 21'9
12'7
7'5
237'1 | + 14.9
+ 17.2
+ 16.5
+ 28.5 | (97)
0
38
2
8 | (586)
116
250
15
38 | 159
130
(1417)
392
56 c
165 c
86 | | 2.669
I.
Jan. 4 | м, н | 638
638
638
640 | 0.386 | 296·3
243·9
323·5
329·0
334·7
103·8
63·7 | 18.2 | +17.5 | 16
6
0
0
(22) | 62
36
5
7
(110) | 289
618 | Jan. 8
7'9 ³ 9
I. | м, н | 642 | 0.954
0.954
0.903
0.871
0.865
0.715
0.975 | 72'0 | 13°4
356°6 | +17'1 | (48) | (419)
94
26 | 330
(1029)
280
98
98
34
63
395 c | | 3.717
I.
Jan. 5 | J , н | 641
638
638
642
643
643 | 0.555
0.526
0.422
0.674 | 304.9
309.0
325.3
57.1
58.8 | 22.0
19.0
8.5
317.6
314.4 | +15.5
+16.6
+18.4 | 5
22
29
9
5
0
(70) | 24
108
100
23
34
17
(306) | 716 sp | Jan. 9 | Ј, М | 646
645
645
647
648
648 | 0.843
0.914
0.929
0.914
0.765
0.358 | 239'1
58'2
57'2
288'3 | 287.5
237.4
232.0 | -28·1
+26·7
+28·3
+22·7
+14·9 | 0
0
11
(36)
14
21 | 11
15
44
(190)
86
85
19 | 212 c
126 s
(1306)
377
109 c | | 4·666
I. | м, н | 641
638
642
642 | 0.586 | 306.0 | 20.5 | +15.0 | 94
31 | 30
211
163
24 | 476 s p | Jan. 13 | | 649 | 0.572 | 16.5 | 234'4
186'3 | +28.6 | 4
44
(87) | 382
(592) | 445 f
203
(1134) | Group 634. Two spots. The following spot breaks up into two on December 27, the lower portion of which disappears before December 31, and the upper before January 1. Group 636. An irregular cluster of many very small spots on December 31. These increase somewhat in size until January 2 and 6, after which they rapidly decrease, and the group has nearly disappeared before it reaches the W. limb. Group 645. One fainty on the first seem on January 1. A second smaller and fainter appears behind it on January 2. Both disappear before January 4. Group 645. The rest of the group 646. Small spot. Group 647. Two spots. These both diminsh in size on the following days, the followings spot disappearing before January 7, the preceding before January 8. Group 645. Two spots. These both diminsh in size on the following favs, the following favs, the following favs, the following favs and the group favored fa | | | | I.I | Sun's | HELIO | GRAPHIC | Sr | OTS. | FACULÆ. | 9.0 | | | ii ii | Sun's | Helio | GRAPHIC | Spo | OTS. | FACULÆ | |---|-------------|--|--|---
---|---|--|--|---|--|------------|--|---|--|--|---|---|---|---| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position
Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882. 12 ^{d-687} I. Jan. 14 13.701 I. Jan. 15 14.666 I. Jan. 16 15.658 I. | J, H H, JP | 647
648
648
648
649
650
650
650
647
648
648
648
650
650
650
650 | 0.962
0.950
0.857
0.851
0.336
0.338
0.376
0.554 | 294.7
286.4
299.7
301.4
352.6
599
11.0
1.6
66.4
68.6
121.3
306.4
295.1
299.3
321.0
324.1
330.7
342.5
58.6
59.5
110.2
295.9
304.3
303.4
310.2
46.3
47.9
46.6
295.8
295.8
295.8
295.8
295.8
295.1
295.8 | 289'3 288'1 238'5 233'8 231'6 234'9 187'1 181'7 286'5 238'5 233'8 233'7 234'2 188'4 185'7 282'5 238'8 237'4 238'8 237'4 238'8 237'4 238'8 237'4 238'7 188'4 7188'4 | +22'4
+235
+14'8
+15'0
+28'9
+15'5
+15'5
+15'5
+15'3
+21'1
+24'2
+14'6
+13'3
+14'5
+16'3
+14'5
+16'3
+14'6
+16'3
+14'6
+13'5
+14'6
+13'5
+14'6
+13'5
+14'6
+13'5
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+15'0
+ | 9 0 16 2 0 0 37 0 (64) 0 2 5 3 2 2 19 20 (53) 0 14 3 0 19 7 0 (43) | 31
7
54
10
5
19
202
29
(357)
5
18
34
10
8
8
6
87
69
(237)
61
45
78
11
124
19
6
(344)
3
8
8
8
8
8
8
8
8
8
8
8
8
8 | 90
262
257 nf
718 f
165
(1492)
185
502 p
292 c
159
(1138)
883 p
322 f
246
86
(1537)
367
648 nf | Jan. 18 17.788 I. Jan. 19 18.662 I. Jan. 20 19.970 Jan. 21 20.896 I. | н, јр | 648
648
650
650
651
651
651
652
652
653 | 0.853
0.850
0.819
0.353
0.373
0.556
0.582
0.868
0.932
0.469
0.279
0.276
0.596
0.932
0.946
0.935
0.932
0.946
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935
0.935 | 290'7 289'1 290'9 347'0 353'4 31'2 34'9 110'1 286'1 287'3 287'1 316'8 321'8 190'3 184'4 6'1 106'5 120'4 285'6 284'6 303'9 224'3 217'5 345'6
107'2 123'5 293'6 321'9 322'3 97'6 239'4 290'1 322'3 397'6 239'4 290'1 322'5 328'1 | 239.0
239.0
235.4
188.3
186.2
165.4
162.3
240.6
239.8
235.2
188.1
11.65.5
97.4
239.7
239.7
236.2
188.2
172.6
165.3
97.4
188.5
164.7
97.4 | +14.7
+13.3
+13.9
+15.0
+16.6
+23.5
+23.5
+13.9
+14.9
+13.9
+15.1
+16.0
-17.2
+14.9
-17.2 | 16
0
9
3
5
2
(35)
18
11
0
9
0
0
14
(52)
30
41
16
0
0
5
19
(111)
33
5
61
19
(118) | 92
25
273
5
97
(213)
158
84
65
81
92
4
16
145
(564)
224
249
85
7
9
85
7
9
10
25
20
10
10
10
10
10
10
10
10
10
10
10
10
10 | 1143 n 881 (2024) 1966 n 194 f 222 (2382) 2042 n 425 f 288 (2755) 412 n 215 f 143 s 102 (872) 282 991 n | Group 647. A cluster of several irregular spots. The group changes very much on the following days. Group 648. A dark spot with several faint spots following. The spot undergoes very great changes, diminishing in size to January 15, and then increasing again; the leading spot divides into two portions, and one of the smaller fragments greatly increases in size on January 19. Group 649. Small faint spot, probably the same group as Group 645. Group 650. Irregular spot, breaking up into three on January 16. Group 651. Two small spots, of which the following is only seen on January 18. Group 652. Two very faint small spots: each divides into two parts on January 19. Group 654. Two small spots. They break up into several small fragments on January 23, but the parts of the preceding spot coalesce on January 24, and the following spot remains divided into two small portions. Group 655. Several very small spots. Only one fragment is left on January 23. | N. A. | | | | М | easures | of Positi | ons and | Areas | of Spots an | nd Faculæ | upon | the S | un's Di | sk—con | tinued. | | | | | |--|------------|---|---|---|--|--|---|--|--|--|------------|---|---|---|--|---|--|---|---| | Partie | | 14 | re in | Sun's | HELIC | GRAPHIC | SP | отв. | FACULÆ. | | | | e in | Sun's | HELIO | ORAPHIC . | Sro | TS. | FACULE. | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude, | Latitude. | Area of UMBRA for each Spot (and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
20 ^d ·896
I.
Jan. 22
21·767
I. | н, јр | 650
655
653
654
654 | 0.838
0.891
0.933
0.948
0.963
0.584
0.370
0.476
0.535
0.783
0.807 | 58.4
114.8
73.5
246.5
288.0
307.3
124.4
141.8
138.5
97.9
57.4 | 188·2
145·2
97·8
97·2
92·7 | +15.7
+15.9
-17.2
-27.1
-28.5 | (41)
o
o
19
8
6 | (293)
28
6
164
29
32 | 345
320
343
(2877)
448
845 nf
72 c | 1882.
25 ^d ·662
I.
Jan. 27 | н, јр | 653
659
659
656
657
658
658
658
658 | 0.889
0.563
0.291
0.291
0.325
0.533
0.721
0.740
0.777
0.824
0.838
0.931
0.941 | 247'1
247'3
17'3
20'9
26'5
130'4
59'1
62'8
64'0
65'2
62'4
101'1
109'3 | 98.0
60.2
59.2
56.7
38.6
25.0
22.3
18.8
14.1
13.5 | 0
-174
+103
+ 99
+111
-254
+173
+156
+156
+166
+193 | 16
2
0
3
2
7
0
28
0 | 127
4
2
12
8
20
4
227
4
16 | 1166
82 c
28 c
49 c
963 c
551
46
(2885) | | Jan. 23
23.092
Jan. 24 | J, M | 653
654
654
656 | 0.854
0.937
0.858
0.204
0.358
0.404
0.877
0.939 | 72'4
116'3
303'4
175'3
178'6
163'2
115'8
72'9 | 97'9
98'3
91'3
38'4 | -17·3
-26·5
-28·2
-25·2 | (33) 62 28 5 20 (115) | (259) 181 51 19 68 (319) | 134
473
(2184)
63
316s p
118
(497) | 26 [.] 932
Jan. 28 | J, M | 653
659
656
657
658
658 | 0·323
0·436
0·539
0·603
0·674 | 244'1
251'4
325'9
144'0
44'7
53'1
53'2 | 59.0
32.0
25.2
18.5
13.9 | +18.0
+10.1
+12.1 | 40
17
1
6
42
5
(111) | 181
114
6
13
239
16
(569) | 288 | | 23·758 I. Jan. 25 24·784 | н, јр | 654
654
653
656
656
657
658 | 0.800
0.845
0.943 | 214'1
199'8
189'2
212'6
117'7
118'3
69'8
71'9 | 105.5
98.5
93.9
98.2
38.8
34.0
22.8
17.2 | -26.0
-26.6
-26.7
-17.6
-25.4
-26.8
+16.9
+15.8 | 0
0
0
22
5
3
0
0
(30) | 7
42
11
86
38
20
27
180
(411) | 63 c
150 c
(213) | 27.679
I.
Jan. 29 | н, лр | 653
660
660
659
659
657
658
658 | 0.718 | 253.5
247.8
246.7
243.8
302.9
312.6
28.6
41.6
44.4
52.2
72.0 | 98.0
83.4
81.9
78.4
62.5
56.6
25.7
18.7
13.8 | -17'2
-20'0
-20'4
-21'6
+ 9'4
+10'6
+17'4
+16'2
+18'6 | 14
2
0
0
13
3
1
26
4 | 71
15
12
3
44
25
9
222
15 | 779 c
130 c
55 c
157 c
52 c
270
166
(1609) | | I.
Jan. 26 | | 653
654
654
656
656
656
656
657
658 | 0.803
0.408
0.485
0.442
0.456
0.665
0.715
0.725
0.835 | 239.6
238.6
222.3
217.1
211.1
122.5
121.2
121.7
64.7
68.7 | 98.0
97.9
93.9
92.2
38.5
34.0
33.3
24.6
18.8 | +17.4 | 12
2
0
0
3
0
6
4
21
(48) | 141
12
4
7
18
9
11
18
206
(426) | 163 n
(452) | 30·944
Feb. 1 | J, M | 659
658
661
662
662 | o-996
o-954
o-939
o-530
o-194
o-799
o-834
o-965 | 248.6
260.7
282.6
314.8
253.7
60.3
61.2
101.6 | 63·7
18·6
6·4
308·5
304·8 | + 9°5 + 16°2 - 9°2 + 19°8 | 20
52
0
26
0
(98) | 88
272
16
94
12
(482) | 216
94
483 f
629 f
137
(1559) | Group 650. Irregular spot, breaking up into three on January 16. The following portions are much smaller than the preceding, and disappear before January 20. Group 653. Small regular spot. Group 654. Two small spots. They break up into several small fragments on January 23, but the parts of the preceding spot coalesce on January 24, and the following spot remains divided into two small portions. Group 655. Several very small spots. Only one fragment is left on January 23. Group 656. Two small spots; both gradually diminish in size, and the following spot disappears before January 27. Group 658. Regular spot. Several small spots break out in its neighbourhood on January 27. Group 659. Three or feur very small spots, arranged in a straight line. Group 660. Several very small spots, arranged in three close and small clusters. Group 661. Two small spots, with a very small one near it on February 1 and 2. | 1882 1, 17 1882 1, 1882
1, 1882 1, | | | | E. | Sam's | Heriod | RAPHIC | Spe | ors. | FACULÆ. | | 18 | - | ii i | Sun's | Неплос | BEAPHIC | Sro | TS. | FACULE | |--|----------------------|------------|--|--|---|---|--|--|--|------------------------------------|----------------------|------------|--|---|---|--|---|--|--|---------------------------------------| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Mean
Solar | Measurers. | No. of Group. | | Angle from | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | Mean
Solar | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Angle from | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | Feb. 2 32'987 J. M. 664 0'888 101'9 0'903 127'3 32'987 J. M. 6793 127'3 6794 284'6 6795 294'7 6794 284'6 6795 294'7 6794 284'6 6795 294'7 | 31 ^d ·662 | н, јр | 658
658
661
661
662
662 | 0.862
0.983
0.646
0.637
0.386
0.341
0.701
0.739 | 327.8
244.0
281.5
302.1
304.8
262.4
258.9
54.5
55.9 | 64'1
20'6
19'1
8'9
5'9
309'2
305'8 | +10·1
+14·9
+16·1
- 8·7
- 9·6
+19·0 | 3
45
0
0
13
1 | 56
331
10
4
43
5 | 642
605 f
194 c | 34 ^d ·688 | н, јр | 664
666
666
667
667
668 | 0.476
0.815
0.850
0.895
0.925
0.952 | 106·9
110·1
68·7
70·1
72·1
71·6
78·5 | 279°2
278°7
255°1
251°2
241°5
235°7 | -13.4
-15.1
+13.2
+13.2
+12.9
+14.3
+ 8.8 | 0
6
0
6
11 | 7
10
7
20
49
52 | 897 c
348 c
(2845) | | 658 0*819 294*9 192 +16*2 79 409 944 ¢ 666 0*249 124*0 281*3 -14*4 8 48 48 666 0*259 373*3 3090 +18*9 5 33 0*296 73*2 281*3 0*296 73*2 281*3 0*396 73*2 2790*0 -15*0 0 9 9 25 0*396 73*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 0*3 | Feb. 2 | | | 0.888 | 127.3 | | | 0 | 13 | 86 (3013) | | н, јр | 665
664 | o.856
o.142 | 256·9
254·4
145·3 | 352.7 | -16·7
-13·3 | 2 | 69 | 606
339 n
51 c | | I. | | J, M | 665
662 | 0.819
0.404
0.529
0.735
0.796 | 294'9
237'8
37'3
102'4
51'3 | 349°7
309°0 | +18.3
-18.3 | 5 12 | 17
33
67 | 944 c
215 c
460
446 | | | 664
664
666
666
666
667 | 0.249
0.276
0.287
0.680
0.723
0.635
0.826 | 124.0
117.3
122.0
61.8
65.1
62.4
67.7 | 281·3
279·0
255·6
251·4
248·6
241·8 | -14.4
-13.6
+13.6
+12.9
+11.7
+14.3 | 8
3
0
9
3
22
3 | 48
43
9
25
7
46 | 210 6 | | 662 0.451 21.9 30.92 +18.3 2 14 0.956 10.43 285.7 -13.3 2 13 0.64 0.958 10.42 282.2 -13.4 4 9 9 122.6 664 0.604 10.40 282.5 -13.6 1 186 122.6 664 0.604 10.40 10.40 282.5 -13.6 1 186 122.6 664 0.604 10.40 10.40 282.5 -13.6 1 186 122.6 664 0.604 10.604 10.40 282.5 -13.6 1 186 122.6 664 0.604 10.604 10.603 279.8 -13.4 12 77 664 0.604 0.604 10.603 279.8 -13.4 12 77 664 0.604 0.605 10.602 278.7 -15.4 0 4 664 0.605 10.602 278.7 -15.4 0 4 665 0.944 74.2 251.1 1.2.6 0 44 667 0.986 74.6 667 0.986 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667
0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 668 0.88 74.6 74.6 74.6 74.6 74.6 74.6 74.6 74.6 | | н, јр | | o.858
o.858 | 244.7
301.2
291.8 | | | | | 359
418 | | | 668 | 0.878 | 78.0
76.4 | 233.8 | + 7.3 | 0 | 3
52 | 398 (2257) | | Feb. 4 34:688 II. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | 662
664
664
664
664
664 | 0.451
0.560
0.581
0.604
0.643
0.640
0.657 | 21'9
104'3
104'2
104'0
108'8
103'3
106'2 | 309'2
285'7
284'2
282'5
280'1
279'8
278'7 | + 18·3
- 13·3
- 13·4
- 13·4
- 15·4 | 2
2
4
1
0
12 | 14
13
9
186
4
77
4 | 122 C | 20000 | н, јр | 664
664
664
664 | 0.950
0.227
0.132
0.132
0.130 | 304'4
237'7
233'5
230'2
221'2
183'4
200'0 | 288·5
286·4
283·7
282·1
281·4 | -13.6
-12.8
-13.7
-13.9 | 8
10
1
0 | 65
64
45
29 | 355
154 | | I. | | | | o·986
o·786
o·854 | 74.6
47.0
56.6 | | | 0 | 84 | 336
238
(3102) | Trate - | | 666
667
668 | 0.678 | 48.6
60.3
71.7 | 255·2
241·3
237·2 | +13·9
+14·5
+ 7·7 | 0
0
13
9 | 7
11
83
121 | 79 | | 664 0.380 107.9 284.5 -12.7 6 41 0.784 302.5 664 0.429 252.2 289.5 -13.6 51 343 | | H, JP | 665
662
664 | 0.968
0.716
0.429
0.337 | 288.2
252.2
353.2
110.6 | 351·5
309·3 | -12.8
+18.7
-12.8 | 0 0 | 16
6
57 | 585 e | 37.835 | | | 0'949
0'941
0'784 | 262.9 | | | | | (679)
268
93
68
94 | Group 658. Regular spot. Several small spots break out in its neighbourhood on January 27. Group 659. Three or four very small spots, arranged in a straight line. Group 662. A small spot, with a very small one near it on February 1 and 2. Group 664. One very small faint spot when first seen on the E. limb on February 2. The group rapidly increases in size, expanding into a long line of spots, of which the preceding one is the largest. The group undergoes constant change, and is largest shortly after passing the central meridian. Group 666. A small spot on February 4. The spot somewhat increases in size on February 5 and 6, and several small spots form behind it. The group undergoes constant change, and is largest shortly after passing the central meridian. Group 667. One spot, which slowly diminishes until its disappearance on February 10. Group 668. Three spots. The middle spot disappears before February 7, and the other spots increase somewhat in size, the preceding spot becoming eventually the larger. | | | | e in | Sun's | HELI | OGKAPHIC | Si | ors. | FACULE. | | | | .E | Sun's | HELIO | GRAPHIC | SP | OTS. | FACULA | |-------------------------------------|------------|--|---|--|---|--|--|---|---|-------------------------------------|------------|---|---|---|---|--|---|--|---| | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius, | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radins. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
37 ^d ·835
I. | н, др | 664
664
666
666
669
669
667
668
668 | 0°304
0°270
0°311
0°340
0°380
0°333
0°376
0°521
0°502
0°608
0°940 | 244.3
240.5
13.9
17.1
20.5
140.5
138.8
48.0
63.4
66.2
49.7 | 281°11
278°8
260°5
259°0
256°9
251°7
249°3
241°3
238°0
230°7 | 0.
-13·9
-14·0
+11·0
+12·3
+14·3
-21·2
-22·8
+14·3
+ 7·0
+ 8·8 | 22
0
9
2
0
0
0
0
14
14
(114) | 159
19
28
28
25
5
5
4
81
61
(824) | 99 c
78 c
305
(1124) | 1882.
42 ^d ·015 | J, M | 666
668
671
671
670
670
670
672
672 | | 289'4
305'2
179'3
167'3
156'4
64'0
66'8
67'9
106'8
108'9
109'3
58'5 | 261·2
231·1
209·7
207·3
205·0
174·3
171·4
166·7
136·6
135·2
129·4 | 0
+11°5
+ 8°4
-18°0
-17°5
-17°2
+10°6
+ 9°9
+10°9
-18°1
-20°0
-20°3 | 0
2
11
3
24
71
5
79
39
0 | 14
9
67
17
58
204
17
350
190
60
174 | 483 c
312 | | 39 [.] 974 | J, M | 664
664
664
666
666
667
668
668
670
670 | 0.888
0.814
0.742
0.711
0.687
0.684
0.513
0.474
0.369
0.250
0.281
0.905
0.950
0.831
0.888 | 297.5
256.8
258.3
259.9
258.4
256.0
307.9
315.6
344.6
351.6
21.2
73.9
76.1
57.6
64.7 | 291°5
284°8
282°2
280°2
279°8
261°1
256°5
242°5
238°8
174°4
167°0 | -14·6 -13·2 -11·9 -12·8 -14·4 +12·3 +13·4 +14·1 + 7·6 + 8·5 +11·5 +10·9 | 57
8
6
8
0
25
22
38
24 | 393
30
32
44
34
77
47
47
4
143
80
214
330 | 520 e
243
180
(1530) | Feb. 12
42.643
I. | н, јр | 668
668
673
671
671
674
670
670
670 | 0'982
0'951
0'817
0'680
0'652
0'641
0'245
0'192
0'212
0'212
0'209
0'526
0'588
0'635
0'640 | 256·5
301·9
293·7
293·0
290·3
305·1
216·6
211·6
197·2
11·3
12·5
56·8
61·5
60·8
64·5 | 240.8
239.4
234.4
210.3
208.3
204.9
198.9
175.0
169.9
167.1
165.7 | +10°2
+ 7°7
+15°9
-18°0
-17°5
-17°2
+ 5°2
+ 5°0
+10°5
+10°5
+10°5
+10°5 | (269) 0 7 0 8 5 8 2 0 21 10 10 18 | 5
72
7
26
144
106
5
4
120
71
68
134 | (2409)
1263
387
734
156 c
14 c
65 c | | 40'974 | J, M | 664
664
666
666
668
668
671
671 | 0.923
0.933
0.859
0.677
0.623
0.360
0.289
0.322
0.355 | 298·2
257·3
258·7
297·1
302·6
313·0
333·2
126·8
122·7 | 293.2
283.3
261.6
256.2
238.9
231.1
208.0
205.4 | -14'3
-13'2
+12'6
+13'8
+ 7'6
+ 8'2
-17'7
-17'5 | 80
0
9
2
27
17
4 | 416
83
34
18
129
50
9 | 509
1074 c | Feb. 13
43'952 | J, M | 675
675
675
672
672
672
678 | 0.782
0.806
0.812
0.896
0.910
0.945 | 54.6
53.4
54.9
107.4
109.3
109.8
283.4
285.9 | 158·2
156·6
155·4
137·3
135·4
129·7
239·8
213·4 | + 22'0
+ 24'0
+ 23'2
- 18'6
- 20'4
- 20'9
+ 7'4
+ 1'9 | 0
0
18
3
8
(118) | 12
10
7
87
32
132
(1042)
113
32 | 224,f 745 s (3811) 1195 n | | Feb. 11
42°015 | J, M | 670
670
670
670 | 0.333
0.797
0.821
0.868
0.897 | 70.8
73.1
73.3
60.8
301.9
256.8 | 173.8
170.9
166.0 | -17-5
+10-8
+ 9-7
+10-9 | 73
16
45
(273) |
4
205
60
348
(1356) | 445 c
278
(2306)
230
1051 f | | | 676
671
671
670
670
670
675 | 0.367
0.444
0.468
0.378
0.336
0.383
0.438
0.621
0.673 | 288.0
244.2
241.0
27.9
39.5
45.5
41.4
41.4 | 209°2
210°5
204°4
175°2
170°0
165°8
158°8
155°8 | + 19
+ 1.6
-17.9
-17.0
+10.4
+10.4
+11.3
+21.5
+24.2 | 7
0
14
57
9
51 | 12
20
51
200
28
225
7 | | Group 664. One very small faint spot when first seen on the E. limb on February 2. The group rapidly increases in size, expanding into a long line of spots, of which the preceding one is the largest. The group undergoes constant change, and is largest shortly after passing the central meridian. Group 666. A small spot on February 4. The spot somewhat increases in size on February 5 and 6, and several small spots form behind it. The group undergoes constant change, and is largest shortly after passing the central meridian. Group 667. One spot, which slowly diminishes until its disappearance on February 10. Group 668. Three spots. The middle spot disappears before February 7, and the other spots increase somewhat in size, the preceding spot becoming eventually the larger. Group 669. Two very small spots. Group 669. Two very small spots. Group 669. Two small spots. Some very small spots appear between them on February 12. The members of the group increase in size until the central meridian is passed. Group 671. A small spots. Some very small spots appear between them on February 12. Group 672. A small spots. Group 673. A small spots. Group 674. Two small spots. Group 675. A cluster of very small spots. Group 675. A cluster of very small spots. Group 675. A cluster of very small spots. Group 676. Two 677. Two small spots. Group 678. Two small spots. Group 679. A cluster of very small spots. | A H | | | .8 | Sun's | HELIO | BAPHIC | Spe | ors. | FACULE. | | | 311 | .H | Sum's | HELIOG | RAPHIC | Spo | TS. | FACULÆ. | |--|------------|--|---|---|--|--|---|---|--|-------------------------------------|------------|---|--|--|--|---|--|--|---------------------------------------| | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
43 ^d ·952
Feb. 14 | J, M | 672
672
672 | 0.761
0.759
0.805 | 100.9
100.0
110.8 | 0
135·2
134·9
130·8 | -20°3
-16°6
-19°8 | 6
0
9
(218) | 31
30
97
(1024) | (1195) | 1882.
47 ^d ·083 | J, M | 677
677
678
678 | 0.632
0.676
0.719
0.754
0.903 | 0
110'9
108'5
109'8
111'8 | 0
104.6
100.9
97.5
94.7 | 0
-18.6
-17.6
-19.0
-20.9 | 7
14
1
2 | 27
41
13
23 | 280 a
187 | | 44'997
Feb. 15
45'940 | J, M | 668
676
676
670
670
670
672
672
672
672
677
678 | 0.418
0.418
0.418 | 280°1
280°0
249°2
353°8
133°3
22°0
113°7
110°5
115°2
114°0
107°0
108°9
287°9
277°0
277°8
307°1
252°9
314°5 | 239'4
215'1
210'2
203'7
175'4
172'3
166'2
158'2
137'8
134'8
135'5
130'4
104'2
96'4
215'7
210'2
196'8
203'6
175'7 | + 7°1
+ 2°3
+ 1°9
- 17°3
+ 1°6
+ 1°0
+ 1°1
- 18°9
- 17°7
- 2°°4
- 2°°9
- 18°3
- 2°°1
+ 2°3
+ 1°9
+ 2°9
- 17°1
+ 1°3 | 12
24
12
10
39
0
23
0
49
20
0
6
19
(216) | 74
151
60
54
208
5
159
6
170
114
8
8
37
54
15
(1115) | 451 c
(1072)
523
304 c
127 nf
174 s p | Feb. 17
47'993 | J, M | 676
680
670
681
675
672
677
677
678
682
683 | 0.844
0.747
0.644
0.557
0.628
0.237
0.233
0.475
0.511
0.564
0.610
0.918 | 253·7
278·8
272·4
293·9
290·5
297·7
251·8
319·5
218·6
208·8
116·2
112·3
116·3
63·6
102·3
122·8
107·9
71·7 | 69.7
51.0 | +10·3
+11·7
-15·9
+22·2
-17·5
-18·7
-18·3
-17·2
-18·3
-21·4
+20·8 | (239) 30 1 25 12 2 7 0 47 0 17 2 2 0 0 (145) | (838) 94 8 118 41 10 45 5 233 8 75 9 7 10 32 (695) | 304
107
586 np
956 c | | Feb. 16 | | 670
675
672
672
672
672
677
677
678 | 0'483
0'368
0'392
0'428
0'524
0'801
0'832 | 336.4
358.4
119.8
123.1
116.7
119.7
107.9
106.9 | 166·1
159·3
138·7
137·9
134·6
129·0
104·8
101·5
95·0 | +11.3
+21.7
-17.1
-18.9
-17.5
-21.5
-18.5
-18.0
-20.9 | 18
0
1
47
4
1
18
3
9
(193) | 110
3 - 8
187
23 - 8
68
14
46
(1014) | 646 c | 49°078
Feb. 19 | J, M | 670
672
677
678 | o.402
o.303
o.386
o.886
o.934 | 309°2
285°8
238°1
128°3
124°7
67°7
102°7 | 176·8
137·9
102·4
97·2 | -18·9
-17·7
-19·3 | 17
38
18
0 | 71
191
46
27
(335) | 70
429
(897) | | 47'083 | J, M | 676
676
671
670
670
675
672
672 | 0.929
0.868
0.606
0.499
0.542
0.223 | 280·8
274·6
274·0
254·5
297·3
308·7
336·9
157·6
142·8 | 217'1
210'7
203'7
176'0
166'3
156'3
137'9
134'9 | +11.7 | 84
11
0
37
17
1
65 | 210
53
10
141
49
24
238
9 | 130
347 c
190 s p | 49.764
I.
Feb. 20 | н, л | 670
672
672
677
677
678
678
683 | 0.512
0.408
0.213
0.187
0.302 | 283·8
245·0
237·4
150·8
144·3
138·9
139·1
101·6
52·3 | 137.0
129.1
101.6
101.3
97.9
95.7
50.1 | -18.7
-19.3
-17.8 | 9
19
0
7
0
0
0
0 | 74
164
11
61
20
11
16
39
(396) | 628 e 117 (1783) | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 668. Three spots. The middle spot disappears before February 7, and the other spots increase somewhat in size, the preceding spot becoming eventually the larger. Group 670. A fine group, consisting of a number of spots arranged in three clusters in a straight line. The middle portion disappears before February 15. The group decreases after passing the central meridian, the preceding spot less rapidly than the others. Group 671. Two small spots. Some very small spots appear between them on February 12. The members of the group increase in size until the central meridian is passed, and then diminish rapidly. Group 672. A small regular spot, followed by a number of small spots, which, however, disappear soon after the central meridian is passed. Group 673. A cluster of very small spots. Group 676. Two small spots. Group 676. Two small spots. Group 677. An irregular spot, with several small spots near it. Group 680. A small spot. Group 681. Two small spots. Group 682. A small spot. Group 683. Several small spots. The group is not seen on February 19. | | -19 | | s. in | Sun's | Helio | GRAPHIC | Spe | ots. | FACULÆ. | -17-5 | | | e in | Sun's | HELIO | PRAPHIC | Src | ors. | FACULÆ. | |--|------------|--|--|---|--|--|--
--|---|--|--------------|---------------------------|--|---|----------------------------------|----------------------------------|--|--|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group, | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
51 ^d ·912
Feb. 22 | Ј, М | 672
677
678
683
684
685 | 0.982
0.857
0.418
0.384
0.481
0.877
0.958
0.909 | 296.4
253.1
242.4
233.4
105.3
103.1
101.4
65.9 | 138·8
102·2
98·5
51·0
17·5
5·1 | 0
-18·1
-17·7
-19·9
-13·6
-13·6 | 43
45
14
8
10
28
(148) | 195
147
50
32
27
86
(537) | 180
299 c
467 c
731
(1677) | 1882.
56 ^d ·933
Feb. 27
57·773 | Ј , М | 685
687 | 0°159
0°983
0°933
0°945
0°911
0°764
0°131 | 236·2
251·4
259·1
215·8 | 6.3 292.6 | -13·1
-14·0 | 11
65
(76) | 45
207
(259) | 228 c
274
(1236)
63
132
146 | | 52.787
I. | н, јр | 672
677
678
683
684 | 0.936
0.560
0.537
0.275
0.759 | 252°9
249°0
243°7
114°8
103°4 | 138:3
101:0
98:6
53:1
18:3 | -18.6
-17.6
-20.0
-13.6
-14.9 | 28
4
6
2 | 144
100
53
21
8 | 724 c | Feb. 28
58.944 | J, M | 688
687 | 0.242
0.930
0.949 | 142.9
59.5
251.7 | 353·5
293·1 | -13·7 | 63) | 13
154
(188) | 558 s j
603
(1502)
262 | | Feb. 23
53.675 | н, јр | 685
672
677 | 0.874
0.907
0.985
0.717 | 252°2
252°0 | 137.9 | -12'4
-18'7
-17'9 | (59)
36
9 | (370)
109
86 | 480 sf
524
(1815)
675 c | Mar. 1 | | 687 | o.864
o.863
o.883 | 296·2
258·4
101·5
60·4 | 293.0 | - 13 5 | 46
(46) | 227 | 68
369
479 8,
451
(1629) | | I.
Feb. 24 | | 678
683
683
683
684
685 | 0.671
0.096
0.125
0.107
0.616
0.765
0.886 | 247.8
156.9
152.6
172.4
104.9
100.1
57.0 | 97'4
54'0
52'8
47'9
18'3
6'0 | -20°1
-12°3
-13°6
-13°3
-14°9
-12°4 | 9 4 0 2 6 0 11 (68) | 41
7
12
19
6
66
(346) | 849 c
42 c
660 f
801
(3027) | 59*897
Mar. 2 | Ј, М | 687
687
687 | 0.952
0.795
0.612
0.650
0.656
0.799
0.941
0.953 | 256·2
297·8
99·1
98·8
102·1
53·0
72·6
58·6 | 296.4
293.5
293.5 | | 3
17
44
(64) | 23
72
233 | 363
448
285
420
372
(1888) | | 54.711
I.
Feb. 25 | н, јр | 677
678
683
683
684
685 | 0.856
0.819
0.233
0.235
0.206
0.419
0.597
0.936 | 253.0
249.8
247.4
239.4
240.2
110.0
101.2
51.3 | 101'9
97'5
55:3
54:6
53:1
18:7
5:9 | -18·3
-20·6
-12·1
-13·9
-14·8
-12·5 | 8
0
2
0
0
8 | 55
8
15.
7
18
6
65
(174) | 499 P 88 c 117 (704) | 61.110 | J, M | 689
687
687
687 | 0.898
0.857
0.410
0.359
0.420
0.432
0.854
0.879 | 300°1
255°7
50°5
104°7
101°6
106°5
47°2
68°4 | 299.8
297.7
295.1
293.3 | -12.0
-13.2 | o
15
36
47 | 36
82
175
215 | 661
202 | | 56.022
Feb. 26 | Ј, М | 684
685 | 0°945
0°177
0°342 | 251°0
137°7
107°4 | 18·3
5·8 | -14.6
-12.7 | 2
10
(12) | 3
69
(72) | 986 | Mar. 3 | J, M | 60. | 0.881 | 300·3
256·5 | 2,6,5 | | (98) | (508) | 228
(1760)
597
334 | | 56·g33 | Ј, М | 686 | o·986
o·852
o·784 | 247'9
252'7
305'4 | 56.6 | +21.8 | 0 | 7 | 430
199
105 e | | | 689*
689
687
687 | | 263·3
21·2
124·5
110·3 | 346.6
300.0
299.0
294.7 | - 9'9
+ 8'1
-12'0
-11'3 | 2
12
26
36 | 12
41
92
204 | | Group 672. A small regular spot, followed by a number of small ones, which, however, disappear soon after the central meridian is passed. Group 673. An irregular spot, with several small ones near it. Group 683. Several small spots. Group 684. A small spot. Group 685. A spot which slowly divides into two portions about February 27. Group 685. A spot which slowly divides into two portions about February 27. Group 686. Two very small spots. Group 687. A regular spot. Another spot breaks out to the north of it, and some small spots appear before it on March 2. The group undergoes several changes during its course. Group 689. Two small spots. Group 689. Two small spots. | | | | .E | Sun's | Herro | RAPHIC | Sro | TS. | FACULE. | | 7 | | 且 | Sun's | Неплос | RAPHIC | Sron | rs. | FACULE. | |---|---------------|--|--|---|---|--|---|--|---|---|------------|--|--|---|---|--|--|---|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from Su Axis. | Longitude. | Latitude, | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
62 ^d ·044
Mar. 4
62·711
I.
Mar. 5
63·701
I.
Mar. 6
64·791
I. | J, М
Н, ЈР | 687
687
687
687
687
687
687
687
687
687 | 0'245
0'781
0'898
0'947
0'947
0'120
0'091
0'083
0'134
0'887
0'976
0'133
0'177
0'7893
0'820
0'977
0'568
0'412
0'755 | 297.0
258.3
348.4
227.2
210.0
147.2
150.3
88.2
254.8
249.0
232.0
57.1
86.7
61.2
260.7
259.5
251.3
84.3 | 300.6
300.6
302.4
300.0
294.7
293.4
240.2
220.2
302.6
294.6
293.2
240.5
221.4 | -13.7 + 9.1 -11.9 -11.7 -11.2 -13.9 +19.7 + 0.1 -11.7 -11.0 -13.9 +19.8 - 0.4 -12.1 -11.0 -14.2 - 0.5 | 60
(136)
0
0
16
15
22
0
89
(142)
8
15
20
0
41
(84)
14
12
21
42
(89) | 205
(554)
54
55
61
87
157
14
182
(560)
62
142
161
9
226
(600)
67
115
165
290
(637) | 202
425
(1558)
215
85
85
83 e
120 e
339 e
676 e
378 e
(1896)
69 e
92 e
131 e
24 e
399 e
151 (848)
94
72 e
104 e
485 f
(755) | 1882.
66 ^d ·805
I.
Mar. 9
67·697
I. | н, јр | 692
696
693
693
694
694
695
687
687
687
693
693
693
694
694
695 | 0'709
0'283
0'248
0'211
0'668
0'731 |
254·3
254·0
262·6
322·6
73·5
102·4
102·6
76·1
305·3
257·9
261·1
256·9
310·3
314·0
224·6
57·8
97·9
103·7
103·5
72·6 | 265·2
244·9
242·0
221·3
190·3
184·4
183·1 | +23.5
-17.1
-17.2
- 0.7
- 8.8
-14.5
-14.8 | 4
7
0
12
6
51
8
0
0
(164)
0
7
22
20
4
7
19
6
8
8
47
0
16
0
16
16
0
16
16
17
19
19
19
19
19
19
19
19
19
19
19
19
19 | 29
20
9
42
33
299
58
15
33
(941)
15
61
106
101
16
33
56
96
37
39
276
6
54
20
14 | 171 c
146 c
395 c
880 f
(3458)
849
435
1682 c
237
110 c
305 c
118 c
226 c
407 c
1193 n
95
(5657) | | 65.687
I.
Mar. 8
66.805
I. | н, је | 687
687
687
692
693
693
693
694
695 | 0.533
0.610
0.924
0.985
0.872
0.883
0.805 | 294°2
305°7
258°6
260°7
258°6 | 297.3 | -15.7
+23.4
+24.0
- 0.9
-14.7
+ 8.5
-13.4
-11.8
-13.8 | 14 | 85
205
133
8
17
21
7
285
18
20
(799) | 134 c
425 f
854 n
(1765)
62
707 | 68·672
I. | н, ле | 687
687
692
692
693
693
697
691
694
694 | 0.958
0.903
0.868
0.834
0.861
0.811
0.417
0.126
0.495
0.556 | 316·2 293·7 257·3 260·1 256·4 255·6 257·2 305·3 249·6 242·6 334·6 105·6 104·6 | 293·5
292·8
284·6
279·5
275·7
270·9
264·4
3246·6
221·8
185·2
185·2
183·8 | -11.5
-15.3
-15.8
-14.7
+23.0
+23.1
-15.9
-17.6
- 0.7
-13.9
-14.1
+ 9.9 | 12
2
0
2
23
10
19
16
56
16
0 | 161
76
19
24
23
112
52
190
114
266
46
9
51
179
(1322 | 688
115
149
949 6
779 6
299 6
322 6
147 6
102 6
735 J
464 6
(4749) | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facular relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 687. A regular spot. Another spot breaks out to the north of it, and some small spots appear before it on March 2. The group undergoes several changes during its course. Group 689. Two small spots. Group 691. A regular spot. Group 693. A number of small spots. Group 693. A number of small spots. Group 694. Two small spots in a straight line. The preceding spot increases in size. Group 695. A very small spots. The preceding spot increases in size, and the following spot diminishes. Group 695. A very small spot. It greatly increases in size, and other small spots appear behind it. Group 697. A number of small spots arranged in two straight lines at right angles to the Sun's Equator on March 10. The group alters its shape, forming one straight line nearly parallel to the Sun's Equator on March 11. The first and last spots are then the largest. The intermediate spots disappear on March 12. Group 698. Two very small spots. Group 699. A small regular spot, followed by several smaller spots. It becomes a large irregular cluster of many spots on March 17, quite unlike its appearance on March 16. | | | | H. | Sun's | HELIO | GRAPHIC | Spe | ors. | FACULÆ. | | | | ii | Sun's | Herro | GRAPHIC | Src | тв. | FACULE. | |--|------------|--|---|---|---|---|--|--|---|--|------------|--|---|--|--|---|--|---|---------------------------------------| | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Area of UMBHA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
69 ^d ·756
I.
Mar. 12
71:051 | н, јр | 693
693
697
697
691
694
695
695 | 0°960
0°779
0°956
0°914
0°684
0°611
0°322
0°285
0°413
0°464
0°797
0°885
0°929 | 254-6
300-1
297-4
299-9
256-0
251-2
290-0
116-6
46-5
55-4
106-1
68-7
57-8
65-6 | 271.7
264.1
247.6
241.5
221.9
189.2
186.8
181.8
136.0 | +23.4
+23.6
-14.9
-17.1
- 0.6
-14.3
+ 9.6
+ 8.6
-17.6 | 17
0
30
14
49
8
16
2
18 | | 856
200
1009 e
156 e
192 e
121 e
113 e
800 s p
221
92
173
(3933) | 1882.
73 ^d ·071
Mar. 15
73·900 | J, M | 699
699
701
702
691
695
695
695
699
699 | 0°460
0°527
0°576
0°684
0°991
0°823
0°961
0°653
0°683
0°660
0°630
0°297
0°316
0°384
0°426 | 311'1
271'8
255'2
291'3
293'9
138'7
1293
118'2
119'3 | 223·3
190·3
190·3
190·3
190·3
189·6
187·2
185·2
137·7
134·8
129·1
126·7 | -14.8
+ 8.9
+ 10.2
+ 9.0
-19.8
-18.4
-17.1
-18.6 | 13
6
0
3
75
(203)
55
4
6
9
0
20
0
+ | 134
22
10
11
312
(956)
260
11
12
84
1
6
108
17
12 | 509 p
(1192)
98
244 n,j | | Mar. 13 | | 697
697
691
694
695
700
699
699 | 0.868
0.812
0.582
0.133
0.284
0.280
0.596
0.790
0.826
0.801 | 257.4
254.7
279.5
193.1
358.9
22.1
59.0
107.7
105.1
59.5 | 248·2
242·0
222·3
189·2
187·7
181·3
156·1
135·1
131·4 | -14·5
-16·6
- 0·4
-14·6
+ 9·2
+ 7·8
+11·7
-18·4
-16·5 | 68
21
86
10
55
4
0
50
0 | 260
114
296
69
196
16
8
150
17
(1126) | 231 sf
131
(1450) | Mar. 16
75'113
Mar. 17 | J, M | 701
701
702
702
695
699
702 | 0.547
0.607
0.953
0.975
0.831
0.224
0.846 | 42'1
46'9
111'8
110'8
287'1
187'5
112'9 | 127°2
122°0
76°1
71°0
187°3
135°5
76°0 | -22'9
-21'8
+10'0
-19'8 | 0
89
0
(187)
10
26
66
(102) | 4
5
305
20
(844)
22
186
282
(490) | 897 p
(1239) | | 71°901 | Ј, М | 697
697
691
694
695
699
699
701 | 0'900
0'952
0'909
0'730
0'260
0'343
0'664
0'715
0'761
0'841
0'950 | 289.6
257.2
255.3
276.2
239.3
325.3
109.3
106.3
107.9
63.9
108.3 | 249'1
242'2
222'4
189'4
187'5
135'0
130'5
126'7
124'0 | -14·3
-16·3
- 0·4
-14·5
+ 9·4
-18·1
-16·4
-18·2
+17·4 | 99
30
108
10
50
36
0 | 344
62
303
51
185
148
45
25
25
(1188) | 250
450 e
259 e
478 e
121 e
275
(1833) | 75-988 Mar. 18 77-017 Mar. 19 | J, M | 699
702
702
699
703
703
702
702 | 0.733
0.767
0.477
0.045
0.065
0.582 | 286.6
225.9
115.0
114.4
242.8
309.7
72.8
120.3
117.5 | 135·7
76·2
72·9
135·2
110·6
105·0
75·7
72·5 | -23.2
-18.9
- 5.4
- 5.9
- 22.9 | 26
92
0
(118)
14
0
10
68
3
(95) | 165
288
54
(507)
129
35
25
296
19
(504) | 329 f (769) | | 73'071 | J, M | 697
691
694
695
695 | 0'944
0'985
0'886
0'494
0'542
0'523 | 294°4
255°0
273°3
252°6
298°8
302°5 | 242°1
222°7
189°3
187°2 | -16.0
- 0.4
-14.7
+ 8.9
+ 9.9 | 0
75
10
0
21 | 42
317
29
10
69 | 205
182 c
296 n.f | 77*900 | J, M | 704
704
699
703
703
702 | 0.886
0.627
0.278
0.138 | 286.6
294.3
298.5
248.9
275.1
275.3
130.0 | 158:5
153:4
134:9
113:1
104:9
75:9 | +18.9
+21.2
-6.2
-6.4
-6.4 | 17
44
40
11
11
60 | 51
151
185
69
111
296 | 190 | Group 691. A regular spot. Group 693. A number of small spots in a straight line.
The preceding spot increases in size. Group 694. Two small spots. The preceding spot increases in size, and the following spot diminishes. Group 695. A very small spot. It greatly increases in size, and other small spots appear behind it. Group 697. A number of small spots arranged in two straight lines at right angles to the Sun's Equator on March 10. The group alters its shape, forming one straight line nearly parallel to the Sun's Equator on March 11. The first and last spots are then the largest. The intermediate spots disappear on March 12. Group 699. A small regular spot, followed by several smaller spots. It becomes a large irregular cluster of many spots on March 17, quite unlike its appearance on March 16. Group 700. A small spot. Group 702. A large regular spot, with several small spots close behind it. One of foci sheef finally becomes nearly as large as the first spot. Group 703. Two spots. These spots become much larger, and several smaller spots appear between and around them on March 21 and following days. Group 704. Two spots, and two or three small markings near them. | | | | E. | Sun's | HELIO | GRAPHIC | SP | ors. | FACULÆ. | 144 | | | H H | Sun's | Helio | PRAPHIC | Spo | TS. | FACULÆ. | |--|------------|--|---|---|---|---|---|---|--------------------------------------|-------------------------------------|------------|---|---|---|---|--|---|---|---| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
77 ^d ·900
Mar. 20 | J, M | 702
702 | o·463
o·508
o·965
o·969
o·988 | ° 124.4
122.5
63.6
108.5
75.5 | 72.9
69.6 | -21.5
-22.0 | 18 8 | 78
46
(987) | 403
198
273
(1064) | 1882.
80 ^d ·995 | J, M | 708
702
702
702
709
707
705 | 0.635
0.411
0.375
0.349
0.353
0.348
0.806 | 253:6
227:9
227:7
223:6
17:1
134:9
98:2 | 95.3
75.4
73.4
71.1
50.1
41.0
2.2 | 0
-15.7
-22.5
-21.1
-21.3
+12.8
-20.9
-10.7 | 11
69
22
0
7
8 | 20
319
112
51
19
33
462 | 608 f | | 78·976
Mar, 21 | J, M | 704
699
699
703
703
703
702
702
702
705 | 0.966
0.822
0.770
0.769
0.524
0.452
0.368
0.361
0.363
0.364
0.987
0.885
0.911 | 294'9
251'6
253'5
250'8
271'9
274'8
269'3
156'5
148'0
141'7
99'3
108'4
58'8
71'5 | 153·3
138·2
133·1
132·8
114·4
109·7
105·6
104·4
75·4
72·9
70·0
1·2 | +21'8 -19'0 -17'1 -19'1 -5'4 -6'2 -22'8 -21'7 -21'9 -10'3 | 35
7
10
5
26
7
6
33
68
40
6
6
6
6
0 | 174
33
27
53
155
30
33
191
303
158
149
361 | 426 c
97
777
434
(2738) | Mar. 23
81°851
I. | н, јр | 703
708
708
702
702
702
709
709
709 | 0.734
0.923
0.932
0.855
0.785
0.722
0.547
0.504
0.349
0.330
0.245 | 267'4
266'8
255'6
253'1
239'2
237'5
339'4
350'2
166'4
97'7
71'2 | 113·9
103·9
96·9
91·9
91·0
52·2
48·3
41·5
2·6 | - 4'9
- 6'3
- 15'5
- 16'9
- 22'2
- 20'9
+ 12'3
+ 12'1
- 20'5
- 10'2 | (357) 29 17 7 4 40 21 9 1 6 0 46 (180) | (1673) 269 90 36 11 247 155 48 20 43 9 364 (1292) | 304
161
(2189)
1063 c
289 p
260 c
126 c
76
(2064) | | 79'916
Mar. 22 | J, M | 699
703
703
703
703
706
702
702
707
705 | 0°278
0°251
0°532 | 293'9
296'9
253'7
270'2
270'7
268'9
271'7
268'5
220'9
195'4
175'6
117'4
98'4
110'0
62'0
63'2 | 133.6
114.3
110.6
106.0
106.0
104.8
76.7
75.0
69.2
40.3
0.6 | -17'7 - 4'9 - 4'9 - 6'0 - 4'7 - 6'1 -14'0 -22'4 -21'3 -20'1 -10'3 | 5
72
21
5
1
48
0
112
6
3
103 | 45
317
53
29
25
188
9
456
17
12
615 | 792 f
146
902
286
(2878) | 82:918
Mar. 25 | J, М | 703
708
702
702
702
709
709
707
710
705
705 | 0°959
0°912
0°718
0°687
0°662
0°482
0°430
0°298
0°490
0°471
0°515 | 265·8
266·1
257·1
245·7
246·8
244·0
310·7
316·3
216·1
20·6
99·0
102·0
98·7
102·9 | 112.6
104.6
97.3
75.5
73.1
70.6
69.5
52.6
48.4
41.6
20.2
2.7
7.359.9
354.0 | - 5.7
-14.6
-22.0
-20.8
-22.1
-19.8
+12.0
+11.6
-20.6
+20.6
-10.3
-12.0 | 42
27
28
65
53
15
0
19
21
2
9
84
5
0 | 196
104
55
323
202
60
10
40
77
9
10
395
20
6 | 673 c 424 s | | 80.995 | J, M | 703
703
703
703 | o.818 | 254.2
251.6
265.9
268.7
268.7
267.8 | 114.9
114.8
111.2 | - 7'1
- 4'7
- 5'1
- 6'3 | 0
83
0
57 | 25
354
54
224 | 518
143
455 c | 83.997 | Ј, М | 708
702
702
702
709
709 | 0.645 | 256:3
248:8
250:2
247:4
296:5
299:6 | 97.9
75.7
73.0
70.6
52.5
48.9 | -22°2
+11°3 | 14
61
40
0
32
37 | 172
305
318
19
187
180 | 300 s | Group 699. A small regular spot, followed by several smaller spots. It becomes a large irregular cluster of many spots on March 17, quite unlike its appearance on March 16. Group 702. A small spot. Group 703. A large regular spot, with several small spots close behind it. One of these finally becomes nearly as large as the first spot. Group 703. Two spots, and two or three small markings near them. Group 704. Two spots, and two or three small markings near them. Group 705. A large regular spot, with some small companions. Group 706. A very small spot. Group 707. A small spot. Group 709. Two spots, which rapidly increase up to March 25. Group 709. Two spots, which rapidly increase up to March 25. Group 709. Two spots, which rapidly increase up to March 25. Group 710. A small spot, not detected on March 26, 27, and 28. | | | 1 | 1 | | | | 1 | | 1 | | | | | - | | | 1 | | | |-------------------------------------|-------------|---|---|---|--|---|--|--|--|-------------------------------------|------------|---|--|--|--|---|--|---|--| | | | | s. | Sun's | Herio | GRAPHIC | Sr | OTS. | FACULE. | 8,73 | | | s, in | Sun's | Helio | GRAPHIC | SP | ots. | FACULÆ | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude, | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
83 ^d ·997 | J, M | 707
705
705
711 | o:468
o:238
o:286
o:853 |
237.6
104.7
108.1
100.6 | o
41.5
3.1
o.6
317.7 | ° -20.6
-10.0
-11.6
-12.5 | 0
78
3
2
(267) | 5
319
10
10
(1525) | 744 <i>f</i> (2333) | 1881,
87 ^d ·886 | J, M | 705
705
714
711
713 | 0.584
0.386
0.171
0.902 | 262.0
257.1
352.1
138.0
58.2 | 3·8
1·0
328·5
318·7
267·4 | 0
-10'0
-12'8
+15'9
-13'8
+25'1 | 60
0
5
0 | 319
11
43
34
91
38 | 970 ¢ | | 84:898 | Ј, М | 702
702
702
709 | 0.944
0.926
0.921
0.786 | 249.7
251.1
246.6
289.5 | 76.4
73.2
72.4
53.5 | -21.4
-20.0
-24.2
+10.8 | 47
33
1
29 | 258
174
13 | 1834 c | Mar. 30 | J, M | 715 | 0.746 | 304·5 | 251.8 | -14.4 | (94) | 38 (742) | 455 f
200
(2656)
228 | | | | 709
709
712
705
705
711 | 0.764
0.740
0.388
0.146
0.064
0.721
0.849
0.902
0.919 | 291.2
292.5
319.4
182.3
158.7
101.4
41.8
103.1
77.0
56.8 | 51°1
48°8
19°5
5°0
3°3
318°4 | +11.4
+11.6
+10.6
-15.0
-10.1 | 5
36
3
0
78
2 | 24
199
10
5
319
5 | 480 c 51 c 78 505 104 188 | | | 710
705
705
714
714
714
711
713
715 | 0.846
0.788
0.481
0.468
0.441
0.206
0.804
0.858 | 293·9
260·1
262·4
317·7
322·7
326·8
237·2
52·2
102·9 | 22.7
9.7
3.8
331.0
328.6
325.9
321.7
267.2
252.0 | +21.1
-11.9
-10.0
+14.7
+15.6
+15.3
-12.8
+24.9
-14.4 | 0
30
81
3
5
5
4
23 | 19
87
328
8
9
27
9
96
42 | 540 s.
1395 n.
1012 p
583 s. | | Mar. 27 | | | 0.982 | 20.8 | | | (234) | (1184) | (3240) | Mar. 31 | | | 0.901 | 69.7 | | | (162) | (625) | (4198) | | 85·723
I.
Mar. 28 | н, јр | 702
702
709
709
705
711 | 0.985
0.979
0.888
0.844
0.178
0.555
0.907
0.948 | 249'2
250'5
285'5
287'9
249'3
102'2
103'3
63'2 | 75.7
73.4
54.1
48.6
3.5
320.2 | -21.7
-20.4
+10.5
+11.3
-10.1
-12.3 | 18
13
21
21
38
0 | 200
180
226
148
279
9 | 2177 c
497 c
222 c
590
492
(3978) | 89.910 | J, M | 705
705
714
714
711
711
713
715 | 0.90£
0.623
0.564
0.471
0.399
0.694
0.722 | 299.4
259.5
262.1
303.8
309.6
257.6
254.0
43.0
103.7 | 11'2
4'0
331'0
325'4
326'6
321'7
267'3
252'5 | -12°0
- 9°9
+14°9
+15°3
-11°5
-12°2
+25°0
-14°3 | 16
76
0
4
0
18 | 119
318
11
12
10
6
83
16
21 | 140
876 c
124 f
520 f
848 c | | 86·664
I. | н, јр | 709
709
710
705
705
711
713 | 0'989
0'964
0'939
0'746
0'378
0'341
0'380 | 244.5
282.6
283.6
305.0
259.2
248.3
105.9
62.1
106.8 | 54'1
49'3
21'0
2'6
359'4
319'6
267'7 | +10·3
+10·3
+20·3
-10·2
-13·5
-12·1
+25·4 | 18
18
0
44
0
0 | 140
166
17
292
9
5 | 378
673 c
69 s
176 c
250 nf
463 | Apr. 1 | J, M | 717
716
718
705
714
711
713 | 0.916
0.902
0.966
0.930
0.984
0.748
0.677
0.581 | 65.9
108.8
88.4
95.3
261.4
297.3
260.8
26.1 | 236·7
233·9
224·0
3·8
326·9
326·1
267·0 | + 19°0
- 19°7
- 0°1
- 9°6
+ 15°5
- 10°8
+ 25°3 | 0
4
30
(154)
60
0
0
26 | 21
18
140
(754)
234
21
40
64 | 87 c
173 c
209
(2977)
449 s
163 c | | Mar. 29
87.886 | J, М | 709 | 0.894
0.904
0.871
0.998
0.891 | 254'7
338'6
281'9 | 50.1 | +11.3 | (80) | (706)
172 | 156
161
185 c
529 n f | | | 715
716
717
717
717
718 | 0.524
0.791
0.800
0.865
0.865 | 106.9
110.6
59.9
63.2
86.5
72.9 | 252.4
231.6
236.4
228.6
223.9 | -14.2
-20.1
+10.4
+10.4
- 0.5 | 0 0 0 0 0 28 | 20
40
10
18
191 | 448 6
435 s
200 | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 702. A large regular spot, with several small spots close behind it. One of these finally becomes nearly as large as the first spot. Group 705. A large regular spot, with some small companions. Group 705. A large regular spot, with some small companions. Group 707. Two spots, which rapidly increase up to March 25. Other small spots appear near them on March 25 and following days. Group 710. A small spot, not detected on March 26, 27, and 28. Group 711. A very small spot on March 26 and 27. It is not seen on March 28 and 29, but appears again on March 30. The spot shows a large proper motion on the following days, and several smaller spots appear near it. Group 712. Two or three very small spots. Group 713. A small regular spot. Group 714. Several small spots close together. Group 715. Two spots. The following and smaller spot disappears before April 8. Group 717. Two small spots on April 1. Other spots appear on the following days, and the group increases in size and forms a long straight line of spots, of which the preceding spot is the largest. | | 100 | | .8 | Sum's | Heliog | RAPHIC | Spo | TS. | FACULÆ. | | | | E, | Sun's | HELIOG | RAPHIC | Sro | TS. | FACULE. | |---|------------|---|---|--|---|--|---|--|--|-------------------------------------|------------|---|---|--|--|--|---|--|---| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude, | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
g2 ^d ·071
Apr. 3
g2·986 | J, M | 714
714
711
713
715
716
717
717
717
718 | 0.895
0.872
0.829
0.530
0.329
0.621
0.662
0.750
0.725
0.791 | 289.5
290.4
261.6
5.7
116.5
114.2
51.8
56.9
83.8
67.4
297.1
255.3
288.8
320.9 | 330°4
327°4
326°4
266°8
252°5
233°2
236°9
232°8
222°5
224°2 | 0
+14'3
+14'3
-10'5
+25'4
-14'4
-19'8
+17'7
+18'9
+17'7
+19'5
+ 0'1 | 19
0
3
12
2
19
0
6
10
25
(96) | 44
13
13
54
10
74
11
12
25
139
(395) | 473 e
172 f
272
180 f
106
(1203)
78
529
141
384 | 1882.
95d·o69
Apr. 6 | J, M | 717
717
717
717
716
718
720
721
722 | 0'957
0'929
0'888
0'734
0'732
0'433
0'431
0'440
0'449
0'231
0'154
0'470
0'546
0'758
0'953 | 279.8
257.8
257.8
309.4
290.5
253.4
343.4
348.0
358.3
7.4
193.3
38.8
99.1
102.0
61.7
66.5 | 238·1
236·0
231·4
227·1
233·8
225·1
202·6
197·7
186·9
162·3 | +18.4
+18.7
+19.8
+20.3
-19.0
+ 0.8
- 9.7
-11.6.6
+16.6
+20.1 | 16
0
7
12
6
34
5
0
0
27
(107) | 1119
9 94
69 19
171
111
5 20
192
(709) | 185
526
235
126
453
10748
413,/
(3012) | | Apr. 4 | | 714
711
713
715
716
717
717
717
717
718
719 | o 968
o 926
o 549
o 172
o 468
o 536
o 553
o 588
o 628
o 570
o 774
o 908
o 940 | 286.6
261.2
346.0
145.9
121.0
38.9
40.8
43.3
48.4
79.9
76.9
109.6
75.9 | 331°0
326°3
266°5
252°3
232°9
237°3
235°6
232°7
228°3
224°0
208°9 |
+14·3
-10·5
+26·0
-14·3
-19·6
+18·8
+19·0
+19·7
+19·2
+ 0·6
+ 6·0 | 7
0
12
0
25
0
8
18
26
37
1 | 20
6
40
6
57
4
41
93
112
181
3 | 469 c
902 f
60 f
114
260
(3482) | Apr. 7 | 0, 31 | 717
717
717
717
716
718
723
720
721
721
721 | 0.815
0.499
0.477
0.474
0.454
0.311
0.150
0.334
0.300
0.346
0.619
0.680 | 302'1
326'1
335'4
343'7
348'6
223'1
327'1
122'3
102'0
100'4
55'5 | 233·3
225·1
203·4
200·3
188·6
184·0 | +19.8
+21.1
+20.4
-18.9
+ 1.3
-16.0
- 9.3
- 9.2
+15.4
+16.9 | 5
0
15
15 | 139
39
34
57
30
161
8
13
6
46
38
154
(725) | 429
661
436
(1526) | | 94.062 | Ј, М | 713
717
717
717
717
716
716
718
720 | 0.443
0.455
0.489
0.509
0.272 | 283'2
258'3
311'0
326'6
14'9
18'7
22'4
29'5
144'1
139'3
69'9
98'5
105'2
68'9 | 199.6 | +25'9
+19'1
+19'3
+20'8
+20'3
-18'8
-19'1
+ 1'1
-10'4 | 5
19
2
10
13
9
0
41 | 17
116
24
53
80
26
10
152 | 157
480
278
134 c | 96-897 | Ј, М | 717
717
717
718
718
720
723
723 | 0.596
0.551
0.493
0.350
0.070
0.176 | 15.6
297.6
253.0
308.9
322.5
321.8
241.5
290.8
143.4
170.1
156.1 | 237.9
229.5
227.6
233.5
225.4
204.0
201.8 | +22.7
+20.0
-18.9
+ 1.5
- 9.2
-16.0 | 0
18
7
26
5
3
5 | 134
4 53
17
156
15
14
23
53 | 326
987
68
174
255
7441
384 | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 711. A very small spot on March 26 and 27. It is not seen on March 28 and 29, but appears again on March 30. The spot shows a large proper motion on the following days, and several smaller spots appear near it. Group 713. A small regular spot. Group 715. A small regular spot. Group 715. A small regular spot. Group 716. Two spots. The following and smaller spot disappears before April 8. Group 717. Two small spots on April 1. Other spots appear on the following days, and the group increases in size and forms a long straight line of spots, of which the preceding spot is the largest. Group 712. A very small spot. Group 721. Several very small spots in a straight line, of which the preceding spot is the largest. Group 722. A regular spot. Group 723. A small spot on April 7. A second is seen near the first on April 8. | | | | H. | Sun's | HELIO | GRAPHIC | SP | OTS. | FACULÆ. | | | | .п | Sun's | Helio | GRAPHIC | SP | OTS. | FACULA | |-------------------------------------|-------------|---|---|--|--|---|---|---|--|-------------------------------------|------------|---|---|---|--|---|--|---|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from
Axis, | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
96 ^d ·897 | J, M | 721
724
724
724
722 | 0·520
0·499
0·531
0·787
0·737
0·940
0·979
0·983 | 42.5
109.8
108.6
57.8
91.9
105.9
82.4
92.3 | 184.9
177.4
175.1
161.2 | +16·9
-15·0
-14·9
+20·6 | 12
0
2
55 | 22
1
7
191 | 428 f
145
768
192
290 | 1882.
100d·002 | J, M | 725
725
725
726
726
726
726 | 0.722
0.759
0.786
0.931
0.960
0.968 | 98.0
96.4
97.0
110.9
109.7
108.3 | 119.1
115.9
113.4
96.5
90.9
89.1 | 0
- 9.8
- 8.6
- 9.1
-21.5
-20.5
-19.1 | 14
0
25
32
0
16
(248) | 88
15
86
198
85
134
(1307) | 461 n.
1048 c
(3068) | | Apr. 8
97'974 | у, м | 717
716
718
720
721
721
721
722
725
725 | 0.819
0.780
0.673
0.561
0.232
0.371
0.379
0.405
0.649
0.944
0.967
0.860
0.898 | 253°2
299°0
248°1
281°8
254°4
2°9
12°6
17°2
48°1
95°0
98°8
65°0
80°0 | 237'9
233'3
225'4
205'2
191'1
187'3
185'0
161'2
121'2
116'4 | +18:1
-19:0
+ 1:7
- 9:3
+15:7
+15:7
+16:8
+20:6
- 6:7
-10:0 | (174) 11 0 25 4 7 0 45 6 | (697)
49
11
142
9
44
5
10
166
28
41 | (4761) 225 1135 np 524 f 1122 c 122 278 | I. Apr. 12 | н, јр | 718
720
722
728
728
728
725
725
725
726
726 | 0.950
0.933
0.758
0.453
0.286
0.356
0.567
0.608
0.685
0.874
0.923 | 252.0
274.6
264.5
352.6
144.0
134.9
129.6
92.3
98.7
97.5
111.8
108.9 | 225'4
206'5
160'7
146'9
144'2
140'4
122'5
111'9
96'4
89'3 | + 2'2
- 7'9
+20'9
-18'9
-17'8
-18'6
- 6'0
- 9'8
- 9'3
-21'8
-19'7
+ 2'5 | 16
0
26
19
0
34
1
0
5
18
11
(130) | 94
13
166
70
45
199
8
38
29
98
88
(848) | 360 p
1510 e
4085) | | Apr. 9
98.646
I. | н, јр | 717
716
718
720
721
722
725
725
726 | 0.860
0.774
0.678
0.376
0.391
0.566
0.875
0.912
0.993 | 295'4
250'2
278'9
260'6
339'8
38'1
93'3
97'7
110'8 | 238.0
233.4
225.2
205.3
191.3
161.4
122.1
117.2
99.3 | +18.3
-18.9
+ 1.7
- 8.9
+16.1
+20.9
- 5.7
- 9.4
-21.3 | (98)
9
3
16
0
6
23
0
3
0
(60) | 31
9
110
6
20
161
12
46
89 | (3406)
1060 n
992 n f
105 c
37 c
117 c
1458 c
393 p
(4162) | I.
Apr. 13 | | 720
722
728
728
725
725
725
726
726
729 | 0.892
0.523
0.238
0.227
0.355
0.407
0.493
0.750
0.817
0.966 | 264.6
328.5
198.8
164.4
91.4
100.0
99.0
114.7
110.1
117.3 | 206·9
160·6
148·2
139·9
122·8
119·8
114·2
96·5
89·3
67·8 | - 7·3
+21·0
-18·6
-18·2
- 5·8
- 9·2
- 9·3
-22·0
-19·7
-27·8 | 0
20
19
26
0
0
18
7
130
(226) | 79
146
146
247
6
52
47
168
58
1138
(2208) | 149 8
113 c
1324 f
1082 c
(3071) | | 100'002 | J, M | 718
720
721
727
722
728
728
728
728
728
728 | 0.927
0.923
0.870
0.651
0.551
0.509
0.456
0.385
0.412
0.435
0.467 | 258.0
296.6
275.6
264.1
309.6
327.5
10.0
127.7
122.9
123.4
120.1
94.4 | 225·2
206·1
191·4
182·2
160·6
146·7
144·1
142·9
140·3 | + 2.0
- 8.2
+ 15.4
+ 19.8
+ 20.9
- 19.0
- 18.3
- 19.1
- 18.7
- 7.2 | 25
9
4
5
38
1
31
0
39
8 | 148
31
11
14
179
5
126
23
140
24 | 466
842
251 f | 102.962 | J, M | 730
722
728
728
728
725
725
725
725
731
726
726
726 | 0.849
0.680
0.434
0.398
0.314
0.055
0.115
0.179
0.225
0.416
0.557
0.566
0.629 | 298.7
309.6
237.4
233.9
225.6
88.0
121.6
116.1
107.5
133.7
122.6
119.2 | 178.9
160.3
148.9
146.1
139.9
123.1
120.6
117.0
113.8
107.5
96.0
94.6
88.9 | +20.8
+21.1
-18.6
-18.7
-18.0
- 5.4
- 8.9
- 9.9
- 9.2
-21.9
-22.2
-20.7
-19.0 | 0
46
29
5
48
7
4
4
9
5
20
0
16 | 17
175
149
27
296
10
30
6
46
33
121
48
70 | 365 <i>f</i> | The Groups
of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facular relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Facular are expressed in millionths of the Sun's visible Hemisphere. Group 716. Two spots. The following and smaller spot disappears before April 8. Group 717. Two small spots on April 1. Other spots appear on the following days, and the group increases in size and forms a long straight line of spots, of which the preceding spot is the largest. Group 721. Several very small spots in a straight line, of which the preceding spot is the largest. The following spots disappear before April 10. Group 722. A regular spot. Group 723. A regular spot. Group 724. A small spots when first seen on E. limb. The group undergoes very great and violent changes, and increases in size very rapidly indeed. The most striking changes occur on April 16, 17, 18, and 19. Group 728. A V-shaped group of spots on April 11 and 12. The group changes very rapidly, increasing in size between April 11 and 12. On April 13 it forms a straight line, the first and last spots being the largest. Group 730. A very large spot, with three or four spots following it. The great spot undergoes constant change, especially after passing the central meridian. Group 731. A disturbed area, in which small spots appear and disappear at irregular intervals. No spots are seen on April 17. | | 1 | | ii . | Sum's | HELIO | PRAPHIC | Sec | ors. | FACULE. | | | | E. | San, | Непос | HAPHIC | Sro | TS. | FACULAL. | |-------------------------------------|------------|---|--|--|---|---|---|--|---|-------------------------------------|------------|---|--|--|---|---|--|---|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius, | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
102 ^d ·962 | J, M | 726
726
732
729
729 | 0.661
0.667
0.814
0.875
0.921
0.828
0.925
0.963 | 0
118'8
115'9
112'4
118'8
119'8
77'1
102'0
75'0 | 87:5
86:4
72:6
66:4
59:8 | -22.8
-21.2
-21.4
-27.8
-29.6 | 2
2
7
276
64
(544) | 16
15
65
1823
300 | 275 nf
563 c
83
369
248
(1903) | 1882.
106 ^d ·087 | Ј, М | 722
728
728
728
728
726
726
726
726 | 0.682
0.980
0.905
0.883
0.859
0.828
0.341
0.260
0.296 | 253.7
292.9
252.3
253.1
252.7
252.0
212.3
220.4
209.8
212.7 | 160·3
150·1
147·2
144·2
140·7
96·4
95·2
94·1
93·8 | +21'1
-18'3
-17'4
-17'6
-17'8
-21'9
-16'6
-20'1
-18'3 | 0
63
29
0
98
18
62 | 285
198
156
61
525
111
271
25
33 | 274
245 n | | 103·783
I. | н, јр | 722
728
728
728
731
731
726
726
726
727 | 0'946
0'892
0'781
0'583
0'524
0'451
0'291
0'325
0'423
0'485
0'530
0'700 | 289'2
257'5
302'0
245'4
241'9
162'1
150'0
132'4
119'2
124'1
115'3
121'7 | 160°4
149°4
144°6
139°4
110°0
105°5
95°8
89°1
87°4
72°9
66°1 | +20°6 -18°6 -18°9 -18°4 -21°4 -21°6 -22°4 -18°5 -21°9 -21°4 -28°1 | 21
15
5
11
0
1
12
13
0
9 | 141
127
84
162
9
5
127
61
31
40
1757 | 762
159
1920 c
116 c
106 c | Apr. 17 | | 726
726
726
726
732
729
733
733
734
735 | 0°232
0°254
0°303
0°356
0°492
0°581
0°408
0°483
0°916
0°985
0°832
0°887 | 212 7
200:3
194:1
187:0
144:3
137:4
111:3
110:6
75:7
100:8
57:5
67:0 | 95'8
89'9
88'8
87'4
72'2
66'1
58'2
62'2
57'4
20'6
4'4 | -18-3
-17-8
-19-5
-22-7
-21-9
-28-5
-30-0
-13-4
-14-5
+10-9
-11-6 | 4
100
15
5
8
345
39
38
9
46
0 | 344
75
21
19
1764
199
112
65
200
203 | 482 s
244 p
133
350
(2860) | | Apr. 15 | J, M | 733 | o.828
o.888 | 102.7
71.3 | 59.5 | +21.1 | (284) | 37
(2581)
178 | 189 c
312
(4284)
198 nf | 107.042 | J, M | 728 | 0.946
0.860
0.799
0.972 | 293·2
279·9
263·0
253·0 | 149.6 | | 39 | 402 | 211
156
664 | | | Mary Sant | 728
728
728
731
726
726
726
726
727
729
733
733
734 | 0.787
0.754
0.725
0.690
0.283
0.295
0.208
0.261
0.289
0.511
0.706
0.615
0.677
0.983 | 250·9
250·6
250·0
249·6
219·0
171·7
156·0
148·7
146·0
125·6
130·9
127·0
104·1
103·8
78·0 | 150·2
147·1
144·5
141·5
109·8
96·3
93·9
90·7
89·1
72·4
66·8
58·8
61·4
56·6
21·0 | -18·3 -18·1 -18·1 -17·8 -17·8 -17·8 -22·2 -16·2 -18·1 -19·1 -22·0 -28·4 -29·2 -12·8 -13·2 +10·7 | 28
0
61
0
15
0
0
218
21
16
11
27 | 162
135
53
419
5
64
26
37
29
25
1934
125
86
40
186 | 347 8 | Apr. 18 | | 728
731
726
726
726
726
732
729
733
733
736
734
735 | 0.927
0.638
0.438
0.436
0.355
0.288
0.412
0.470
0.214
0.663
0.810
0.917 | 253·1
243·3
232·1
241·2
232·8
231·0
175·7
164·5
152·2
132·3
125·5
60·1
72·9
100·0 | 140.6
109.8
96.4
96.0
94.0
89.2
71.9
65.2
57.9
63.1
58.6
36.0
20.6
5.6 | -20°1
-17°9
-21°8
-28°5
-29°5
-13°4
-14°6
+15°1
+10°6 | 38
3
9
91
8
136
0
447
18
32
12
1
57
47
(938) | 393
22
74
465
113
719
6
1882
149
117
66
11
323
187
(4929) | 326 f
582 c
249 s
(3637) | | Apr. 16 | Ј, М | | 0.874 | 320.7 | | | (436) | (3504) | | 107.665
I. | н, јр | 728
731 | 0.828
0.966
0.746 | 264°1
253°7
247°7 | 139.9 | -17.1 | 20 2 | 223 | 767
677 c | Group 722. A regular spot. Group 726. Three small spots when first seen on E. limb. The group undergoes very great and violent changes, and increases in size very rapidly indeed. The most striking changes occur on April 16, 17, 18, and 19. Group 728. A V-shaped group of spots on April 11 and 12. The group changes very rapidly, increasing in size between April 11 and 12. On April 13 it forms a straight line, the first and last spots being the largest. Group 729. A very large spot, with three or four small spots following it. The great spot undergoes constant change, especially after passing the central meridian. Group 731. A disturbed area, in which small spots appear and disappear at irregular intervals. No spots are seen on April 17. Group 732. A small spot. Group 733. Two small spots. The group increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes are very samil spot server rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes
in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The striking changes in size very rapid | | | | ii. | Sun's | HELIO | GRAPHIC | Sr | ors. | FACULES. | | | | .5 | Sun's | Hatrog | RAPHIC | Spo | 18. | FACULES. | |---|---------------|--|---|---|---|--|---|---|--|---|------------|--|---|--|--|--|--|---|---| | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group
(and for Day). | | 1882.
107 ^d ·665
I.
Apr. 19 | н, JР
Ј, м | 726
726
729
729
733
733
736
736
736
736
726
726
726
726
727
727
729
733
733
733
733
733 | 0.580
0.454
0.396
0.426
0.141
0.200
0.533
0.591
0.716
0.846
0.927
0.743
0.743
0.743
0.743
0.482
0.434
0.305
0.255 | 238-6
239-8
181-8
166-5
174-5
152-4
52-2
53-8
69-3
100-0
100-7
263-6
248-7
246-1
246-7
247-2
247-1
247-1
198-2
242-5
232-6
197-7 | 96:3
88:4
65:0
57:7
63:4
58:7
38:5
34:6
21:4
6:3
113:3
107:9
96:7
94:9
91:1
89:9
87:3
64:5
56:5
63:6
59:7
40:5 | -21'9 -17'8 -28'4 -29'5 -13'1 -15'3 +14'4 +15'9 +10'9 -11'2 -18'8 -21'0 -21'5 -17'1 -20'3 -19'6 -18'8 -29'2 -12'9 -13'8 +14'4 +14'4 +15'9 -11'2 | 8 76 138 14 0 0 0 27 31 (392) 12 7 10 167 0 189 9319 20 22 5 0 | 75
521
1890
98
59
15
27
6
224
144
(3934)
71
15
59
1129
29
112
479
1835
73
70
57
8 | 241 c
242 c
310 c
246
(2483)
857
348 c | 1882.
110 ^d ·664
I.
Apr. 22 | н, јр | 726
729
729
733
737
734
735
738
729
729
729
729
733
737
737
737
734
739
739
738 | 0.856
0.781
0.847
0.803
0.634
0.527
0.402
0.318
0.313 | 254'5
252'6
233'3
225'4
253'8
324'5
4'7
108'4
80'1
104'7
289'8
252'3
239'4
236'0
257'8
254'9
300'9
308'7
313'8
324'1
331'5
181'2
75'9
105'5 | 96'4
89'9
64'2
55'3
62'1
39'6
23'7
7'3
322'1
87'9
63'5
54'4
64'7
59'9
40'9
31'9
24'0
17'7
15'5
6'9
322'1 | -16·3 -17·8 -28·5 -29·4 -13·7 +15·2 +11·4 -10·4 +6·7 -18·2 -28·4 -29·0 -12·8 -14·9 +11·6 +10·3 +11·3 -10·4 +6·8 | 105
97
271
3
5
0
21
27
4
(533)
173
264
0
11
5
38
0
1
32
5 | 605
882
1346
26
49
12
157
157
59
(3293)
1094
1764
7
16
18
192
5
6
183
16 | 1504 e 420 e 110 c 107 e 576 e 644 (3361) 141 831 s 998 e 256 e | | Apr. 20 | J, M | 730
734
735
731
726
726
726
727
729
733
733
733
734
734
735 | 0'403
0'502
0'657
0'831
0'887
0'980
0'890
0'885
0'840
0'796
0'602
0'505
0'479
0'435
0'345
0'345 | 31'2
58'2
101'2
103'1
66'6
251'9
247'8
253'7
251'7
250'3
226'4
216'9
252'8
248'5
247'9
35'6
41'7
102'4 | 40.3
35.2
22.0
6.7
113.9
97.0
96.9
91.4
86.7
64.3
55.8
64.1
61.9
59.0
22.8
19.4
6.21.3 | +15·2
+10·7
-11·1
-18·7
-21·9
-16·7
-18·6
-28·7
-29·4
-13·8
+11·4
+11·0
-10·2 | 0
32
30
(741)
0
0
226
85
125
404
24
11
0
10
39
1
54 | (4314)
70
28
773
946
511
2030
79
76
5
44
227
10
193 | 310
364
(3313)
1800 c | Apr. 23 113:046 Apr. 24 113:666 I. | J, М | 729
729
737
737
734
739
739
735 | 0.987
0.945
0.943
0.886
0.790
0.703
0.703
0.4470
0.437
0.235
0.829
0.932 | 258:2
241:4
239:2
293:8
297:5
298:1
299:6
302:2
304:7
246:6
108:8
73:1
66:9 | 64.5
63.4
54.0
41.5
33.3
24.3
19.0
16.9
14.5
6.9 | -28.6
-29.5
+15.3
+15.1
+11.4
+ 9.6
+ 9.9
+ 9.7
-10.6 | (541)
0
319
0
7
31
8
0
9
32
(406) | (3376) 4 1731 3 16 17 149 13 8 14 158 (2113) | 256
(3015)
749 &
2345 e
441 s p | Group 726. Three small spots when first seen on E. limb. The group undergoes very great and violent changes, and increases in size very rapidly indeed. The most striking changes occur on April 16, 17, 18, and 19. Group 729. A very large spot, with three or four small spots following it. The great spot undergoes constant change, especially after passing the central meridian. Group 731. A disturbed area, in which small spots appear and disappear at irregular intervals. No spots are seen on April 17. Group 733. Two small spots. The group increases in size on April 16, 17, and 18, and forms an irregular group of small spots. On the following days all but two of these spots disappear. Group 736. A regular spot, with a small companion. Group 737. Several very small spots, which disappear before April 21. Group 737. Several very small spots, which break out in the same area of disturbance as Group 736. Group 739. Several very small spots, which rapidly diminishes in size. | | | | .8 | Sun's | HELIOG | RAPHIC | Spo | ots. | FACULÆ. | | | | in | Sun's | HELIOG | RAPHIC | Spo | TS. | FACULE | |-------------------------------------|------------|-------------------|--|--------------------------------|--------------|----------------|--|--|---------------------------------------|-------------------------------------|------------|-------------------|--|------------------------------|-------------------------|-------------------------|--|--|------------------------------------| | ireenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882. | 200 | | | 0 | 0 | 0 | 8 | | 117.0 | 1882.
119 ^d ·081 | J, M | | 0.870 | 0 104'9 | 0 | 0 | | | 217 | | 13 ^d ·666 | H, JP | 734 | 0.289 | 293.8
254.5 | 18.0 | + 12.1 | 2 23 | 109
20
141 | 117 c | Apr. 30 | J, M | | 0'905 | 70.8 | | | (37) | (126) | 247
(1209) | | 100 | | 735 | o-395
o-857
o-959 | 63.6 | 7.7 | -103 | 20 | *** | 458
315 | | | F3 | 1200.12 | 286.0 | | | | | 194 | | Apr. 25 | | | 0.967 |
75.7 | | | (123) | (997) | 204
(4091) | 120.030 | J, M | 742 | 0'992
0'901
0'545
0'622 | 281°1
315°5
59°4 | 284.5 | +15.1 | 4 30 | 13 | 82 | | 114'853 | н, јр | | 0.926 | 110.8 | | | | | 602
466 | | | 743
743
744 | 0.644 | 62.8 | 224.8
175.6 | +13.8 | 0 292 | 16 | 243 | | I. | | 737
737 | o.889
o.936 | 287.5 | 36.3 | +14.6 | 2 20 | 28
75 | 326 e | | | 7.11 | 0.878 | 54.7 | | | | | 193
283 | | 100 | | 734 739 | 0.844 | 287.0 | 24.5 | +11.7 | 20 | 74 | 124 C | May 1 | 113 | | 0.972 | 118.4 | | | (326) | (1312) | 187 | | 250 | | 739
735 | 0.743 | 286.7 | 15.1 | + 9.2 | 1 20 | 163 | 103 c | 121*049 | J, M | 7 | 0'956 | 280.5 | | | | | 263 | | Apr. 26 | | 740 | 0.416 | 321'0 | 344.8 | +14.5 | (63) | 5
(366) | (1621) | 121 049 | ., | 742 | 0.881 | 301.0 | 288.9 | +19.3 | 6 | 25 | 329
782 | | 115.661 | н, јр | | 0.016 | 296.3 | | | | | 295 | 100 | | 743
743 | 0.428 | 44'4
50'4 | 225.1 | +15.4 | 19 | 83
36 | 180 | | I. | 0.00 | 737 | o.876
o.988 | 254·5
285·6 | 38.0 | +14.7 | 0 | 110 | 159 | | -33 | 745 | 0.647 | 64.4 | 177.9 | +15.4 | 101 | 557 | 343 | | | | 737
734 | 0.966 | 287°1
285°4 | 31.6 | +15.3 | 35
5 | 174
79 | 743 c | 35 | | 746 | 0.884 | 114.0 | 169.3 | +22.0 | (130) | (786) | 377
175
(2449 | | | 5 | 734 | 0.894 | 283.4 | 24.5 | +10.2 | 0 | 55
24
182 | 709 c | May 2 | | | | | Part I | | (100) | (/20) | 15 | | | | 735 | 0.216 | 260°4
308°5 | 6·8
343·2 | +14.7 | 1 0 | 53 | 170 c | 122,102 | J, M | 742 | | 295.3 | 287.9 | +19.2 | 0 3 | 4 | 310
534 | | | | 741 | o.430 | 53·5
105·9 | 270.3 | +12'0 | | 9 | 407
480 | | | 747 | 0.382 | 358·5
15·7
58·1 | 234.0
227.9
218.6 | +18.7
+15.6
+ 5.5 | 5 4 | 38 | | | Apr. 27 | 10 | 13/4 | o goo | 100 9 | | | (61) | (686) | (3130) | | | 748
744
746 | 0.873 | 60.3 | 177.8 | +23.5 | 182 | 543
53 | 596 | | 117.050 | J, M | 735
740 | 0'920 | 260.6 | 7·3
344·3 | -10·3
+14·8 | 59
24 | 225
104 | 177 f
206 c | | | 749 | | 68.6 | 155.3 | +20.4 | 0 | 127 | 141 | | | | 742
741 | 0.22 | 36·8
62·7 | 281.6 | +11.0 | 14 | 56
27 | | May 3 | | | 1.5 | 1 | | | (205) | (787) | (1669 | | | | | 0.782 | 63.2 | | 7,5 | - | | 159
393 | 122.814 | H, JP | 747 | 0.421 | 293.7 | 235.2 | +18.6 | 0 | 4 | 607 | | Apr. 28 | | | 0.064 | 84.5 | | la a | (106) | (412) | (1029) | I. | | 743 | PERSONAL PROPERTY. | 345·9
56·8 | 229°0 | +15.7 | 87 | 428 | 211 | | 119.081 | J, M | 740 | 0.787 | 283.2 | 342.2 | +15.4 | 0 | 26 | 119
174 <i>n</i> J | - | 13 | 746 | 0.879 | 65.2 | 160.3 | +23.8 | 0 | 29
19 | 218 | | | - | 740
742
743 | 0.436 | 335.3 | 284.2 | +19.3 | 11 26 | 42
58 | 298 11 | | | 749 | 0'944 | 67.4 | 156.3 | -19·3
+19·8 | 0 (108) | 83
36
(603) | 300
868
(220 | Group 734. A regular spot, with a small companion. Group 735. A regular spot. Group 736. Group 736. Group 739. Several very small spots, which break out in the same area of disturbance as Group 736. Group 740. Several very small spots. Group 740. Several very small spots. Group 741. A small spot. Group 742. A small spot. Group 743. An irregular spot, with a small companion. Group 745. A small spot. Group 746. Two or three small spots close together. Group 747. Two very small faint spots. Group 749. A regular spot, with several small spots near it. The group undergoes several small changes. Group 749. A regular spot, with several small spots near it. Group 749. A regular spot, with several small spots near it. Group 749. A regular spot, with several small spots near it. | | | | | M | easures | of Posit | ions and | l Areas | of Spots a | nd Facula | upon | the S | Sun's D | isk—co | ntinued. | | | | | |---|------------|---|---|---|--|---|---|---|---|-------------------------------------|--------------|---|---|--|---|---|--|---|--| | | | | a a | Sun's | Непо | GRAPHIC | Sre | ors. | FACULÆ. | | | | .8 | Sun's | Негоо | ЭКАРИІ О | Sro | TS. | FACULÆ. | | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
124 ^d ·049
May 5 | J, M | 751
743
744
746
749
750
752 | 0.918
0.892
0.844
0.937
0.486
0.641
0.748
0.811
0.831
0.859
0.954 | 284°2
305°6
247°6
254°3
311°9
46°6
52°1
61°0
62°9
110°5
93°9 | 277'2
229'7
177'4
167'4
158'5
155'9
149'4
135'2 | -16.0
+15.7
+23.6
+24.6
+20.8
+20.1
-19.4
-4.8 | 0
6
139
21
15
44
0
14
(239) | 15
17
485
40
60
139
12
47
(815) | 139
169
87
114 c
694 c
187 c
785 f
240 f
(2415) | 1882.
126 ^d ·901 | <i>J</i> , м | 753
753
744
746
749
752
752
755
754
754
756 | 0'518
0'463
0'455
0'478
0'433
0'478
0'518
0'642
0'541
0'885
0'929 | 264·3
260·0
347·4
8·2
17·1
30·1
93·6
94·1
111·4
72·9
73·3
103·4
99·2
45·9 | 201°1
197°3
176°2
165°7
162°2
138°9
130°2
138°9
100°4 | 0
- 5.7
- 7.5
+ 23.1
+ 24.9
+ 21.2
+ 21.2
- 4.6
- 5.1
- 14.1
+ 13.5
+ 14.2
- 13.7 | 0
0
113
8
7
43
42
22
9
25
62
32 | 3
2
468
25
12
204
194
82
20
186
239
73 | 492 c
1495 s
271
97
(3756) | | May 6 | T.M. | 744
746
749
749
752
752 | 0.821 | 244.8
300.6
32.9
42.7
53.4
56.5
93.1
93.3
112.0 | 176·9
167·1
160·5
155·7
136·5
130·4 | +23·3
+24·7
+20·6
+20·6
- 4·4
- 4·5 | 137
13
13
60
49
13
(285) | 494
28
53
251
210
44
(1080) | 221
351
275 f
608 c
681
(2463) | 127·613 | н, лр | 757
744
746
749
749
752
752
755 | 0'419
0'424
0'422
0'351
0'498 | 292·2
276·2
287·5
330·1
348·3
354·7
3·3
11·8
94·6
94·8
118·1 | 155.3 | +22.8
+24.5
+21.5
+21.2
- 4.6 | 2
73
0
0
9
14
19
3 | 9
456
15
14
24
128
176
39
35 | 538
176
171 c | | 125'951 | J, M | 753
753
744
746
749
749
752
752
754 | 0.924
0.820
0.306
0.257
0.456
0.528
0.573
0.587
0.705
0.792
0.966
0.799
0.857 | 249'4
298'3
260'0
254'2
12'6
27'9
40'3
42'3
47'3
93'3
94'2
75'1
62'6
112'8 | 200°1
196°9
176°3
166°8
161°2
158°0
155°2
137°7
130°2
108°9 | +20.6
+22.0
+20.4
- 4.7
- 5.4 | 0
0
125
6
12
0
40
56
21 | 5
4
506
17
27
10
182
202
135
178 | 281
1180
723 s f
322 f
177
667 | May 9 | J, M | 754
754
756
757
758
744
746
749 | 0'794
0'853
0'867
0'953
0'885
0'840
0'983
0'640
0'669 | 70°3
71°0
103°8
109°7 | 220'2
180'3
175'9
165'8 | + 13.6
+ 14.4
- 13.5
+ 16.6
- 16.5
+ 23.2 | 22
8
2
(164)
43
0
147
5 | 170
121
45
(1232)
216
16
537
38
33 | 249 c
408 c
123 c
2181
(4034)
114
110
259 c | | May 7 | J, M | | 0.310
0.876
0.862
0.741
0.725 | 299.3 | | | (304) | (1266) | | | | 749
749
752
752
755
754
754 | 0.478
0.467
0.033
0.190
0.218
0.588 | 327.8
334.2
141.7
105.2
160.3
62.6
64.3 | 158.2
155.0
141.2
131.8
138.1
110.1 | +20.9
+21.9
- 4.5
- 2.8
-14.8
+13.1 | 16
28
45
0
10
39
21 | 50
158
154
15
27
167
140 | 512 c | Group 743. An irregular spot, with a small companion. Group 744. A large regular spot. Group 745. A regular spot, with several small spots near it. The group undergoes several small changes. Group 751. A small spot. Group 752. A regular spot, with some smaller spots following it. Group 754. A regular spot, followed by a close cluster of small spots. Group 755. Two very small spots close cluster of small spots. Group 756. A small regular spot, Group 757. A small
spot on May 9, but much larger on May 10. It is partly hidden by the wire on May 9. Group 758. Three very small spots. | | 1 | | Ħ | Sun's | HELIO | BRAPHIC | Sec | ors. | FACULE. | | | | .5 | Sun's | HELIOG | RAPHIC | Sro | TS. | FACULE. | |--|------------|--|--|--|---|---|--|---|--|---|------------|---|---|--|--|--|--|--|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from St
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
128 ^d ·986
May 10 | J, M | 756
759 | o:683
o:989 | 0
107'5
117'9 | 60.6 | 0
-14'0
-28'1 | 6
140
(511) | 24
560
(2135) | 2088 sf
700 p
(3783) | 1882.
131 ^d 939
May 13 | Ј, М | 760
760 | o.321 | 78°1
77°3 | 31:5
28:4 | +10.6 | 69
18
(726) | 288
96
(3187) | 632 e
(3492) | | 129°956 | Л, М | 744
749
749
752
755
754
754
759
759 | 0'968
0'946
0'790
0'652
0'598
0'574
0'227
0'250
0'422
0'520
0'940
0'977 | 250'4
265'3
302'1
308'9
311'0
315'8
263'7
217'4
49'7
54'7
118'6
120'1 | 176.0
162.5
158.3
155.0
142.6
138.6
110.4
103.7
60.9
52.4 | +22'8
+21'6
+20'4
+20'4
+21'5
- 4'2
-14'3
+13'0
+14'9
-27'9
-30'0 | 130
6
6
26
29
0
25
7
131
125
(485) | 468
29
37
163
147
26
143
77
827
504
(2421) | 84
176
305 c | 133°028 | J, M | 749
752
752
754
759
760
760
760
762
762 | 0.854
0.901
0.942 | 250'1
294'1
267'2
264'9
306'4
134'4
131'0
74'8
75'7
76'5
76'5
107'5 | 153.6
147.5
140.1
111.1
59.5
50.7
40.9
37.1
31.6
25.9
18.9 | +11.0 | 10
48
0
24
147
204
27
13
51
0
74
45
(643) | 48
145
12
131
946
755
133
71
245
107
318
340
(3251) | 449
290 n
311 e
1500 e
585 e
(3135) | | 131'097
May 12 | J, M | 744
749
749
749
752
752
755
754
754
759
760
760 | 0.814
0.752
0.727
0.510
0.431
0.469
0.288
0.343
0.847
0.908 | | 176·1
163·9
158·1
154·7
145·0
139·9
140·3
110·6
105·0
60·0
51·9
39·5
32·1 | +15°0
-27°9
-29°8 | 125
0
5
28
23
0
0
25
0
144
222
17
0
(589) | 462
17
30
160
98
50
16
120
46
829
894
143
261 | 68
434 c
489 n p
1700 c
222 c
243
(3156) | 133 [,] 941 | J, M | 752
754
759
759
759
750
760
760
762
762
762 | 0.618
0.512
0.508
0.612
0.613
0.647
0.745
0.795
0.859 | 294°0
249°8
266°9
296°0
152°4
146°8
140°1
70°0
71°6
73°6
73°8
109°0
105°1
106°2 | 148:4
111:6
61:2
58:7
50:0
41:2
38:5
30:5
26:0
18:7
15:8 | +13.7
-29.2
-27.3
-30.0
+10.2
+ 9.9
+10.5
+11.3
-17.5
-14.4 | 27
20
23
96
187
27
12
64
16
98
38
53
(661) | 101
96
107
557
776
118
54
278
101
415
204
248
(3055) | 158
612
336 8
521
849
(3672) | | 131·939 | J, M | 744
749
749
752
752
754
761
759
760
760 | 0.855
0.822
0.684
0.592
0.304
0.304
0.311
0.751
0.832
0.898 | 298.0
266.1
266.1
335.2
348.8
169.2
125.0
124.1
77.0 | 154.2
146.4
139.6
110.9
106.9
99.9
59.7
51.3 | +20°0
+20°9
- 4°7
- 4°5
+13°3
+14°6
-20°4
-27°4
-29°4
+10°4 | 0
6
24
30
5
26
0
135
332
46 | 498
26
93
112
25
114
4
13
747
873
134
164 | 373 c
817 n | 135.025 | J, M | 754
763
759
759
760
760
760
760
760 | 0.366
0.453
0.425
0.509
0.424
0.559
0.626 | 263.4
244.2
289.5
2.7
176.4
171.3
156.8
59.9
67.1
68.7 | 112'1
61'5
60'6
58'4
49'2
40'7
31'0
26'2 | +19°1
-29°1
-27°0
-30°1
+10°2
+10°6
+11°3 | 277
36
23
13 | 77
17
93
505
997
152
184
69
367 | 158
240
1138
2607 | Group 744. A large regular spot, Group 749. A regular spot, with several small spots near it. The group undergoes several small changes. Group 752. A regular spot, with some smaller spots following it. Group 755. Two very small spots. Group 756. A small regular spot. Group 750. Two very large spots of irregular outline. Group 750. A number of fragments after passing the central meridian. Group 750. A number of spots in a straight line. The preceding spot breaks up into a number of fragments after passing the central meridian. Group 760. A number of spots in a straight line. The group gradually diminishes, and only the preceding spot is left on May 22. Group 761. A small faint spot. Group 762. Two large regular spots, with a number of small spots between and around them. Group 763. Two very small faint spots. | | | | | N | Ieasures | of Posit | ions an | d Areas | of Spots a | nd Facula | e upon | the S | Sun's D | isk—co | ntinued | | | | | |-------------------------------------|------------|---|--|---|--|---|--|---|---------------------------------------|-------------------------------------|------------|--|--|--|--------------------------------------|----------------------------------|--|--|---| | | | (4) | ii. | Sun's | Непо | GRAPHIC | SP | ors. | FACULÆ. | | | | ii. | Sun's | Helio | GRAPHIC | Spe | OTS. | FACULÆ. | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from
Axis. | Longitude, | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
135d-025
May 16 | J, M | 762
762 | | 0
107·1
110·3
59·2 | 0
13.0
4.4 | -14.6
-18.6 | 114 10 (747) | 462
61
(2984) | 1278 c
148
(3222) | 1882.
138 ^d ·902 | J, M | 759
759
760 | 0°951
0°796
0°699
0°562 | 247.7
236.4
227.2
291.6 | 59°2
47°3
43°2 | -27·3
-29·8
+10·4 | 15
106
11 | 106
649
49 | 632
go2 c | | 136.069 | Ј, М | 754
763
759 | 0.444 | 242.5
286.1
327.4
201.5 | 112.6
63.4
60.2 | +19.8
-28.6 | o
o
25 | 54
10
99 | 2860
380 n f | May 20 | | 762
762
764 | 0.53
0.53
0.53
0.83 | 210·3
191·5
38·7
108·6 | 20°0
13°8
0°5 | -13.0
-14.3
+11.4 | 74
65
0
(271) | 399
609
6
(1818) | 141
(1675) | | | | 759
759
760
760
760
762
762 | 0.466
0.262
0.369
0.440
0.540
0.600 | 199.6
180.0
31.7
53.3
58.1
119.3
111.2 | 58·3
48·7
40·7
31·3
26·4
19·3
13·6 | -26.8
-29.9
+10.7
+10.6
+11.3
-17.2
-14.3 | 43
188
35
29
14
83
144
 281
1005
142
133
56
428
634 | | 140°010 | J, M | 759
759
760
762
762 | 0.824
0.753
0.464 | 240.2
234.4
285.2
236.2
234.0
65.1 | 59.1
46.9
44.0
14.0 | -16.5 | 17
189
0
108
87 | 75
536
16
438
537 | 1857 c
562 n
200
(2619) | | May 17 | | 762 | 0.419 | 113.5 | 4.9 | -18.3 | (561) | (2866) | 1295 c
(4535) | 140.618 | н, јр | 759
759 | 0.951 | 241.2 | 58·8
51·0 | | 4 0 | 45
19 | (zoig) | | 136-928 | Ј, М | 763
763
759
759
760
760 | 0.526 | 287'2
248'4
311'4
314'5
217'0
199'6
340'1
22'1
38'9 | 63·4
59·4
58·7
48·5
41·9
31·6
26·7 | +19°5
+18°5
-27°3
-30°0
+10°1
+12°0
+11°0 | 0
56
212
25
16
8 | 10
17
319
1114
116
58
25 | 271
1929 | Ι. | | 759
760
762
762
762 | o*880
o*838
o*576
o*536 | 236·4
285·2
242·9
242·6
243·2
118·1
66·4
106·4
290·2 | 46·2
44·1
20·8
18·1
14·3 | -30°0
+11°8
-16°5
-15°7 | 43
0
34
11
49 | 291
9
333
50
405 | 3012 e
353 n
120 e
179 e
135
551
182
249 | | May 18 | | 762
762
762
762 | 0.394 | 130·8
119·1
126·1
71·6
56·4
81·8 | 19·3
13·4
7·6 | -16.9
-14.6
-21.5 | 79
93
0 | 414
747
57 | 131
74
56
(2461) | May 22
141.592
I. | н, јр | 7 ⁵ 9
7 ⁶ 2
7 ⁶ 2 | o.887
-o.925
o.731 | 284'4
239'0
249'1
250'7
59'0 | 45·6
20·8
14·3 | -16.3 | (141)
43
40
27 | (1152)
211
353
339 | 900
1542 c
185 c
137 c
246 | | 138:072 | J, M | | 0'911 | 249'1 | 8 | | (4~3) | (20/1) | 1339 | May 23 | | | 0.933 | 283.4 | | -70-1 | (110) | (903) | (4168) | | | | 759
759
760
760 | 0.686 | 230°9
217°6
301°8
324°7
339°0 | 58·9
47·2
42·5
32·6
27·4 | -30.0 | 16
127
16
0
3 | 172
744
71
13 | | 142.600
I. | н, эр | 759
762
762 | 0.861 | 239.8
252.1
253.9
54.2 | 44'9
20'7
13'9 | -30°1
-16°1
-13°6 | 60
31
29
(120) | 281
314
356
(951) | 1391 8
81008
322
(2523) | | May 19 | | 762
762 | 0.256 | 171'4
146'5
105'2 | 20'0 | -16.5 | 77
85
(324) | 405
679
(2091) | 155 | May 24
143.598 | H, JP | 762 | 0.975 | 283·3
253·8 | 21'1 | -15°9 | 16 | 206 | 1166
1828 s | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facular relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 754. A regular spot, followed by a close cluster of small spots. The latter disappear before May 13. Group 750. Two very large spots of irregular outline. The preceding spot breaks up into a number of fragments after passing the central meridian. Group 760. A number of spots in a straight line. The group gradually diminishes, and only the preceding spot is left on May 22. Group 762. Two large regular spots, with a number of small spots between and around them. Group 763. Two very small faint spots. Group 764. A small spot. | | | | | | | | | | | 1 | - | - | - 1 | w | | - 1 | F | | Section 1 | |--|------------|-------------------|--|--|-------------------------|-------------------------|--|--|---|--------------------------------------|------------|---------------------------------|---|---|----------------------------------|---------------------------------------|--|--|---| | | | | in in | Sm.'s | Напос | RAPHIC | Sro | TS. | FACULE. | | 18-3 | | re in | Sun's | HELIOG | RAPHIC | Spor | rs. | FACULE. | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis, | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
143 ^d ·598
I.
May 25 | н, јр | 765 | o-985
o-892
o-958 | 75·8
102·0
63·4 | 230.0 | +13.7 | 23 | 201 | 172 c
117
648
(3931) | 1882.
150 ^d ·791
I. | н, лр | | 0°919
0°373
0°407
0°754
0°656 | 298.6
312.6
120.5
60.4
165.1 | 332.6
230.4
193.1
169.4 | 0
+25.7
+14.2
-12.3
+21.5 | 0
3 ₄
3
4 ² | 14
172
5
253 | 226 n p 374 n f | | 144.980 | J, M | 762
765
765 | oʻ995
oʻ886
oʻ939
oʻ858 | 255·8
73·8
75·7
59·1 | 14.9
229.9
222.0 | -14.3
+13.8
+13.0 | 41
73
0 | 252
213
29 | 1048 s f
573 f
292 | June 1 | | | 0.889 | 93.0 | | | (79) | (444) | 271
294
(1235) | | May 26
145.903
May 27 | Ј, М | 765
765 | 0.772 | 71'1
73'8
54'1 | 230.1 | +13.8 | 57
0
(57) | (494)
224
6
(230) | (1913)
524 f
197
(721) | 151'784
I. | M, JP | 765
767 | 0.983
0.918
0.541
0.618
0.858
0.970
0.980 | 295.6
258.9
297.9
53.1
117.8
72.3
102.8 | 230·2
168·9 | +14.4 | 29
47
(76) | 159
285 | 120
504
97 c
202
307
202 | | 146.612
I.
May 28 | н, јр | 765
765 | 0.766
0.658
0.743
0.900
0.937
0.947 | 250·9
67·8
71·6
120·3
94·6
53·4 | 230·6
223·2 | +13.7 +12.9 | 34 0 | 190 8 | 51
163 c
297 f
214
116
202
(1043) | June 2 | J, M | 765
769
767
770 | 0.913
0.828
0.730
0.291
0.466
0.849 | 245.4
303.7
290.9
192.5
37.6 | 230·5
189·6
168·1
129·6 | -16.6
+21.4
+16.6 | 47
0
61
4 | 187
6
208
15
26 | 74
368
188 c | | 147'974 | J, M | 765
766
767 | 0'939
0'900
0'756
0'430
0'866
0'993 | 288.6
251.9
302.5
54.1
106.5
68.3
68.1 | 230·3
192·3
169·2 | +13.8
-14.6
+21.4 | 45
o
70 | 212
10
356 | 74
108
207
102 f | June 3 | | 771 772 | o·925
o·939
o·693
o·762
o·863
o·915 | 72·3
74·1
42·0
120·9
98·7
104·9 | 116.9 | +14.9 | (112) | (452) | 374 c
117
339
115
159
(1734) | | May 29
148.897
May 30 | Ј, М | 765
766
767 | 0.835 | 297.9
30.7
297.9 | 230°3
193°3
169°5 | +13.8
-14.4
+21.5 | 38
0
81
(119) | 206
11
324
(541) | (1046)
156
80 f
131 c
(367) | 154.013 | | 765
767
770
773
771 | 0.370 | 287'7
8'3
65'3
66'9
69'8
125'8 | 168.0
131.0
135.1
119.6 | +16.6 | 30
47
5
0
2 | 165
218
10
2
7 | 393 c
309
524
(1689) | | 149'902
May 31 | | 765
766
767 | 0.565 | 342.7
114.8
64.5 | 169.1 | +14·1
-14·1
+21·5 | 49
0
83
(132) | 210
9
290
(509) | 334 s p
126
(702) | 154*995 | J, M | 765
767 | | 335·2
65·7 | 168.5 | | 36
40
(76) | 131 202 (333) | 282 n _J
136
425
(843) | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 762. Two large regular spots, with a number of small spots between and around them. Group 765. A regular spot, with a small companion. Group 766. A very small spot. Group 769. A very small faint spot. Group 771. A very small spot. Group 772. Two small spots. Group 767. A regular spot. Group 770. A small spot. Group 773. A small faint spot. | | | | | М | leasures | of Posit | ions and | l Areas | of Spots a | and Facula | e upon | the : | Sun's D | isk—co | ntinued | | | | | |-------------------------------------|------------|--------------------------|--|--|---------------------------------|----------------------------------|--|--|---|---|-----------|---------------------------------|--|--|--|---|--|--|--| | | Ba. | | e in | Sun's |
1 | GRAPHIC | 1 | ors. | FACULE. | | | | ii | Sun's | | GRAPHIC | Sr | OTS. | FAGULÆ. | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measures. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from & | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
155d·622
I.
June 6 | M, JP | 765
767 | | 321.5 | 230°0
167°9 | +15·3
+21·1 | 22
37
(59) | 129
199
(328) | 842 nf
765
(1607) | 1882.
160 ^d -929
June 11 | J, M | | o*852
o*975 | 133.3 | c | 0 | (88) | (529) | 369
153
(2371) | | 156·951 June 7 | J, M | 767
774
775
776 | 0'952
0'878
0'646
0'375
0'265
0'665
0'898 | 286·7
252·5
303·4
245·5
150·1
115·5
118·5
69·8 | 167.5
152.5
124.6
93.9 | +21°0
- 8°6
-13°0
-16°3 | 25
0
0
2
(27) | 145
11
7
6 | 76
99
199 s
701
53
(1128) | 161°911 June 12 | J, M | 778
777
777
779 | 0.815
0.766
0.735
0.496
0.523
0.598
0.781
0.763 | 291.8
245.9
279.0
326.7
115.3
114.7
108.0
129.5 | 84°3
38°0
32°9
17°2 | | 0
86
10
39
(135) | 5
436
5t
92
(584) | 578
753
70
346 c
753 s _J
433
(2933) | | 157.630
I.
June 8 | M, JP | 767
774 | 0.924
0.738
0.541
0.907
0.978 | 250.9
297.9
254.9
120.4
72.8 | 167*4
155*2 | +20.4
- 7.7 | 24
0 | 102 9 | 181
128 c
411
203
(923) | 162.794
I.
June 13 | н, јр | 777
777
777
777
779 | 0.939
0.375
0.414
0.427
0.647 | 285.7
125.9
132.8
124.8
111.5 | 37·1
36·8
34·1
17·3 | -11.7
-15.3
-13.1
-11.7 | 36
8
9
2
(55) | 357
54
82
27
(520) | 238
766 f
(1004) | | 158.970
June 9 | J, M | 767
774
777
777 | 0.835
0.895
0.789
0.932
0.963
0.855
0.909 | 306·1
293·1
260·4
103·7
104·5
124·6
77·1 | 167.2
157.1
37.9
32.2 | +20.8
- 7.2
-12.5
-13.8 | 16
1
71
21 | 45
6
322
117
(490) | 273
181 c
347 f
466 e
1075
700
(3042) | 164.012
June 14 | Ј, М | 777
777
777
780
780 | 0'927
0'856
0'277
0'229
0'268
0'897
0'956
0'706 | 289'9
245'5
181'5
175'0
165'7
66'7
66'9
125'5 | 39.4
37.8
35.1
337.0
327.2 | -14'9
-12'0
-13'8
+21'3
+22'4 | 35
60
29
21
0 | 225
357
184
53
9 | 257
913
351 c
280
(1801) | | 159'700
I.
June 10 | м, јр | 778
777
777 | 0.939
0.841
0.472
0.852
0.859
0.859 | 299'1
263'8
24'1
104'6
105'0
66'1
125'7 | 83°7
38°8
33°1 | +26.0
-13.1 | o
51
7
(58) | 12
231
56
(299) | 197
309
394 c
60
292
(1252) | 165.038 | J, M | 777
777
777
780
780 | 0.923
0.870
0.838
0.368
0.311
0.316
0.789
0.881 | 253.6
301.5
238.7
225.2
223.3
210.5
63.8
63.9 | 40'9
37'9
34'9
336'2
326'0 | -13·7
-11·7
-14·4
+21·2
+23·5 | 33
89
18
14 | 223
361
186
69 | 178
143
641 | | 160.929 | Ј, М | 778
777
777
779 | 0'968
0'953
0'895
0'767
0'432
0'691
0'753
0'905 | 301'7
260'4
242'4
292'4
352'7
108'6
109'3
105'0 | 83·3
37·9
32·9
16·2 | +26·1
-12·1
-13·8
-13·2 | 6
57
13
12 | 18
389
75
47 | 68
252
163
141
557 c
668 s | June 15
165:899 | J, M | 755 | o·786
o·893
o·974
o·939
o·775
o·566 | 81·3
106·7
254·4
299·1
234·1
299·8 | | | (154) | (856) | 24
105
(1560)
84
136
1360
157 | Group 765. A regular spot, with a small companion. Group 775. A very small faint spot. Group 777. A large spot, with several small spots following it. The group undergoes great and frequent changes. Group 778. Two small spots. Group 780. A number of spots arranged in a straight line. The group undergoes great and frequent changes. Group 774. A small spot. | | | | .E | n's | HELIOGI | RAPHIC | Sro | TS. | FACULE. | | | | .E | Sun's | Heliogr | APHIC | Spo | тв. | FACULE. | |------------------------------------|------------|--|---|--|--|---|--|--|------------------------------------|-------------------------------------|------------|--|--|---|--|---|--|--|--| | reenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Sun's
Axis. | Longitude. | | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude, | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group
(and for Day). | | 1882.
65 ^d ·899 | J, М | 777
777
777
780 | o·516
o·456
o·436
o·670
o·737
o·841 | 241.5
240.6
231.3
59.2
59.3
109.8 | 0
41.6
37.8
34.5
336.1
330.6 | 0
-13.0
-11.6
-14.4
+21.1
+23.1 | 66
68
33
23
2
(192) | 277
423
201
103
11
(1015) | 418 f
238
(2393) | 1882.
172 ^d ·902 | J, M | 780
780
781
782
783 | 0.970
0.826
0.828
0.784
0.295
0.793
0.944
0.829 | 245.6
251.6
292.9
298.1
321.2
74.0
75.3
53.7 | 335.4
329.9
292.3
229.7
210.9 | +20°1
+23°1
+15°4
+14°6 | 2
28
26
0
19
(75) | 20
139
133
11
84 | 174
34
729 6
97 6
697 7
230
(1961) | | 66.989 | Ј, М | 777
777
777
777
780
780
780
780 | 0°780
0°757
0°710
0°673
0°645
0°611
0°502
0°541
0°585
0°634
0°953 | 229'1
291'3
250'7
246'5
250'2
243'9
47'6
49'9
51'5
52'5
70'4 | 42.7
38.9
37.6
33.8
336.2
333.2
329.9
326.3 | +22.6 | 73
8
74
31
27
7
39
23 | 303
40
377
153
97
47
88
95 | 336 | June 23 173.908 June 24 | | 780
780
781
782
783
784 | 0.889
0.465
0.640
0.854 | 255·1
292·8
295·4
299·0
69·8
73·7
73·4 | 328'9
292'8
210'1
201'8 | +23.5
+15.1
+15.1 | 0
0
19
0
23
0
(42) | 7
10
90
8
91 | 65
1124
48
495 | | June 17 | Ј, М | 777
777
780
780
780
780
781 | 0.403 | 281'1
255'7
258'5
320'4
327'5
337'5
351'8
62'0
63'8 | 43·3
40·1
337·8
334·0
330·0
324·3
292·5 | $-11^{\circ}0$ $+21^{\circ}4$ $+23^{\circ}1$ $+25^{\circ}4$ | 0
33
2
11
33
0
25 | 57
126
24
64
256
34
125 | 413
290
952 s f | June 25 | J, M | 781
786
787
787
783
785 | 0.806
0.658
0.385
0.372
0.393
0.683
0.935
0.935 | 255-0
290-9
6-7
170-5
162-7
71-2
79-5
113-2 | 292.7
250.4
5 249.5
7 246.1
2 211.5
3 192.2 | +24'9
-18'9
-19'5
+14'6
+10'6 | (31) | 48 | 733
383
186
(21 | | June 20 170'791 I. June 21 | н, лг | 780
780
781 | 0.486 | 305.4
317.7
49.7 | 335.6 | +22.0 | 0 14 | 92
214
49 | 1107
96 e | June 20 | 6 | 781
786
787
783
783
783 | 6 0.411
7 0.374
3 0.527
5 0.752 | 333°;
191°6
66°6
78°;
7 106°; | 7 250'4
9 246'1
0 211'7
2 193'1
4 167'7 | +24.1 -18.8 $+14.6$ $+10.6$ | 0
3
2
5
13
8 | 61
61
20
67 | 7 33 | | 171.685
I. | н, л | 780
780
781
781 | 0.614 | 5 299.4
4 306.2
7 17.8
3 27.2 | 334.8
2 329.8
8 293.1
2 290.0 | $\begin{vmatrix} +12.1 \\ +12.1 \end{vmatrix}$ | 20 | 50
183
91 | 131 c
3 81 c | 177.027 | J, 1 | 78 | 0.800
0.800
0.517
6 0.527
7 0.500 | 301°
7 319°
7 313° | 9
8
2 251.4 | | | | | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 777. A large spot, with several small spots following it. The group undergoes great and frequent changes. Group 780. A number of spots arranged in
a straight line. The group undergoes great and frequent changes. Group 781. A small spot spots, of spots, followed by some smaller spots. Group 782. A small spot. Group 783. A small regular spot. Group 784. A small spot spots, of which the first spot is the largest. Group 785. A small spot when first seen on the E. limb. The group increases in size, and becomes a long line of spots, of which the first spot is the largest. Group 786. A very small faint spot. Group 787. Two very small close clusters of spots when first seen. The group developes into a line of spots, the middle spots of which soon disappear, whilst the first and Group 787. Two very small close clusters of spots when first seen. Group 788. Two irregular spots, and two or three very small spots close to them. | | | | | 1 | Measure | s of Posi | tions an | d Aren | s of Spots | and Facul | e upor | the | Sun's I | Disk—ce | ontinue | ł. | | | | |-------------------------------------|--------------|---|--|--|---|---|--|--|--|-------------------------------------|------------|--|---|--|---|--|--|---|---| | | | | e ii. | Sun's | Helio | GRAPHIC | Spe | ots. | FACULE. | | | | ii ii | Sun's | Helio | PRAPHIC | Spe | ots. | FACULE. | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
177 ^d ·027 | <i>J</i> , м | 787
783
785
785
788
788
788 | 0'481
0'325
0'527
0'576
0'835
0'874
0'909
0'915
0'952 | 217'4
49'1
74'5
73'4
110'6
109'0
109'7
66'6
118'7 | 244'7
212'0
195'7
192'5
172'7
168'0
163'7 | 0
-19.8
+14.9
+10.4
+11.7
-15.5
-15.1
-16.6 | 51
13
24
20
0
39
0 | 140
59
83
47
12
131
52
(603) | 1670 c
127
181
(3077) | 1882.
180 ^d ·943 | J, M | 787
787
783
785
785
788
788
789
792 | 0.604 | 257:3
300:0
250:9
248:0
288:8
287:2
297:0
181:7
161:0
104:1
103:4 | 252'7
242'1
212'7
199'1
193'1
175'4
168'4
144'8
138'9 | -18·1
-19·4
+14·1
+10·0
-13·6
-15·4
- 4·6
- 5·5 | 62
6
48
19
8
48 | 224
329
61
183
106
32
190
37 | 90
1589
511 e
182 e | | I. June 28 | н, ле | 786
789
787
783
785
785
788
788
788 | 0.659
0.636
0.584
0.214
0.335
0.430
0.723
0.771
0.837 | 303·0
236·2
229·6
14·9
66·5
67·6
114·0
112·2
111·6 | 252·2
249·1
243·5
212·2
197·3
191·5
172·4
167·9
161·4 | +23·2
-18·3
-19·7
+14·7
+10·3
+12·0
-15·0
-16·3 | 0
24
26
15
21
8
0
14
0
(108) | 12
133
333
45
188
74
19
176
17
(997) | 143 c-
46 c
278 c
223 s
(690) | July 1 | J, M | 790
793
791
787
783
785
785
788
788 | 0.628 | 70.0
68.5
118.1
260.6
249.5
284.9
281.5
286.9
221.3 | 137.0
127.8
116.3
244.5
213.3
199.8
192.7
176.8
168.6 | -20°1
+13°7
+9°8
+11°7
-20°1 | 2
8
12
(225)
0
0
45
18
4
39 | 14
40
46
(1269)
207
23
202
53
18
145 | 1114 c
523 n
(4250)
206
1416 n
532 c | | I. June 29 | н, лр | 787
787
783
785
785
788
788
788
789
790 | 0'774
0'701
0'246
0'156
0'263
0'591
0'643
0'721
0'901
0'928 | 243.6
238.0
326.1
37.2
53.2
120.8
118.2
115.5
96.6
74.9 | 250·6
242·9
212·0
198·4
191·5
172·3
168·1
161·5
140·2
136·1 | -18·1
-19·5
+14·6
+10·0
+11·9
-15·1
-15·8
- 4·7
+15·0 | 13
45
6
14
12
2
12
0
3
0
(107) | 143
339
48
105
31
32
183
4
42
13
(940) | 115 c
128 c
110 c
237 f
676 f
(1266) | July 2
182°957 | Ј, М | 789
792
790
791
785
785
788 | 0.303
0.402
0.457
0.780
0.581
0.870
0.781
0.711
0.560 | 116·3
111·7
65·2
123·5
63·1
289·2
279·3
283·3
236·2
232·0 | 145.6
139.4
136.1
116.4
199.4
193.0
176.9 | - 4.6
- 5.6
+ 14.0
- 23.2
+ 9.3
+ 11.8 | 7
0
0
9
(122)
46
0 | 25
8
1
40
(722)
208
14
15
40 | 955 n _J 265 (3374) 704 347 c | | I. June 30 | н, јр | 787
787
783
785
785
785
788
788
789
790
791 | o.159
o.385
o.469
o.748 | 294.7
248.3
244.1
300.1
304.7
335.9
348.6
139.0
131.7
98.9
73.4
114.4 | 252·3
242·5
211·8
199·6
193·8
191·4
174·6
168·4
141·9
137·0
116·8 | -19.6
+15.0
+ 9.8
+12.2
+12.0
-14.0
-15.3
- 4.6 | 14
23
8
19
0
8
3
13
4
0
(92) | 161
356
35
145
18
29
44
168
41
15
35
(1047) | 454
348 c
151 c
275 f
770 f
201 c
(2199) | July 3 | J, M | 788
788
789
792
790
793
791
785
788
788 | 0.200
0.286
0.438
0.665
0.803 | 232'0
226'8
161'9
132'9
43'4
55'0
131'0
118'3
293'9
278'9
251'8
250'3 | 171°2
168°2
145°6
139°8
136°5
126°2
115°3 | -15.0
- 4.6
- 4.6
+15.2
+17.6
-23.0
+ 9.4
-13.1 | 9
49
4
15
0
2
(125) | 40
122
12
86
8
8
9
(522) | 1009
(2060)
237
422 c | Group 783. A small regular spot. Group 785. A small spot when first seen on the E. limb. The group increases in size, and becomes a long line of spots, of which the first spot is the largest. Group 786. A very small spot spots when first seen. Last increase in size. Group 789. A small spot. Group 789. A small spot. Group 792. A very small faint spot. Group 793. A very small spot. Group 793. A very small spot. Group 794. A very small spot. Group 795. A small spot, ot seen on July 2. | | | | ï | Sun's | Непос | TRAPHIC | Spo | ors. | FACULE. | 1 | | | S. II. | Sun's | HELIO | BRAPHIC | Sro | TS. | FACULA | |-------------------------------------|------------|-------------------|---|---|------------------------------|---------------------------------------|--|--|--|---|------------|---------------------------------|---|--|-------------------------------------|------------------------------------|--|--|------------------------------------| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Green wich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
184 ^d *974 | J, M | 788
789
789 | o'772
o'447
o'393 | ° 247'4
253'3
251'9 | o
168·8
146·8
143·4 | 0
-14'9
- 4'2
- 3'7
- 5'1 | 22
1
4
34 | 102
8
26 | 760 c | 1882.
189 ^d ·938
July 10 | Ј, М | | 0.907 | 84.4
68.2 | 0 | U | (13) | (47) | 66
102
(2623) | | July 5 | | 792 | 0.345
0.815
0.923
0.943
0.970 | 245°0
127°6
118°1
72°4
105°0 | 139,7 | | (93) | (376) | 411
400
448
479
(3157) | 190°794
I. | н, јр | 794
794
794 | 0'942
0'888
0'267
0'246
0'244 | 287'3
244'9
319'9
323'0
339'0 | 54.8
53.3
49.7 | +15.8
+15.3
+17.2 | 6 4 10 | 33
316
48 |
195
1010 | | 186·916 | н, јр | 789
792 | 0.323
0.301
0.200
0.200 | 250.8
292.5
260.7
258.6 | 145.3 | - 4.8
- 5.3 | 10
16 | 19 | 898
223
101 c
177 c | July 11 | J, M | | 0.310 | 143·2
68·9 | | | (20) | (397) | 799
(2663)
319 | | July 7 | | | o.845
o.898
o.947
o.948 | 80°0
110°2
122°1
132°4 | | | (26) | (101) | 459
952
178
516
(3504) | | | 794
794
794
795 | 0.769
0.460
0.453
0.404
0.803 | 234.4
296.0
302.2
303.0
79.1
156.6 | 54.2
52.5
49.5
335.6 | +15.4
+17.8
+16.6
+11.3 | 39
13
10 | 222
28
31
14 | 74 | | 187.606
I. | н, јр | | 0.978
0.921
0.822 | 252°1
292°4
233°2 | | | | | 388
284
59 | July 12 | | | 0.867 | 64.7 | | | (62) | (295) | 482 (1240 | | | | 789
792 | 0.776
0.869
0.848
0.848 | 287.6
262.5
260.3
110.2
134.5 | 146·3
139·3 | - 4.6
- 5.5 | 6 | 12
49 | 199
484 c
618
531 | 192'749
I. | н, јр | 794
794 | o.953
o.600
o.558
o.830
o.974 | 247.0
290.2
60.4
70.4 | 54.3
50.4 | +15.4 | 24 10 | 253
25 | 601 | | July 8 | | | 0.991 | 125.5 | | | (16) | (61) | 990
(3553) | July 13 | J, M | 1 6 | 0.824 | 242'4 | | | (34) | (278) | (1380 | | 189.076 | J, M | | 0'976
0'972
0'900
0'760
0'806
0'842
0'895 | 238.6
264.6
288.4
237.0
118.0
142.5
132.0 | | | | | 68
459
501
311
417
175
403 | | | 794
794
796
796
797 | 0.767
0.746
0.795
0.740
0.142
0.094
0.948 | 216.8
202.4
286.2
288.1
305.7
314.9
76.6 | 54.5
49.2
9.0
6.1
290.6 | + 15.6
+ 16.3
+ 9.1
+ 8.2 | 45
12
14
8
77 | 231
34
26
18
446 | 121
226
357 | | July 9 | J, M | | 0.957 | 288 6 | | | (0) | (0) | (2334) | | | 797
797 | 0.968
0.974
0.756 | 79°2
75°0
54°6 | 284.9 | +11.6 | 7 6 | 49
73 | 735
164 | | | | 794
794
794 | 0.821
0.210
0.208
0.236
0.743
0.837
0.859 | 241°1
0°0
9°0
14°7
152°3
139°1
120°4 | 55·8
53·9
52·2 | | 11 0 2 | 34
6
7 | 752
337
432
423 | July 14 | J, M | 794
794
796 | o.859
o.835
o.920
o.870
o.384 | 249'8
217'1
285'3
287'1
283'8 | 55·1
48·3
10·2 | + 15·9°
+ 17·1
+ 9·5 | 31
0
5 | (877)
496
7
37 | 390
281
425 | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 788. Two irregular spots, and two or three very small spots close to them. Group 792. A very small faint spot. The group increases as it approaches the central meridian, and forms three or four spots. Group 794. A number of small spots. Before disappearing at the W. limb they have almost all coalesced to form one large spot. Group 795. Two very small spots, not seen on July 13 and 14. Group 797. A large regular spot, with several small spots following it. These smaller spots disappear before July 22. | | | | .E. | 1 | | GRAPHIC | | ors. | FACULE. | nd Faculæ | - Post | | .a | | | | | | 1 1 2 | |-------------------------------------|------------|--|---|--|--|---|--|--|---|-------------------------------------|------------|--|---|--|--|---|--|--|---| | | | | tre
us, | Sun's | TELIO | GRAPHIC | 510 | OTS. | - 3 2 2 3 | | | 1 30 | | Sum's | HELIOO | PRAPHIC | Spo | TS, | FACULE. | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from Axis, | Longitude. | Latitude, | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude, | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882. | | | | 0 | 0 | 0 | | | | 1882. | | | - | 0 | 0 | 0 | | | 7 | | 195 ^d ·057 | J, M | 796
795
797
797
797
798 | 0:320
0:254
0:834
0:871
0:884
0:943 | 282.5
62.5
76.3
79.4
74.6
71.8 | 6·4
334·9
291·7
287·5
286·0
277·4 | + 8.2
+11.1
+13.9
+11.4
+15.7
+18.6 | 7
0
109
17
12
6
(187) | 26
24
462
44
102
50
(1248) | 1130 e
(2226) | 197 ^d ·952 | J, M | 798
798
800
800
800
802
802
803 | 0.528
0.577
0.765
0.796
0.865
0.865
0.892
0.983 | 60'9
62'4
109'9
107'8
108'4
115'4
113'9
108'9 | 280.6
277.0
262.6
259.3
257.3
254.1
250.5
232.7 | +19'0
+19'5
-11'9
-12'1
-19'1
-18'7
-17'5 | 0 0 0 0 0 0 | 5
32
19
21
9
17
12
41 | 189 c 731 c 172 f | | 196.018 | J, M | | 0.885 | 248.9 | - 440 | | | | 751
440 | 100 | | | 0.946 | 75°2 | | | | | 138 | | | | 794
796 | 0.524 | 285.8 | 56.1 | + 16.3 | 34 | 117 | 870 f | July 18 | | | | | | | (128) | (694) | (3859) | | July 16 | | 796
795
795
797
797
797
798 | 0°483
0°119
0°124
0°696
0°744
0°755
0°836
0°968
0°982 | 280·6
338·2
14·5
74·5
78·7
73·2
69·7
84·9
106·7 | 4°0
338°0
333°6
291°8
287°5
287°0
279°4 | + 9'1
+11'5
+14'1
+15'7
+19'} | 0
2
0
60
0
6
2 | 2
5
20
475
26
144
10
(805) | 2347 f
68
379
(4855) | 199:006 | Ј, М | 797
797
798
800
800
802
802 | 0'937
0'927
0'645
0'181
0'256
0'403
0'601
0'642
0'674
0'737
0'780 | 278·2
237·1
225·8
12·5
37·3
52·5
117·3
113·7
114·2
122·7
119·3 | 293.5
286.5
276.2
262.9
259.2
257.1
254.7
250.0 | +15.0
+16.6
+18.7
-11.9
-12.2
-19.7
-19.0 | 105
9
8
4
0
2
6 | 403
49
42
11
6
12
32 | 122
376
62
65 f
814 f | | 196.940 | J, M | 796 | 0.933
0.931
0.859
0.697 | 292.2
281.4
248.5
223.2
276.8 | 7'4 | + 8.1 | 0 | 7 | 183
222
380
511
159 c | July 19 | | 803 | 0.830
0.830
0.94 | 73.9
62.6
113.0 | 231.3 | -18:3 | (134) | 33 (595) | 442 f
103
252
(2236) | | July 17 | | 795
795
797
797
797
798
799
800 | 0.296
0.216
0.530
0.601
0.611
0.701
0.685 | 294.2
304.2
69.9
73.8
70.3
67.1
111.7
105.6
86.0 | 339.1
333.7
292.4
286.9
286.7
280.2
282.9
261.3 | +11.4
+11.6
+14.6
+13.5
+15.7
+19.3
-11.1 | 0
0
68
0
13
0
0 | 7
5
6
419
2
88
8
6
20
(561) | 1272 f
55 f
426 s f
44
(3252) | 200'032 | J, M | 797
797
797
798
802
802
803
804 | 0'941
0'807
0'263
0'224
0'197
0'259
0'582
0'633
0'827
0'914 | 239.6
288.9
310.9
321.8
334.7
16.4
134.3
129.5
115.6
72.1
56.9 | 294°0
290°4
287°2
277°8
256°1
251°1
230°8
216°0 | +14.8
+15.1
+14.9
+19.3
-19.4
-17.8
+18.4 | 71
4
6
4
17
0
15 | 327
19
61
35
59
21
33
18 | 195
382
426 f
342 f
539 s;
318 | | 197'952 | л, м | | 0.987 | 283'9 | | | 1 | 1 | 144 | July 20 | | | 0 878 | 30.9 | | 2016 | (117) | (573) | (2202) | | | | 801
797
797
797
797 | 0.863
0.773
0.949
0.332
0.330
0.369
0.428 | 278.0
232.7
246.7
57.0
65.6
62.4
63.4 | 17.8
293.0
291.9
290.1
286.4 | -20'3
+15'0
+12'4
+14'4
+15'4 | 0
84
10
5 | 11
393
29
6
99 | 1074
208
424
664 n | 201:033 | J, M | 797
797
797 | 0.931
0.895
0.843
0.790
0.447
0.380
0.314 | 279'9
293'6
254'9
303'2
292'7
300'6
308'0 | 294'1
288'8
283'9 | +16.1
+17.0
+17.0 | 74 | 359
33
7 | 152
422
227
298 | Group 794. A number of small spots. Before disappearing at the W. limb they have almost all coalesced to form one large spot. Group 795. Two very small spots, not seen on July 13 and 14. Group 797. A large regular spot, with several small spots following it. These smaller spots disappear before July 22. Group 798. A close cluster of very small faint spots. Group 803. A small spot. Group 804. Two small spots. Group 805. Other small spots. Group 805. Other small spots. Group 806. Two small spots. Group 806. There or four small spots.
Group 806. Three or four small spots. | | | | ii | San's | Helio | GRAPHIC | Spe | ors. | FACULÆ. | 1 1 | | | ii . | Sun's | Herro | GRAPHIC | Spo | TS. | FACULÆ, | |-------------------------------------|------------|--|--|---|--|---|--|--|---|-------------------------------------|------------|---|---|---|---|---|--|--|-------------------------------------| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
201 ^d ·033 | J, M | 798
805
802
802 | 0°284
0°126
0°425
0°463 | 327.5
69.2
153.1
154.4 | o
278·2
262·2
257·4
256·8 | 0
+18.9
+ 7.6
-17.2
-19.6 | 2
0
0 | 22
9
13
75
63 | | 1882.
203 ^d ·897 | Ј, М | | o.844
o.940
o.943 | 67°2 | 0 | 0 | (154) | (682) | 388
106
384
(4305) | | July 21 | | 802
803
804
806
806 | 0.515
0.704
0.811
0.942
0.974
0.792 | 146.6
122.3
69.8
81.4
79.6
53.8 | 251'4
230'4
215'5
198'3
191'6 | -20.6
-18.1
+19.3
+ 9.8
+11.3 | 12
8
7
0
0 | 63
21
41
23
36
(702) | 238 f
153 s
1740 c
239
(3469) | 204·689 | н, јр | 797
802
802
802
807
807 | 0°958
0°724
0°706
0°654
0°281
0°366 | 283°1
236°2
232°9
227°1
49°1
58°7 | 294.6
260.2
257.6
251.6
208.0
201.8 | +14'1
-19'6
-20'9
-21'8
+15'8
+16'1 | 60
5
6
0 | 309
49
22
3
10
6 | 1199 nj
42 c | | 201.606
I. | н, јр | 797
805
802
802 | 0'924
0'554
0'052
0'428 | 293·1
288·6
330·1
171·4
165·0 | 294°1
262°9
257°5
254°3 | +14.4
+ 7.7
-19.9
-20.4 | 52
0
9 | 343
19
66
43 | 968
127 c
92 c | July 25 | | 806 | o·364
o·891
o·952
o·979 | 75.0
67.2
97.2
75.3 | 199*9 | +10.4 | (76) | (417) | 416
177
200
(2434) | | July 22 | | 802
803
804
806 | 0.465
0.623
0.731
0.882 | 158°0
128°2
68°0
81°6 | 250·7
230·5
215·6
199·3 | -20.4
-18.2
+19.5
+ 9.8 | 14
2
0
3
(82) | 41
13
19
34
(578) | 144 s f
97 c
1676 n f
(3104) | 205-906 | J, M | 802
802
807 | o'948
o'849
o'738
o'869
o'855
o'195 | 290'3
276'4
192'0
244'5
241'6
341'7 | 260.3
257.9
208.1 | -18.9
-20.8
+16.1 | 19
7
9 | 52
12
14 | 1184
106
45
705 f | | 203'079 | J, M | 797
802
802
802
807
807 | 0.923
0.795
0.504
0.482
0.469
0.590
0.622
0.667 | 303·5
283·5
212·6
205·7
200·5
69·6
70·8
70·9 | 294.5
258.6
254.7
252.0
206.9
204.4
200.9 | +13.9
-20.0
-20.5
-20.8
+16.2
+16.0
+16.6 | 94
15
7
0
3
0 | 443
79
37
16
20
7 | 211
308 c | * 1 | | 807
807
806
806 | 0°176
0°188
0°163
0°225
0°684
0°731
0°849
0°924 | 359.7
14.3
41.6
73.7
121.4
63.6
100.0
72.7 | 204.6
201.7
198.2
191.9 | +15.6
+16.0
+12.5
+ 9.0 | 3 0 | 26
57
16
8 | 221
268
240
233
(3002) | | July 23 | | 806
806
806 | 0.674
0.711
0.765
0.909
0.984 | 80.7
80.2
79.8
111.6
69.6 | 191.9
196.6
193.7 | +10°7
+11°3 | 18 0 0 | 64
7
25
(715) | 1249 f
376
118
(2468) | July 26
206.906 | Ј, М | 802 | 0.962
0.942
0.730
0.956 | 277'9
233'2
248'3 | 260.9 | -18.8 | (54) | 20 | 398
152
160 | | 203.897 | J, M | 797
802
802
807
807
807
806
806 | 0.432
0.483
0.523
0.527 | 302.7
282.9
227.1
223.1
217.1
63.8
67.5
67.7
79.1 | 294'7
259'3
256'7
251'7
207'4
203'7
201'0
199'5 | +15.3 | 110
17
9
0
6
0
8
4 | 466
75
49
9
12
10
25
26 | 195
1762 sf
246 c | July 27 | | 802
807
807
807
806
806
808 | 0'941
0'340
0'293
0'258
0'161
0'066
0'965
0'868
0'887 | 246·3
303·5
306·2
316·4
310·5
345·5
103·4
71·3
177·9
128·0 | 257.6
208.4
205.4
201.9
198.4
192.3
118.3 | -20°1
+16°2
+15°3
+16°2
+11°6
+ 9°2
-11°3 | 3
4
9
4
0
32
(55) | 6
15
11
49
16
23
113 | 196 p
315
121
80
(2083) | Group 797. A large regular spot, with several small spots following it. These smaller spots disappear before July 22. Group 798. A close cluster of very small faint spots. Group 802. Two small spots. Other small spots appear and form a V-shaped group, the preceding spot, which is also the largest, forming the angle of the V. Group 803. A small spot. Group 804. A small spot. Group 805. A close cluster of small spots. Group 806. A small spot, with two or three small faint spots near it. Group 806. A small spot, with two or three small faint spots near it. Group 806. A close cluster of small faint spots near it. Group 806. A close cluster of small faint spots near it. | 100 | 160 | | l.s | Sun's | HELIC | OGRAPHIC | SP | ors. | FACULÆ. | | | | ü | Sun's | Hillio | GRAPHIC | Sm | ots. | FACULÆ | |---|------------|-------------------|--|---|-------------------------|---------------------------|--|--|--|-------------------------------------|------------|--------------------------|---|---|-------------------------------|----------------------------------|--|--|--| | Greenwich
Mean
Solar
Time. | Mensurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S.
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from Su Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | | 1882.
207 ^d ·670
I.
July 28 | н, јр | 857
807
808 | o-966
o-776
o-481
o-390
o-907 | 249:3
236:4
291:3
296:1
104:9 | 208.7 | +15.0 | 0 0 0 (0) | 5
23
140
(168) | 1282
116
471 c
(1869) | 1882.
214 ^d ·076 | J, M | 808
809 | 0.464
0.634
0.808
0.833
0.859 | 230.7
71.0
82.8
117.8
64.4 | 117.9
57.9 | -11.4
+16.6 | o 2 (69) | 15
10
(453) | 432 e
328
438
54
(1973) | | 208·927
July 29 | J, M | 807
807
808 | o'923
o'907
o'823
o'693
o'663
o'748
o'882 | 244'9
299'5
225'8
277'1
286'3
109'4
117'7 | 208·6
205·7
118·9 | + 9.1
+ 15.1
- 10.4 | 0
0
25
(25) | 49
12
233
(294) | 411
326
76
642 sp
444 c
382
(2281) | 215'047
Aug. 4 | Ј, М | 808
808
808 | 0'945
0'888
0'786
0'740
0'714
0'623
0'730
0'857 | 294'4
258'2
287'2
247'2
244'7
243'0
82'1
117'6 | 127·8
125·1
118·0 | -12·3
-13·1
-11·4 | 51 11 0 | 331
151
7
(489) | 148
124
254
368 c
81
177
(1152) | | 211'049
July 31 | J, M | 808
808 | 0.930
0.881
0.758
0.733
0.363
0.417
0.802
0.970 | 301·3
281·8
242·8
258·0
144·3
135·7
127·9
74·0 | 124'2 | -11·3
-11·7 | 18 8 | 173
164
(337) | 64
960
297
114
324
270
(2029) | 217.038 | J, M | 808 | 0.923
0.831
0.739
0.952
0.700
0.899
0.919
0.952
0.988 | 290'0
240'1
219'9
255'0
130'3
100'9
128'0
73'9
83'4 | 127.2 | -12'2 | 62 | 436 | 121
237
142
630 f
131
77
647
69
54 | | 212:895 | Ј, М | 808
808
808 | 0.934
0.932
0.929
0.808
0.714
0.400
0.380
0.333
0.723
0.797 |
291°1
249°1
280°8
293°0
301°4
219°8
211°5
199°7
141°2
73°4 | 127:2
123:8
118:7 | -12.5
-13.0
-15.0 | 80
19 | 314
139
42 | 143
466
259
54
135 | Aug. 6 219·104 Aug. 8 | J, M | 810 | 0.861
0.852
0.814
0.969
0.746
0.782
0.853 | 303·7
237·7
291·3
69·2
31·5
85·7
66·6 | 313.2 | +21.7 | 0 (0) | 29 | 354
722
132
304 s
367
61
256
(2196) | | Aug. 2 | J, M | 808
808 | 0.910
0.926
0.867
0.842
0.812
0.752 | 295.0
256.2
273.2
221.1
239.5
235.2 | 128.0 | -12·3
-13·3 | (109) | (495)
281
147 | 350
164
(2059)
310
263
44
104 | 220°125 | J, M | 811
811
810
812 | 0'968
0'823
0'720
0'262
0'285
0'885
0'979
0'835 | 297'1
231'1
290'5
19'3
28'6
68'7
75'9
60'2
110'6 | 11.2
8.1
314.1
297.2 | +20.4
+51.8
+12.1
+12.1 | 10
6
6
6
37 | 40
22
16
154 | 84
318
123
281 8,
81
175
(1062) | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facula relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 807. Two or three small spots. Group 808. A close cluster of small faint spots. of the V. Group 811. Two spots, which rapidly increase in size on August 10 and 11. Group 812. A regular spot. Group 812. A regular spot. | | | | ii . | Sun's | Heliog | RAPHIC | Src | ors. | FACULÆ. | | | | e in | Sun's | HELIOG | RAPHIC | Sro | rs. | FACILÆ. | |---|--------------|--|---|--|--|--|--|---|---|--|------------|---|--|--|---|---|--|--|---| | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Aren of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centro
terms of Sun's Radius, | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
220 ^d ·878
I.
Aug. 10 | н, јр | 811
811
810
813
812 | 0'954
0'831
0'252
0'234
0'798
0'908
0'932 | 233°4
288°3
337°7
357°1
66°8
112°7
75°8 | 12·3
7·2
314·2
305·3
297·1 | +20°0
+20°0
+22°4
-17°4
+15°6 | 27
10
2
0
18
(57) | 198
60
21
8
155
(442) | 54
286
118 c
87 c
318 f
524 n f
864 n f
(2251)
223
304 | 1882.
226 ^d ·037
Aug. 15
227·070 | J, M | 811 | 0'904
0'941
0'751
0'980
0'251
0'763
0'814
0'825 | 290'7
289'4
307'6
69'2
105'7
59'7
74'2 | 4.6
296.6 | + 20·3
+ 15·4 | (121)
O
22 | (512)
69
125 | 232
88 f
82
66
135
73 | | Aug. 11 | J, M | 811
811
811
810
812 | 0.774
0.671
0.430
0.381
0.358
0.613
0.800
0.829 | 276.6
180.6
302.0
305.4
313.0
61.6
76.0
118.3 | 12.8
9.3
6.3
314.7
296.9 | +19.2
+18.9
+20.4
+22.4
+15.1 | 61
0
51
0
48
(160) | 262
18
253
22
202
(757) | 235
345
107 f
1117 nf
323
(2654) | Aug. 16
227:660
I. | н, јр | 812
814 | | 290.7
233.3
275.1
295.6
106.1
122.0
71.1
99.3 | 296:4
241'7 | +15.4 | 9 0 | 104 3 | (676)
252
655
174
160 6
58
142
212
747
128 | | Aug. 12 | J, M | 811
811
811
812 | 0.868
0.771
0.702
0.566
0.524
0.483
0.683
0.755 | 278·9
236·7
198·0
294·0
297·0
301·6
76·2
122·6 | 12.9
9.5
5.9
296.9 | +18.9
+19.5
+20.6
+14.2 | 52
0
50
. 43
(145) | 221
10
265
183
(679) | 321 c
1236 nf
432
(2837) | Aug. 17
228'636
I. | н, јр | 812
814
814
815
816
816 | o·544
o·585
o·886
o·940 | 222:3
293:5
287:7
146:9
141:8
101:2
77:0
78:3
113:4 | 296.4
245.6
241.3
203.2
193.1
185.3 | +15.4
-20.5
-20.9
-6.6
+14.6
+12.9 | (9)
- 15
- 4
- 9
- 0
- 38 | 99
166
24
4
15
183 | (2475)
251
137
95 (
155)
1059 n
161 | | Aug. 14 | <i>3</i> , м | 811
812
812
812
811
811
812
812 | 0.834
0.805
0.871
0.807
0.298
0.351
0.845
0.863
0.957
0.911
0.156 | 218.76
290.5
57.8
58.3
116.4
222.2
287.8
289.4
97.
19.8 | 12.8
5.4
296.8
293.8
12.5
4.6
296.8
294.5 | +18.6
+20.4
+15.6
+16.9
+18.9
+20.4
+15.5
+17.2 | 33
28
38
0
(99)
41
45
35
0 | 186
116
166
4
(472)
193
171
142
6 | 200
93
306 e
484
(1267)
344
274 e | Aug. 18 | Ј, М | 812
817
814
818
815
819
820
816
816 | 0.931
0.905
0.905
0.610
0.518
0.459
0.475
0.533
0.622
0.657 | 248'0
322'5
303'5
283'9
221'6
206'8
206'9
119'2
79'9
78'5
77'5
75'1
77'8 | 296·5
258·0
246·8
244·9
207·1
204·1
200·3
191·5
190·1 | +15.5
-20.9
-20.8
-17.4
- 7.5
+10.9
+12.0
+13.1
+15.0
*+13.3 | (66) 12 31 5 0 8 2 0 77 0 21 | 78
128
13
4
24
6
6
4
446
11
84 | 191
35
210
1381 n | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters u, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 810. A small spot. Group 811. Two spots, which rapidly increase in size on August 10 and 11. Group 812. A regular spot. Group 813. A very small faint spot. Group 813. A very small spots in a straight line. Group 815. A small spot. Group 816. Two regular spots, with several small spots between them. Group 817. A close cluster of three or four spots. Group 818. A small spot. Group 819. A very small spot. Group 810. Two regular spots, with several small spots between them. Group 810. A very small spot. Group 810. A very small spot. Group 811. Two spots, which rapidly increase in size on August 10 and 11. Group 813. A very small faint spot. | | 1 | | H | Sun's | Helie | GRAPHIC | Sı | ors. | FACULÆ. | | | | H | Sun's | Helio | PRAPHIC | SP | ors. | FACULÆ | |--|------------|---|--|---|--|---|--|---|--|-------------------------------------|------------|--|--|---|--|--|--|--|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of
UMBRA
for each Spot
(and for Day), | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
231 ^d ·029
Aug. 20
232'041 | J, M | 816
816
816 | 0°728
0°773
0°825
0°839
0°852
0°907
0°972 | 78'9
79'4
75'6
61'3
116'6
99'3
65'9 | 185·5
181·5
176·5 | 0
+12.8
+12.6
+15.7 | 71 0 0 | 322
5
4 | 1329 n
307 n
86
304
131
214
(4188) | 1832.
233 ^d ·954 | J, M. | 816
816
816
822
822
821 | 0.172 | 38·9
51·4
61·2
81·2
81·3
104·9
107·7
142·3
67·7 | 0
188:4
185:8
180:8
142:4
138:8
128:0 | 0
+13.6
+13.7
+11.3
+11.1
-11.0 | 2
60
1
7
14
35 | 7
212
13
12
43
139 | 120 c
260 s
124
72
231
(2027) | | Aug. 21 | | 817
814
815
819
820
816
816
816
816 | 0.842
0.733
0.626
0.312
0.250
0.347
0.488
0.552
0.615
0.655
0.696
0.697 | 291'4
232'4
223'5
143'7
71'7
74'6
72'5
74'9
76'9
76'9
56'6
73'5
125'1
65'1 | 257'4
246'3
208'3
208'3
199'1
199'1
185'6
181'1 | -21'1
-20'8
- 7'6
+11'3
+11'9
+13'8
+13'5
+13'1
+13'6 | 80
7
4
0
0
79
18
77
0 | 411
19
18
5
10
355
72
250
3 | 367
145
154
224
(3101) | 235.079 | J, M | 817
817
815
816
816
816
816
816
816
822
822
821 | 0.939
0.997
0.977
0.572
0.283
0.227
0.197
0.200
0.153
0.583
0.641
0.806
0.899
0.949 | 245·5
247·3
244·4
246·7
292·5
304·0
301·9
297·7
318·1
313·5
80·8
80·3
108·9
127·9
112·9 | 261°0
251°9
210°7
194°4
192°2
190°3
189°1
186°8
185°4
143°1
138°9
128°2 | +12.3 | 0
27
2
62
0
3
0
3
63
0
4 | 198
131
8
392
19
11
17
17
325
9
11 | 228
306 c | | 232.891
Ang. 22 | J, M | 817
817
814
815
816
816
816
816
821 | 0.922
0.903
0.855
0.805
0.732
0.249
0.303
0.317
0.385
0.992
0.860 | 289.6
249.7
240.6
234.7
232.5
185.7
64.9
62.4
67.8
72.5
102.2
60.5 | 260·3
253·1
246·1
209·2
193·4
190·3
185·8
126·8 | -20.6
-22.8
-21.0
- 7.3
+13.3
+14.8
+13.6
+13.1
-11.1 | 131
44
7
5
72
3
14
59
0 | 581
233
14
16
485
12
47
265
131
(1784) | 654
133
517 c
169 n
154*s p
216
(1843) | Aug. 24
236·100 | J, M | 816
816
816
816
816
822
822
821 | 0.992
0.841
0.805
0.502
0.464
0.442
0.377
0.358
0.424
0.446
0.660
0.814 | 75·9 301·3 287·2 284·0 284·4 288·7 295·8 288·7 76·3 78·6 115·6 134·4 | 195'2
192'6
190'8
185'9
185'6
140'5
138'9
128'1 | +14.6 | 70
10
0
2
76
0
9
28 | 261
69
30
7
316
4
30
109 | 213
(1244)
137
158 | | 233.954 | J, M | 817
817
814
815
816
816
816 | 0.951
0.952
0.905
0.852
0.368
0.116
0.140
0.133 | 292.8
245.6
240.7
240.3
230.1
358.3
14.1
25.3 | 261.5
252.5
246.0
210.3
194.0
191.8
190.5 | -20.6
-22.8
-20.8
-6.9
+13.7
+14.8
+13.9 | 138
27
0
6
71
5 | 531
188
17
9
511
27 | 347
690 e
183 f | Aug. 25
236.926 | J, M | 816
816 | | 75.7
281.0
253.3
292.5
281.5
283.0 | 196·3
193·1 | +13.0 | (195)
63
4 | (826)
232
17 | 245
(803)
280
110
139 | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 814. Three or four small spots in a straight line. Group 815. A small spot. Group 817. A close cluster of three or four spots. Group 819. A very small spot. Group 821. A regular spot. Group 821. Several small spots between them. Group 822. Several small spot. Group 822. Several small spots irregularly arranged. | | | | .H | Sun's | HELIO | GRAPHIC | Src | ots. | FACULE. | | | | ii . | Sun's | Пиглод | RAPHIC | Sro | TS. | FACULE. | |-------------------------------------|------------|---|--|---|---|---|--|--|------------------------------------|-------------------------------------|------------|---|--|---|--|--|--|---|--| | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Su
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | | | | | 0 | 0 | 0 | | | | 1882. | | | | 0 | 0 | 0 | | | | | 1882.
236 ^d ·926 | J, M | 816
816
822
822
821 | 0.618
0.536
0.216
0.268
0.520
0.787 | 285.6
283.4
70.9
72.3
125.5
121.7 | 192'4
186'7
142'6
139'5
129'0 | +15.1
+11.0
+11.6
-11.1 | 1
68
2
7
31 | 7
269
12
30
124 | 881 c | 241 ^d *050
Aug. 30 | | | o·835
o·942
o·965 | 118°9
71°7
109°9 | | | (25) | (198) | 205
63
136
(1135) | | Aug. 26 | | | 0.865 | 75.5 | | | (176) | (691) | 161
(1788) | 1. | н, лр | 821 | o·867
o·805
o·693 | 298.7
278.8
245.4 | 128.9 | -11'2 | 7 3 | 34 | 243
449
46 c | | 237 [.] 893 | н, јр | 816
816
822 | 0.901
0.843
0.804
0.693
0.067 | 257.7
325.7
280.7
281.6
337.1 | 195.6
185.7
143.2 | +12.8 | 30
33
2 | 219
245
15 | 251
131
563 p
109 c | | | 824
824
826
827 | 0°274
0°270
0°956
0°992
0°717
0°868 | 313·2
321·4
104·5
70·1
125·9
14·3 | 97:3
18:5
4:3 | +17.8
+17.0
+10.6
+20.6 | 3 0 0 | 18
10
14
273 | 627 s
391 c
209 | | Aug. 27 | | 822 | 0.881 | 29.6
143.9
24.0 | 139.3 | -11.0
+11.3 | 20 (85) | 37
119
(635) | 79 c
95
(1228) | Aug. 31 | н, јр | 100 | 0.008 | 279'0 | | | (13) | (349) | (2310) | | 239'894 | J, M | 816
816
816
822
822
822 | o'939
o'868
o'983
o'958
o'940
o'476
o'427
o'417 | 245.9
293.9
281.8
281.3
281.7
278.3
277.2
283.4
216.5 | 195.7
189.5
186.1
143.7
140.5
139.6 | +12'9
+12'9
+12'9
+12'1
-11'9 | 43
9
86
7
0
6 | 200
53
242
16
14
15 | 197
239
850 c | 242'791 I. Sept. 1 | H, Jr | 821
828
828
824
826
827 | 0'904
0'853
0'821
0'724
0'680
0'368 | 298·2
228·4
250·6
245·7
243·5
298·8
106·2
70·7 | 129'0
119'3
115'3
96'6
14'9
3'4 | -11'4
-12'0
-12'0
+17'0
-11'3
+20'6 | 8
4
17
4
0
17
(50) | 69 ° 26 20 7 11 160 (293) | 438
213
94P
142 c
595 s
607 c | | Aug. 29 | | 821
823
824
824 | 0'403
0'615
0'295
0'352
0'786
0'852
0'932 | 188·7
53·2
63·1
71·9
121·8
112·0
79·8 | 129.3
121.4
100.9
96.2 | -30°1
+17°2
+15°9 | 7 0 0 | 25
11
10
(686) | 131
41
99
88
(1645) | 243'928 | Ј, М | 821
828
828
830 | 0.878
0.835
0.239 | 251.7
250.2
348.8 | 128·8
120·3
115·3
64·8 | +20.8
-12.3
+20.8 | 11
60
95
3 | 64
247
335
16 | 90
137
48
164 | | 241'050 | Ј, М | 822
822
821
825
824
824
824 | 0.964
0.710
0.649
0.567
0.208
0.174
0.181 | 285.5
278.9
280.2
237.7
327.1
353.2
19.8
35.3
71.5 | 145.5
140.6
129.1
106.8
101.2
96.3
93.0 | +11.4
+12.1
-11.3
+17.2
+17.1
+16.9
+16.7 | 0 3 19 0 3 0 0 | 7
28
99
9
27
26
2 | 245
239 c | | | 829
831
831
834
832
826
827
833
833 | 0.498
0.520
0.383
0.631
0.764
0.855 | 236.4
183.9
179.2
152.4
147.2
112.5
70.8
84.3
85.2
131.0 | | -22.2
-24.0
-12.7
-25.2
-12.0
+20.1 |
1
15
3
4
0
0
80
11
8 | 9
31
17
10
3
13
350
24
65 | 230 ¢
197 ¢
384 ¢ | | | 18 | | ii. | San's | HELIO | GRAPHIC | Sr | ors. | FACULE. | | | | | Sun's | Ницио | RAPHIC | Src | ors. | FACULA | |-------------------------------------|------------|---|--|--|---|---|--|---|---------------------------------------|-------------------------------------|------------|---|---|--|---|--|--|--|------------------------------------| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day), | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from \$ | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
24 ^{5d} ·100 | J, M | 828
828
830
830
829
831
831
827
833 | 0'981
0'929
0'816
0'976
0'944
0'414
0'370
0'326
0'567
0'586 | 237:2
245:7
286:5
255:0
254:4
304:5
309:6
268:1
212:8
203:9
68:7
85:8 | 0
121.5
114.7
67.7
64.1
65.5
65.7
61.7
2.1
354.6 | -12'1
+20'3
+20'5
+ 6'2
-21'6
-25'4
+20'1 | 48
47
28
25
2
16
2
63
18 | 219
230
131
71
9
26
11
262
68 | 65
46
265
500 e | 1882.
248 ^d ·012 | Ј, М | 827
827
833
833
833
833 | 0°252
0°257
0°195
0°261
0°324
0°360
0°787
0°886
0°935 | 21.6
29.1
86.8
86.9
91.6
84.4
62.7
142.7
74.4
111.8 | 2*4
0*5
356*8
352*9
349*2
346*9 | + 20·8
+ 20·2
+ 7·8
+ 7·9
+ 6·4
+ 8·9 | 28
10
12
25
39
0 | 181
39
45
95
182
9 | 368
81
372
242
(2441) | | Sept. 3 | | | o.837
o.893
o.961 | 87°0
124°4
68°6 | 349.5 | + 7.8
+ 6.5 | (288) | 99 | 288 p
179
220
(1883) | 248*898 | J, M | 830
830
827 | 0.310 | 242'9
230'5
289'7
290'6
340'2 | 72:8
62:6
2:9 | +20.0 | 94
155
0 | 267
574
9 | 428
206
378 c | | 246.041 | J, M | 830
830
831
827
827
833
833 | 0.534
0.685
0.498
0.557
0.633
0.708
0.825 | 286.0
294.8
298.9
227.4
66.9
64.1
87.1
88.2
128.2 | 69'4
63'9
66'7
5'4
1'9
354'6
348'8 | +20'4
+21'2
-21'5
+17'6
+20'2
+ 7'4
+ 6'4 | 79
66
7
0
53
15
30 | 267
254
20
10
257
94
127 | 247
138 c
552 c
212 | Sept. 7 | | 827
827
833
833
833 | 0°235
0°025
0°047 | 337·1
352·0
306·7
70·9
96·7
71·9
109·7 | 2°4
358°2
357°5
353°7
348°9 | +20.7
+20.6
+ 8.1
+ 8.1
+ 6.3 | 38
0
10
29
37
(363) | 147
4
47
101
95 | 331
122
(1465) | | Sept. 4 | 100 | | 0:896 | 65.0 | | | (250) | (1029) | 104
(1253) | 249'900 | J, M | | 0.908 | 237.5 | | | | 2 | 95
348 | | 246.836 | Ј, М | 830
830
831
827
833
833
833 | 0.664
0.784
0.417
0.460
0.507
0.554
0.865 | 286·7
291·7
294·0
234·7
55·6
88·0
86·7
89·0
132·6 | 69.6
63.9
66.9
2.1
356.0
352.9
349.8 | +21.2
+20.3
+ 7.3
+ 7.9 | 109
197
10
67
45
0 | 516
626
27
289
149
19
300 | 159
391 c
153 s f | Carri | | 830
830
827
827
833
833
833 | 0°377
0°394
0°256
0°209 | 239'7
289'5
291'5
303'3
308'3
275'6
276'7
264'4
51'7
69'5 | 65·9
62·2
2·4
2·3
358·0
355·2
349·3 | +22.5
+18.7
+20.9
+ 8.4
+ 8.5 | 61
55
0
26
11
11
18 | 160
150
12
128
52
46
65 | 84
229 e | | Sept. 5 | | | 0.949 | 172'2 | | | (500) | (1926) | 74
57
(885) | Sept. 8
251°030 | J, M | 200 | 0.967 | 240.3 | | | (102) | (013) | 148 | | 248:012 | J, M | 83o
83o | 100000000000000000000000000000000000000 | 240'0
263'0
277'0
289'9
291'1 | 71.9 | +21.1 | 88
88 | 408
598 | 204
180
203
791 c | | | 827
827
833
835
836 | 0.588
0.443
0.963 | 247.5
292.8
296.3
273.5
80.8
71.9 | 3·1
2·4
354·6
253·0
245·5 | +18.0
+10.8
+51.1
+51.1
+10.1 | 9
33
31
17
0 | 27
113
138
56
27 | 200 n.
213 c | Group 827. A regular spot, with some smaller spots close to it. Group 828. Two regular spots, with a number of very small spots between them. Group 830. Two small spots on September 2. These develop before September 4 into two large regular spots, with several very small spots near them. Group 831. Two small spots. The smaller of the two disappears before September 4. Group 833. A number of spots arranged in a straight line. Group 835. A small spot. Group 836. A small spot. | | | | B. | Sun's | HELI | OGRAPHIC | SP | ors. | FACULÆ. | FIRM | | | i. ii. | Sun's | HELIO | GRAPHIC | SP | ors. | FACULA | |--|------------|---------------------------------|--|--|---|---|--|--|--|--|------------|--|--|---|---|--|--|--|---| | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMRRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
term's of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | | 1882.
251 ^d ·030
Sept. 9
252·856
I. | | 827
833 | 0.488 | 69.0
114.5
255.0
223.9
290.0
274.8 | 2°1
356°3 | +20.8
+ 8.2 | (90)
6
16 | (361)
24
174 | 1026
852
(2825)
334
44
666 n
196 c | 1882.
257 ^d ·729
I.
Sept. 16 | н, јр | 840
840
838
838
838 | 0.963 | 289.6
286.9
80.0
79.1
80.0
66.5
66.5 | 315.4
315.2
201.3
193.8
190.1 | 0
+18.1
+11.3
+12.8
+12.8 | 0
97
5
17
(119) | 13
34
330
120
131
(890) | 354 6
93
155
(2105) | | Sept. 11 | | 835 | 0.848 | 81.4
123.0
68.7 | 253.3 | +11'2 | (22) | (204) | 77 c
1154
575
(3046) | 259.906 | J, M | | o·892
o·870
o·789
o·689 | 248·9
292·7
235·7
279·4 | | | | | 176
256
370
58 | | 254.044 | J, M | 833
833
837 | 0.962
0.954
0.953
0.866
0.944
0.897
0.607
0.731
0.740
0.940 | 238·8
253·0
292·6
226·9
276·6
276·4
297·5
129·3
67·2
76·0 | 359·6
352·6
323·8 | + 8.6
+ 8.9
+ 22.2 | 25
9
11 | 152
97
31 | 946 c
192 c
833
250
214 | Sept. 18 | | 841
842
838
838
838 | 0.493
0.510
0.173
0.278
0.356
0.877
0.929 | 197·3
187·7
63·1
71·5
74·3
100·3
63·3 | 220.0
215.2
202.0
195.4
190.6 | -20.9
-23.2
+11.5
+11.9
+12.2 | 4
9
92
37
36
(178) | 12
52
373
194
136
(767) | 411
68
(1339) | | Sept. 12
255.040
Sept. 13 | J, M | 837
837
838
838 | 0'967
0'913
0'757
0'717
0'960
0'995
0'838 | 276·4
228·0
293·8
296·3
80·6
79·1
128·6
74·9 | 323.7
319.7
200.8
189.9 | +22.6
+23.7
+11.0
+11.6 | (45)
14
15
79
0
(108) | (280)
61
46
471
344
(922) | (3508)
623
206
319 c
564 c
69
86
(1867) | 260·638 | н, је | 841
842
838
838
838
838 | 0°907
0°906
0°866
0°820
0°552
0°546
0°072
0°109
0°153
0°201 |
307'2
292'2
240'5
280'5
214'8
202'5
348'7
37'4
54'3
65'2
80'0 | 220.9
214.5
200.6
197.5
194.1 | -20.2
-23.3
+11.1
+12.1
+12.1
+11.8 | 0
8
48
13
0 | 6
49
303
105
27
86 | 104
518
1133
77
77 6
131 6
59 6 | | 256·896 | J, M | 837
839
838
838
838 | 0.821
0.958
0.808
0.756
0.834
0.868
0.681 | 292.0
290.7
247.4
81.3
81.1
81.1
13.8 | 325.7
300.7
201.3
193.8
190.1 | +22.0
-13.5
+11.3
+11.4
+11.3 | 33
6
69
30
44 | 123
11
473
114
222 | 162
475 n f
127 f | Sept. 19
261'911 | Ј, М | 842 | 0.805
0.902
0.890
0.872
0.662 | 23g·8
290·0
221·9 | 213'1 | -23.2 | (83) | (576) | 620
595
396
(3864)
304
206 | | Sept. 15
257:729
I. | н, јр | 837 | o'999
o'880
o'822
o'997 | 204.6
249.4
291.4
290.6 | 327.1 | +21'0 | (182) | 262 | 130
136
383
566 n | Sept. 20 | | 838
838
838 | o.307
o.356
o.138
o.956 | 284.0
291.3
306.2
108.9
127.7 | 181.0
188.9
505.1 | +11.2 | 74
20
16
(115) | 310
82
90
(505) | 350
36
(896) | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 827. A regular spot, with some smaller spots close to it. Group 833. A number of spots arranged in a straight line. Group 837. A small spot on September 12. Three or four small spots, arranged in a straight line on September 13. Group 838. A large regular spot, followed by a number of smaller spots arranged in a straight line. Group 840. Two small faint spots. Group 841. Two very small spots. Group 842. A small regular spot. | MY E | | | | 1 | Ieasure | s of Posit | tions an | d Areas | of Spots | and Facula | e upon | the | Sun's I | isk—co | ntinued | | | | | |---|------------|--|--|---|---|--|--|--|--|--|------------|---|---|--|---|--|---|---|---| | | | | ii. | Sun's | HELI | OGRAPHIC | Sr | ors. | FACULE. | | | | .5 | Sun's | Никто | GRAPHIC | Sr | ors. | FACULE | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centro
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude, | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
262 ^d ·785
I.
Sept. 21
264·085 | н, јр | 838
838
838
843
843
838
838 | 0°923
0°889
0°488
0°413
0°320
0°349
0°386
0°818 | 0
291:5
239:3
279:9
283:3
282:9
285:7
75:1
78:0
112:5
242:2
278:1
280:0 | 202'2
199'4
197'2
191'3
152'9
150'5 | +11'0
+12'2
+11'7
+11'7
+11'7
+11'1
+10'7
+12'0 | 46
7
0
7
0
0
(60) | 307
46
49
68
13
5
(488) | 296
257
170 e
37 e
35 e
264
(1059) | 1882.
267 ⁴ ·067
Sept. 25
267 ⁴ 947 | J, K | 845
846
847
848
843
845
846
847
848 | 0'943
0'967
0'993
0'962
0'753
0'721
0'634
0'866
0'890 | 0
68.0
115.7
72.7
114.5
282.0
259.0
279.0
64.7
118.9
72.5
116.2 | 67.6
50.9
40.1
37.2
151.3
67.2
50.9
41.5
37.1 | +11'2
+21'1
-21'4
+18'4
-23'2
+11'2
+21'1
-20'8
+18'6
-22'5 | 0
177
49
164
(434)
25
0
208
62
209 | 24
1029
365
1057
(2650)
111
17
936
226
591 | 568 f 291 c 867 c (2456) 166 396 316 c 377 f 572 f 1238 c | | Sept. 22
264·700
I. | н, јр | 838
844
843
843
843
838
838
838
844
844 | 0.592
0.433
0.094
0.129
0.869
0.980
0.980
0.985
0.855
0.855
0.698
0.579 | 279'9
283'2
25'8
51'0
73'2
87'2
242'0
286'2
278'1
279'7
279'3
281'1
282'3 | 192·3
181·3
153·5
150·1
202·2
199·5
192·3
183·2
179·3 | +11°5
+11°5
+11°6
+11°6
+11°6
+11°5
+11°5
+12°1
+12°1
+12°1 | 19
18
3
8
(120) | 60
56
9
30
(519)
313
47
24
18 | 873 c 134 556 (1940) 219 308 216 c | Sept. 26 268 910 Sept. 27 | J, К | 843
845
845
846
847
848
849
849 | 0'947
0'905
0'898
0'749
0'844
0'482
0'472
0'777
0'882
0'867
0'902 | 291'2
305'7
258'8
245'8
279'3
53'4
57'0
126'2
71'4
120'3
86'2
85'1 | 150°1
67°4
67°1
51°2
41°3
36°7
31°8
27°4 | +11.5
+22.8
+21.1
-21.4
+18.7
-22.7
+ 6.7
+ 7.4 | 14
0
2
198
33
159
38
0
(444) | 66
4
7
923
176
595
190
13
(1974) | (3065) 115 254 543 85 581 p 326 sj 1074 c 329 e (3307) | | Sept. 23
265:714
I.
Sept. 24 | н, је | 843
843
845
838
838
843
843
843 | 0°130
0°089
0°979
0°943
0°843
0°820
0°346
0°268
0°913
0°844
0°924 | 288·5
279·2
288·5
279·2
278·7
283·6
288·8
70·2
87·9
69·4 | 202°0
153'6
68'1
202°0
191'9
154'4
149'3
67'9 | +11'2
+11'2
+21'2
+11'1
+11'1
+11'1
+11'6
+20'8 | 2
10
0
(70) | 33
32
60
(537)
281
9
43
47
19
(399) | 517 c
522
(1782)
139
582 c
56 c
305
707
(1789) | 269·910 | J, M | 845
845
846
847
848
848
849 | 0.759 | 261°1
279°8
293°1
249°9
29°3
36°6
136°6
68°2
129°4
124°9
87°4
85°6
54°1
111°5 | 70°0
67°1
50°9
41°1
38°2
34°8
31°8
28°2 | +21'7
+21'7
-21'7
+18'9
-24'3
-22'0
+ 6'6
+ 7'8 | 8
16
233
37
45
78
89
31 | 20
39
949
121
138
369
291
81 | 423
587
113
156
272 c
162 s,
737 c
216 c
288
182 | | 267.067 | Ј, К | 838
843
843 | o-989
o-553 | 280°0
279°1
279°7 | 156.3
120.1 | +11.1
+11.1
+10.0 | 14
14
16 | 80
38
57 | 730 f | Sept. 28 | | | 0.841 | 85.0
69.8 | | | (537) | (2008) | 335
(3642) | Group 838. A large regular spot, followed by a number of smaller spots arranged in a straight line. Group 843. Several small spots, in a straight line. Group 844. Three or four small spots, in the same straight line as 838. Group 846. A very fine large regular spot. Group 846. A very fine large regular spot. Group 848. A fine group of very irregular shape. The preceding spot is regular, but the following spots undergo constant change. Group 849. An irregular spot, with several small spots close to it. | | | | in in | Sun's | HELIO | FRAPHIC | Spe | ors. | FACULE. | | | | in is | Sun's | Непос | GRAPHIC | Sro | TS. | FACULA: | |-------------------------------------|------------|--|--|--|---|--|---|--|---|--|------------|---|---|---|--|--|--
--|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
270 ^d ·668 | н, эр | 845 | 0'992
0'893
0'881 | 281'1
252'3
302'1
350'5 | 71.6 | +21'4 | 3 | 9 | 798
261
101 | 1882.
274 ^d ·060
Oct. 2 | J, M | 850 | o:585
o:887 | 87·8
67·6 | 348.3 | + 6.6 | 10 (508) | 28
(2101) | 274 f
356
(1937) | | Sept. 29 | | 845
846
847
848
848
849
849 | 0°262
0°555
0°501
0°690
0°705
0°599
0°652
0°897
0°915 | 8.7
148.0
62.8
136.7
130.6
87.7
86.0
68.4
84.1 | 66.6
50.6
41.0
37.8
33.9
32.1
28.2 | +21.7
-21.7
+19.2
-24.3
-21.8
+ 6.8
+ 7.7 | 10
165
18
30
38
47
15 | 38
928
115
166
308
326
72
(1962) | 169 c
56 c
75 c
142 c
200 c
48 c
243
525
(2618) | 274.899 | Ј, М | 846
847
848
848
849
850
851 | 0'925
0'778
0'716
0'495
0'622
0'573
0'331
0'404
0'779
0'869
0'940 | 271.5
292.2
230.7
300.2
216.8
214.1
274.7
88.2
65.9
76.8 | 49'7
40'2
37'1
33'4
32'6
349'3
323'0 | -21.7
+20.2
-23.8
-22.2
+ 7.7
+ 6.7
+ 22.7 | 290
16
48
110
88
11 | 972
40
160
377
384
39
23 | 245
398
549 e
232 e
139
575 | | 271'905
Sept. 30 | J, M | 845
845
846
847
848
849
849
850 | 0°962
0°339
0°352
0°479
0°298
0°566
0°564
0°345
0°413
0°931 | 255.1
318.6
322.1
175.6
41.3
155.4
147.5
88.0
86.4
85.6
65.0 | 66·5
66·2
50·5
40·7
37·8
33·7
32·5
28·2
343·8 | +21'2
+22'6
-21'7
+19'4
-24'3
-22'0
+ 7'6
+ 6'6 | 6
0
198
19
40
93
75
10
6
(447) | 29
10
1002
101
159
395
355
31
44
(2126) | 748 P
84
(1074) | Oct. 3
275.645
I. | н, јр | 846
846
847
848
848
849 | 0.955
0.969
0.874
0.822
0.807
0.801
0.619
0.704
0.658
0.483 | 64.8
272.3
290.7
252.2
240.8
236.3
294.3
225.7
224.2
274.0 | 51°2
49°0
40°0
36°6
32°9
32°2 | -18'9
-21'9
+20'0
-24'0
-22'4
+ 7'6 | (566) 5 200 5 24 39 48 | 56
967
18
149
340
318 | 626 | | 272°991 | J, M | 845
846
847
848
848
849
850 | 0.844
0.517
0.513
0.233
0.515
0.489
0.099
0.770
0.962 | 286.7
300.3
202.4
350.4
178.9
171.4
81.2
86.8
67.6 | 66·8
50·5
40·8
37·8
33·9
32·7
347·9 | +20'9
-21'7
+19'8
-24'2
-22'2
+ 7'4
+ 6'7 | 14
239
15
37
103
109
3 | 43
993
93
163
434
472
16 | 634 c
317 | Oct. 4 | | 852
852
850
853
851 | 0.422
0.419
0.234
0.408
0.670
0.875
0.924
0.931
0.982 | 198.4
191.0
88.6
86.5
63.0
115.3
66.9
147.1
81.5 | 349.7
339.2
323.2 | -17·1
+ 6·7
+ 7·4
+ 22·7 | (332) | 10
8
15
14
8 | 82
203
87
146
(1868) | | Oct. 1
274°060 | J, M | 845
846
847
848
848
849 | 0.812
0.687
0.617
0.356
0.551
0.508
0.149 | 269.8
293.8
221.1
312.5
202.0
197.1
279.9 | 66·3
50·0
40·4
37·2
33·5
32·7 | +21'0
-21'7
+20'3
-24'2
-22'4
+ 8'0 | (520)
2
273
17
42
75
89 | 11
1046
64
163
371
418 | 293
431 c
583 c | 276·785
I. | н, јр | 846
847
848
848
849
852
852 | 0'942
0'915
0'789
0'831
0'794
0'693
0'561
0'523
0'033 | 292.7
242.3
290.2
235.2
235.4
273.5
224.1
218.4
270.0 | 49.0
39.9
36.4
33.0
32.2
12.3
8.1
350.1 | -22:2
+19:8
-24:1
-22:3
+ 7:1
-17:9
-18:1
+ 6:4 | 201
4
27
28
29
1
0
5 | 1015
16
168
230
222
17
9 | 583
492 c
} 433 c | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facula relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Facula are expressed in millionths of the Sun's visible Hemisphere. Group 845. A small spot. Group 846. A very fine large regular spot. Group 847. Two small spots. Group 849. An irregular spot, with several small spots close to it. Group 849. A small spot, with several small spots close to it. Group 851. A very small faint spot. Group 852. Two small spots. Group 852. Two small spots. | | | | e in | Sun's | HELIC | GRAPHIC | Sr | ors. | FACULE. | | | | | Sun's | Нице | GRAPHIC | Sre | OTS. | FACULAL | |--------------------------------------|------------|---------------------------------|--|--|---|--|--|--|--|--|------------|--------------------------|---|---|----------------------------------|-------------------------|--|--|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude, | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day), | Area for each Group (and for Day). | | 1882.
27 ^{6d} ·785
I. | н, јр | 853
853
851
854 | 0.108
0.168
0.491
0.885
0.868
0.903 | 86.0
83.9
56.8
83.9
65.8
106.3 | 342.0
338.5
322.1
285.6 | + 7.4 + 21.3 | o
7
0 | 15
31
6
10 | 182 <i>f</i>
112
111 | 1882.
280 ^d ·898
Oct. 9 | Ј, м | 853 | 0'824
0'685
0'807
0'880
0'949 | 299:3
275:2
68:0
121:9
76:6 | 337'4 | + 8.1 | 5 (5) | 26 | 120
88 e
171
346
163
(2072) | | Oct. 5
277.646
I. | н, јр | 846
848
849
850
853 | 0.891
0.826
0.238
0.099 | 294'1
287'0
245'3
240'2
274'0
270'8
276'0 | 48·9
33·7
32·8
35o·7
342·6 | -22.8
+ 6.9
+ 6.4
+ 7.0 | (302)
307
50
10
7 | 990
312
103
23
27 | (1913)
411
245
718 c
687 c
275 c | 281.671
I.
Oct. 10 | п, јр | 855
856 | | 276·2
295·8
291·0
78·4
76·7
134·9
121·4 | 318:4 | +17.1 | o
45
(45) | 11
261
(272) | 590
257
434 c
411
91
73
(1856) | | Oct. 6 | | 853
851
854 | 0°037
0°349
0°770
0°783
0°924 | 312°1
41°8
84°5
65°0
109°8 | 338·5
322·5
286·7 | + 7.8
+21.2
+ 5.7 | (394) | 54
5
8
(1522) | 71 f
64
135
(2606) | 282.657
I.
Oct. 11 | н, јр | 855
856 | 0.966
0.939
0.762
0.916
0.874 | 243·4
275·7
286·2
79·1
59·3 | 320.3 | +16.5 | 0
27
(27) | 7
169
(176) | 63
239
185 n
725 n f
45
(1257) | | 279*037 | J, К | 848
849
850
853
853 | 0'990
0'981
0'965
0'538
0'429
0'335
0'833
0'872 | 244'3
246'8
274'9
272'1
273'3
276'3
242'7
119'0 | 36·5
33·7
33·7
351·2
344·1
338·2 | -24.3
-21.2
+ 6.4
+ 6.5
+ 7.1
+ 8.0 | 0
0
27
4
0 | 166
61
118
14
4
55 | 495 f
399 f | 283:652
I.
Oct. 12 | н, јр | 855
855
856 | 0'986
0'895
0'860
0'807
0'874
0'977 | 276·5
284·5
286·6
78·9
76·9
62·5 | 321°4
317°1
203°6 | +15.6
+17.3
+12.4 | 0
3
26
(29) | 9
9
204
(222) | 710 n
251 c
488
220
(1831) | | Oct. 7 279'964 Oct. 8 | Ј, К | 853 | 0.973
0.922
0.867
0.834
0.527
0.765
0.846
0.893 | 287.6
247.4
292.5
276.8
275.7
61.8
122.5
69.2 | 338.2 | + 8.3 | (43)
16 | 50 (50) | 196
(1518)
230
221
445
129 c
162
898
157
(2242) | 284°924
Oct. 13 | к, м | 856
857
857
857 | 0'978
0'833
0'789
0'609
0'960
0'983
0'986
0'757
0'887 | 285.7
242.2
292.8
77.0
75.0
71.6
76.1
61.6 | 203·6
166·4
160·5
159·3 | +12.6
+15.8
+19.1 | 60
0
56
(116) | 201
123
122
242
(688) | 186
149
319
110
c
627 c | | 280.898 | J, M | | o 976
o 940
o 893
o 828 | | | | | (32) | 243
210
639
92 | 285·785
I. | н, јр | | 0'946
0'929
0'881
0'831 | 244'4
256'5
295'7
278'8
74'0 | 202'6 | +12.5 | 26 | 189 | 109
85
509
64
117 c | Group 846. A very fine large regular spot. Group 848. A fine group of very irregular shape. The preceding spot is regular, but the following spots undergo constant change. Group 849. An irregular spot, with several small spots close to it. Group 850. A small spot. Group 853. A small spot. Group 853. A small spot. Group 853. A small spot. Group 854. A very small spot. Group 855. One or two small faint spots. Group 856. A regular spot. Group 857. A very fine extensive group, composed of a great number of small spots. The group undergoes great and frequent changes. | | | | j.g | Sun's | Helio | энагніс | Sre | ors. | FACULÆ. | - | | | .g | Sun's | Неглос | RAPHIC | Spo | TS. | FACULÆ. | |--|------------|--|---|--|--|---|--|---|--|---|------------|--|---|--|---|---|--|---|---------------------------------------| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Su
Axis. | Longitude. | Latitude. | Area of UMBRA for each Spot (and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
285 ^d ·785
I.
Oct. 14
286·717
I. | н, ле | 857
857
857
857
857
857
857
857 | 0.898
0.933
0.939
0.814
0.942
0.913
0.907
0.887 | 258·2
297·4
239·9
63·1
75·0
70·7
73·6
70·6 | 203'4
166'3
166'3
164'8
161'5
158'0 | +15.7
+16.3
+19.3
+12.4
+15.3
+18.8
+16.8
+19.6 | 9
13
41
(89)
31
21
27
0
11
(90) | 64
84
471
(808)
173
69
112
81
195
(630) | 1263 e
211
240
(2598)
135
300
231 | 1882.
289 ^d ·836
I.
Oct. 18 | | 860
856
861
858
859
857
857
857 | 0'458
0'439
0'318
0'339
0'267
0'317
0'267
0'371 | ° 214'9
292'8
246'3
236'2
231'3
287'1
294'2
291'9
299'9
29'4
35'8
47'2
50'0
54'8 | 212'0
202'6
200'5
193'6
194'3
168'2
164'8
164'4
158'7 | -21.5
+15.3
+15.3
+12.1
+15.9
+18.9
+20.3
+15.8
+19.0 | 0
29
14
0
18
24
16
15
30
(146) | 13
160
77
3
37
173
91
95
314
(963) | 63
110
268
112
39 c | | 287.691
I.
Oct. 16 | F, JP | 856
858
859
857
857
857
857
857 | 0.976
0.937
0.867
0.852
0.119
0.203
0.218
0.259
0.627
0.655
0.678
0.720
0.718
0.762
0.934 | 259.6
250.8
296.9
235.8
10.5
56.1
43.4
48.6
72.7
67.3
71.5
68.2
70.7
68.3
85.6 | 203.0
194.4
195.4
192.7
166.1
164.7
162.3
159.3
159.1
155.6 | +12'4
+12'1
+14'1
+15'3
+15'3
+19'0
+16'6
+17'7
+20'1 | 27
0
0
10
23
2
5
0
2 | 180
55
16
34
37
89
86
143
40
47
(727) | 197
283
254
257
1096 <i>c</i>
220
(2307) | I,
Oct. 19 | | 860
856
861
859
859
862
857
857
857
863 | 0.967
0.883
0.843
0.640
0.624
0.577
0.521
0.119
0.246
0.262
0.184
0.246 | 238·6
285·1
239·6
283·1
288·0
291·0
290·8
324·2
337·1
351·5
352·8
18·4
155·7
63·2
84·6 | 214.7
202.8
201.1
197.3
193.5
167.3
165.7
164.7
158.6
147.1 | -21'9
+12'6
+15'+
+16'4
+15'3
+10'9
+18'4
+20'4
+15'9
+18'8
-27'9 | 0
24
20
4
4
8
8
24
18
12
31
2 | 6
168
138
15
31
30
154
175
41
266
7 | 154
109
230 f
83 c
102 c | | 288 ⁸ 23
I.
Oct. 17 | F, JP | 856
858
858
859
859
857
857
857 | 0'928
0'257
0'157
0'135
0'200
0'166
0'423
0'449
0'475
0'543
0'887 | 241.6
297.6
311.0
328.8
327.1
343.8
65.1
57.3
65.8
63.0
57.4
71.8 | 202'9
196'4
193'6
195'9
192'2
166'0
162'8
158'9 | +12·3
+11·4
+12·2
+15·2
+16·2
+19·1
+16·2
+19·0 | 31
1
8
8
0
7
29
20
35 | 169
5
14
56
11
30
98
78
203 | 307
82 c
31 c
53 c | 291'991 | к, м | 856
861
859
862
862
862
857
857
857 | 0.921
0.919
0.826
0.821
0.748
0.420
0.375
0.316
0.434
0.395
0.354
0.370
0.317 | 245·5
227·6
281·2
284·6
286·1
286·3
286·4
303·1
300·4
302·0
313·7
310·6 | 202'4
201'7
194'7
170'9
168'0
164'5
169'1
167'3
164'7
163'1
161'1 | +12'3
+15'0
+15'6
+11'1
+11'2
+10'2
+18'7
+16'6
+15'9
+20'0
+17'1 | 49
62
6
27
9
40
36
0
21
15 | 183
243
56
83
54
184
169
10
43
48 | 159
114
806 e | Group 856. A regular spot. Group 857. A very fine extensive group, composed of a great number of small spots. The group undergoes great and frequent changes. Group 858. Two small spots, arranged in a straight line. Group 860. A very small spot. Group 862. An irregular group, undergoing several changes. Group 863. Two very small spots and a number of small spots arranged in a straight line. Group 863. Two very small spots. Group 863. Two very small spots. | | | 1 | e ii. | Sun's | Непло | GRAPHIC | Spe | ors. | FACULÆ. | | | | ii ii | Sun's | Herro | GRAPHIC | Src | ors. | FACULAS | |-------------------------------------|------------|--|--|--|--|---|--|--|-------------------------------------|---|------------|---|--|---|---|--|---|---|---| | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time, | Measurers.
 No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
291 ^d ·991 | к, м | 857
857
857
863
864 | 0:330
0:340
0:267
0:550
0:493
0:845
0:879 | 322.6
330.5
321.6
175.3
56.9
62.8
87.6 | 158'9
157'0
156'6
144'9
120'6 | 0
+20'4
+22'5
+17'4
-27'7
+20'4 | 43
0
15
0
3 | 181
20
30
8
20 | 123 | 1882.
294 ^d ·135
Oct. 22 | к, м | 866
864
867
868 | 0°281
0°265
0°742
0°982
0°880 | 300°9
343°1
69°0
114°0
62°7 | 133.7
124.1
72.5
43.6 | +13·2
+19·7
+18·9
-22·4 | 0
65
0
389
(528) | 8
402
6
1318
(2679) | 925 p
307
(3121) | | Oct. 20 292.696 I. | м, јн | 861
861
859
859
859
862
862
862
857
857
857
857
857
857
857
857
857
857 | 0'960
0'967
0'913
0'904
0'883
0'902
0'850
0'850
0'551
0'553
0'553
0'553
0'553
0'553
0'482
0'482
0'442
0'428
0'431
0'377
0'386
0'364
0'738
0'950 | 73.7 245.4 252.7 284.1 283.3 283.6 286.0 281.2 284.7 281.5 298.1 292.8 306.5 293.8 299.0 303.3 31.7 303.3 45.4 59.1 68.2 | 203:3
200:6
203:1
197:9
196:7
195:2
171:6
170:2
165:7
162:9
170:1
169:2
167:3
165:6
164:6
162:5
159:3
157:5
157:5
157:5 | +150
+148
+123
+1111
+143
+1615
+122
+ 199
+126
+186
+165
+237
+151
+163
+201
+221
+163
+216
+197 | (326) 38 0 36 0 0 20 2 47 0 15 2 3 0 32 (231) | (1344) 183 5 145 10 8 7 99 5 214 4 151 12 8 19 10 5 101 21 18 9 137 | 117
(1431)
439
66
786 c | Oct. 23 295.657 I. | н, лн | 862
862
857
866
865
864
864
862
862
862
867
866
864
864
864
864
864
864
868 | 0.860
0.850
0.453
0.414
0.352
0.929
0.802
0.937
0.872
0.954
0.920
0.941
0.915
0.523
0.465
0.437
0.427
0.871 | 257'9
280'1
279'3
288'5
288'5
285'9
288'0
243'4
318'2
116'7
60'0
84'4
259'9
279'8
279'2
287'8
289'7
285'5
282'6
286'4
301'6
302'1
308'3
313'9
118'9
58'3 | 173.5
167.2
170.5
165.8
134.8
134.2
132.4
127.2
122.1
44.0
172.3
166.6
169.9
165.7
165.4
133.1
127.6
123.9
120.8
118.7
44.3 | +10.6
+18.7
+16.1
+12.8
- 8.3
- 5.5
+20.2
+20.0
-22.5
+10.9 | 18
15
77
7
19
0
125
84
319
(664)
8
0
30
12
9
11
8
48
27
17
3
156 | 50
69
210
16
70
4
5
490
396
1204
(2514)
43
30
153
57
15
18
362
193
210
27
1012 | 962 c 266 89 (3209) 274 } 2006 | | 294:135 | К, М | 861
856
859
862
862
857
857
857
857 | 0.994
0.961
0.804
0.732
0.784
0.731 | 255°1
284°3
282°2
278°6
280°2
279°7
290°2
287°3
293°0
229°8 | 205.7
203.9
193.8
173.0
166.4
170.3
165.8
162.4
134.4 | +14.6
+12.7
+9.7
+11.2
+16.1
+18.9
+16.1
+19.7
-7.6 | 0 0 4 13 15 29 7 6 0 | 303
214
43
60
95
164
15
46
5 | 36
900 f | Oct. 24
296.991 | к, м | 866
865
864
864 | 0.792
0.881
0.885
0.973
0.967
0.841
0.830
0.829
0.739
0.620 | 290.6
267.7
278.6
255.9
292.3
294.1 | 137'9
135'9
128'1
118'2 | + 9.8
- 8.9
+19.7
+18.5 | (329)
5
0
80
113 | (2138)
27
40
327
667 | 119
263
744
(5448)
568
21
173 (233) | Group 856. A regular spot. Group 857. A very fine extensive group, composed of a great number of small spots. The group undergoes great and frequent changes. Group 861. An irregular spot, with two or three small spots close to it. Group 862. An irregular group, undergoing several changes. The small spots disappear before October 21. Group 864. A rectangular group of small spots on October 22. Group 864. A rectangular group of small spots on October 22. Group 865. A small spots disappear before October 22. Group 866. Two very small spots. Group 865. A small spot. Group 868. A very fine large regular spot. Group 866. Two very small spots. Group 868. A very fine large regular spot. | | | | ii | Sun's | Helio | опарию | Spo | ors. | FACULÆ. | | 1 | | II. | Sun's | Непос | GRAPHIC | Spo | TS. | FACULÆ. | |---|------------|---|--|--|--|---|--|---|--|--|------------|---|---|---|---|---|--|---|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
96·991
Oct.
25
298·035
Oct. 26
298·807 | к, м | 868
868
865
864
869
868
864
864
869
869
869
863
870 | 0.725
0.939
0.982
0.926
0.728
0.948
0.948
0.840
0.676
0.593
0.836
0.920
0.923 | 0
127.5
82.6
104.5
251.7
338.7
279.0
259.2
290.3
286.4
139.4
82.6
67.2
108.8
281.9
260.2
289.3
289.4
283.6
67.2
128.3
289.4
283.6
153.4
74.2
143.4
112.2 | 139.7
138.2
124.5
109.9
43.4
131.9
128.0
121.9
113.3
107.7
43.7
334.2 | - 8·2
+10·0
- 8·7
+19·6
+14·6
-22·4
- 8·2
+19·7
+19·5
+13·9
+14·4
-22·2
+16·3 | 216
(414)
0 0 269
9 218
(496)
2 62 86 12 6 173 39 | 1071
(2132)
13
25
1101
46
1013
(2198)
29
426
414
24
10
999
403 | 845 f
131
167
(2138)
71
75
109 nf
294 f
680 c
53 c
552 f
150
100
225
(2309)
388
710 s p
1305 c
97 c
367 c
482 c
342 d
492 d
494 d
494 d
494 d
495 d
496 d
497 d
49 | 1882. 301 ^d ·654 I. Oct. 30 302·902 Oct. 31 304·123 | к, м | 868
871
872
870
870
870
870
870
870
870
870
870
870 | 0.931
0.568
0.364
0.480
0.716
0.777
0.827
0.869
0.731
0.411
0.642
0.509
0.582
0.648
0.901 | 272.6
218.5
150.5
149.3
72.1
73.8
72.8
296.3
233.0
65.5
70.4
69.0
114.8
240.7
219.5
213.7
310.8
324.4
153.8
47.1 | 42.6
9.6
5.1
335.3
329.7
324.9
42.9
5.1
333.0
335.1
329.4
3.8
5.0
359.7
334.6 | -22'2
-14'1
-20'1
+15'9
+15'4
+16'6
-22'7
-19'9
-21'6
+16'0
+14'8
+16'8
-22'8
-22'8
-22'8
-22'8
-21'6
+15'6
+15'6 | 186
3
1
57
27
26
(300)
237
5
15
78
34
39
(408)
244
9
10
12
19
0
68 | 1112
18
48
309
199
142
(1828)
954
25
63
76
101
111
259 | 167 c
207 c
683 f
(1121)
239
1050 n
758 J
131
(2187) | | Oct. 27 299'671 I. Oct. 28 301'058 | к, м | 864
864
869
868
870
870
870
868
871
870
870
870 | 0.963
0.989
0.968
0.874
0.456
0.970
0.990
0.896
0.897
0.856
0.508
0.454
0.891
0.849 | 289'3
288'6
283'6
172'7
74'6
76'1
73'3
123'1
108'1
271'9
207'6
132'5
73'3
75'7
73'7 | 128.8
122.3
107.3
42.8
335.1
330.0
323.8
42.8
8.0
335.3
330.1
324.5 | +19.8
+19.1
+14.1
-22.2
+14.6
+17.2
-22.3
-13.6
+16.0
+14.6
+16.6 | (380) 70 65 0 155 46 22 0 (358) 247 6 126 89 69 (537) | (2305)
477
551
14
948
311
277
211
(2789)
1131
33
372
400
308
(2244) | 1577 c
311 c
1343 c
75
93 | Nov. 1
304'947 | k, M | 868
870
870
868
871
872
874
874
873
870
870 | | 279'4
244'3
239'9
232'18
299'3
309'2
175'2
12'6
37'6
42'0
60'9
101'7 | 43.0
7.2
9.6
3.9
5.1
358.5
334.7
334.2
328.9
324.5 | +14.7
+17.1
-22.4
-13.0
-19.8
-19.8
+18.2
+20.2
-21.4
+15.9
+14.1
+17.2 | (387)
189
0
11
13
23
22
0
59
3
16 | 61
55 | 200
536
363
(2366)
270
1424 8 | Group 864. A rectangular group of small spots on October 22. The group greatly increases in size on the following days, and on October 25 and 26 consists almost entirely of two large spots. Group 865. One or two small spots. Group 866. Two very small spots. Group 870. A large regular spot, followed by two clusters of small spots. The small spots disappear before November 4. Group 871. Three very small spots in a straight line. Group 872. Several small spots in a straight line. Group 874. A number of spots in a straight line. The middle spots disappear, and the spots at the beginning and end of the line coalesce to form two spots before November 3. | | 11.7 | | e in | Sun's | Непо | GRAPHIC | Sre | OTS. | FACULÆ. | | | -0 | .5 | Sun's | HELIO | GRAPHIC | Spo | TS. | FACULE. | |-------------------------------------|------------|---|--|--|---|--|--|--|--|-------------------------------------|------------|---|---|--|--|---|--|---|--| | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis, | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
305 ^d ·902 | к, м | 868
872
874
874
870
870
870 | 0.818
0.986
0.736
0.684
0.597
0.272
0.197
0.235 | 279'99'246'5'238'8'292'7'299'0'321'5'333'2'358'8 | 41'9
5'9
5'7
357'8
334'3
329'4
324'5 | 0
-22'4
-19'5
+18'2
+20'1
+16'1
+14'0
+17'4 | 0
30
49
15
43
2
0
(139) | 741
153
200
152
230
8
5
(1489) | 135
1234 8f
408 c | 1882.
308 ^d ·912 | к, м | 876
876
877
877
878 | 0'780
0'838
0'951
0'964
0'969
0'894
0'922
0'935 | 0
119°2
116°1
116°4
112°8
75°3
60°3
70°2
104°3 | 238:3
231:8
216:2
212:8
208:6 | 0
-19'8
-19'4
-23'7
-20'8
+15'1 | 98
21
18
0
7 | 569
293
120
41
26 | 348 c
161 c
414 P
177
68
120 | | 306.913
Nov. 4 | к, м | 872
872
874
874
875
870
870
876
876 | 0'975
0'908
0'889
0'830
0'830
0'828
0'742
0'589
0'436
0'295
0'963
0'991
0'838
0'993 | 239'7
279'6
245'5
243'7
290'2
294'1
247'3
299'8
3111'7
110'2
122'1
62'4 | 9'9
2'7
5'9
356'9
344'2
334'0
324'3
239'2
230'7 | -19'7
-19'2
+18'8
+20'3
- 9'9
+16'0
+14'7
-19'7
-19'4 | 21
12
43
16
8
39
0
120
0 | 124
116
174
117
37
225
5
630
533 | 482
107
399 ¢
451 ¢
459 n p
116
110
(2124) | 309.674
I.
Nov. 7 | н, јн | 875
875
876
876
876
876
877
877
878 | 0'981
0'965
0'933
0'860
0'677
0'712
0'771
0'889
0'916
0'818
0'913 | 293.7
258.5
258.1
286.9
124.7
120.5
119.6
115.6
75.1
57.2
66.3 | 348·2
342·2
333·3
238·4
234·4
229·3
210·5
211·5
208·3 | -10°2
-9°8
+16°3
-19°8
-18°5
-20°1
-23°3
-21°9
+15°1 | 12
0
43
96
6
11
46
44
11 | 99
102
209
473
119
61
250
153
37 | 338
819 c
1453 e
856 c
761 c
1754 f
272
153
(6406) | | 307.680
I. | м, н | 872
872
874
874
875
875
875
876
876 | 0.906
0.909
0.839
0.738
0.711
0.689
0.566
0.911 | 279'3
248'3
246'0
288'1
291'3
252'2
253'4
251'8
292'8
113'8
111'7
126'5
78'6
61'4 | 10°1
2°2
5°9
356°8
346°2
344°2
342°2
333°5
238°6
232°8 | -19'3
-19'8
+18'0
+19'8
-10'3
- 8'9
- 9'6
+15'9
-19'8
-19'0 | 24
14
42
24
23
0
17
45
106
49 | 83
125
190
71
136
15
40
231
499
315 | 187
826 c
468 c
256 p
263 c
243 c
702 c
139
274
277 | 311'063
Nov. 8 | K, M | 870
876
876
876
876
879
879
877
878 | 0'492
0'472
0'540
0'581
0'455
0'523
0'723 | 247'4
285'8
142'9
139'0
135'2
132'5
50'3
52'8
126'9
121'1
72'5
103'1
136'9 | 333.6
237.9
237.3
232.5
229.2
234.4
229.7
217.4
211.1
208.7 | +16.2
-19.8
-17.6
-19.3
-20.0
+21.4
-23.0
-21.1
+15.3 | 21
121
47
17
6
1
0
50
19
18 | 200
485
179
66
41
9
4
212
149
43 | 3 94
878 J
70
97
(2742) | | Nov. 5
308'912 | к, м | 874
874
872
875
870 | o.899
o.990
o.955
9.978
o.881 | 299.3
288.2
289.9
248.7
257.0
288.4 | 6·7
357·2
0·1
344·8
333·4 | +18.5
+20.1
-20.0
- 9.6
+16.3 | 0
0
4
71
49
 102
23
48
336
228 | | 311*898 | К, М | 876
876
876
876
877
877 | 0'412 | 288·7
254·4
168·8
163·9
158·7
149·1
136·8
127·9 | 241.2
238.2
236.7
230.6
217.7
211.5 | -16.9
-20.0
-17.8
-20.1
-23.8
-21.1 | 16
96
54
12
43
21 | 81
475
274
28
276
109 | 540
60 | Group 868. A very fine large regular spot. Group 872. Several small spots in a straight line. Group 874. A number of spots in a straight line. Group 874. A number of spots in a straight line. Group 875. Several small spots on November 4. Group 875. Several small spots on November 4. Group 876. A very fine large regular spot on November 5. Group 876. Several small spots on November 4. Group 876. A very fine spot, and a number of spots arranged in a straight line above it. Group 876. A very fine spot, and a number of spots arranged in a straight line above it. Group 877. A regular spot, followed by several smaller spots, one of them very large, and another large. Group 877. A regular spot, followed by several smaller spots. Group 878. Several small spots. Group 879. Two very small faint spots. | | | | .8 | Sum's | Helio | GRAPHIC | SP | ots. | FACULÆ. | | | | .E | Sun's | Нило | GRAPHIC | Spe | ots. | FACULE | |--|------------|--|---|---|--|--|--|--|--|---|------------|--|---|---|--|--|---|---|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
311 ^d ·898
Nov. 9 | | 878
880 | | 69.6
103.5
75.6
36.6
72.7
97.4 | 208.6
184.7 | -10.3
-10.3 | 13 3 | 31
9
(1283) | 216 f
476
36
604
620
(2552) | 1882.
314 ^d ·681
I.
Nov. 12 | н, г | 878
882
884
885 | 0.612 | 22:1
61:6
99:1
69:8
96:8
62:2
78:5
99:7 | 0
205*9
174*0
148*2
122*6 | + 9.5
+ 19.3
- 6.5
+ 20.4 | 0
0
8
0 | 4
12
37
500 | 76 s,
1256 c
270
217
271
91
(2949) | | Nov. 10 | | 876
876
877
877
878
880 | 0.747
0.407
0.403
0.494
0.406
0.707
0.904
0.911
0.938 | 240.7
210.5
198.4
158.9
144.9
58.7
108.1
113.1
72.3
97.3 | 242°1
237°4
218°5
212°3
208°7
186°8 | -17'4
-19'2
-24'2
-20'4
+15'1
-10'3 | 44
181
54
4
11
0 | 112
419
270
41
26
8 | 55 55 55 55 55 55 55 562 (1568) | 315·657 | н, ғ | 876
876
876
877
877
877
878
878
878
878 | 0.735 | 243'0
244'4
239'9
240'1
219'2
215'9
221'5
315'0
316'9
298'9
308'2 | 243·3
237·9
235·2
218·3
212·5
213·2
208·5
205·5
206·6
204·3 | -17.7
-19.5
-18.1
-23.0
-19.4
-16.3
+15.2
+13.0
+ 8.8
+ 9.6 | 14
74
28
38
0
0
3
0 | 105
393
209
229
9
3
11
6 | 111
98 c
192 c
97 c | | 314'049 | к, м | 881
876
876
883
877
877
878
880
882
884 | 0.908
0.553
0.545
0.505
0.454
0.455
0.403
0.251
0.525
0.715
0.938 | 257'4
306'9
229'9
221'5
205'3
183'4
169'6
34'1
114'5
67'2
98'6 | 245·3
242·8
237·6
228·9
218·6
212·5
207·8
188·0
173·1
148·0 | +22.0
-17.8
-19.3
-21.2
-23.9
-20.3
+15.0
- 9.9
+18.3
- 7.0 | 0
22
212
6
62
5
12
8
5 | 4
102
867
22
269
26
31
20
20
89 | 63 | Nov. 13
316:663
I. | н, ғ | 884
885 | 0.745
0.961
0.762
0.869
0.945
0.947
0.944
0.892
0.792 | 102'1
70'5
76'7
103'2
105'0
298'3
249'6
293'4
234'3 | 148.7 | - 7°0
+ 19°5 | (590) | 59
1433
(2467) | 62 e
1318 e
136
70
42
(2126)
49
106
68
84 | | Nov. 11
314'681
I. | н, г | 876
876
876
876
883
877
877
877 | 0.940
0.957
0.951
0.949
0.642
0.593
0.601
0.514
0.476
0.415
0.396 | 297'9
304'7
258'7
236'7
234'1
230'3
229'4
218'0
199'2
192'0
188'9 | 242'8
238'8
237'9
235'2
228'3
218'4
213'9
212'3 | -18·1 -17·7 -19·9 -18·7 -21·0 -23·7 -20·9 -20·0 | 22
0
71
29
0
45 | 109
31
415
205
6
270
5 | 137
99
140
59 c
198 c | Nov. 14
317:655
I. | м, г | 876
876
876
877
878
886
884
885 | 0'901
0'859
0'831
0'698
0'480
0'239
0'576
0'880
0'901 | 24843
24448
2455
2306
2965
3053
1066
697
1452
2920
2367
2476 | 243°9
238°0
235°1
218°4
208°7
193°8
148°7
121°8 | -18·1
-20·0
-18·5
-24·0
+14·7
+10·6
- 7·2
+19·1 | 12
54
11
43
2
0
9
468
(599) | 75
431
204
232
8
2
66
1761
(2779) | 543 c
84 c
41 c
673 e
24
(1672) | Group 876. A very fine spot, and a number of spots arranged in a straight line above it. These spots undergo several changes, and by November 14 only two regular spots remain. The whole group, therefore, then consists of three regular spots, one of them very large, and another large. Group 877. A regular spot, followed by several smaller spots. Of these latter, all but one disappears before November 9, and that one disappears before November 14. Group 878. Several small spots. Group 880. A small spot. Group 882. Two small spots. The group is not seen on November 10. Group 883. A small spot. Group 884. A small spot. Group 885. A very fine large spot. On November 18 a large portion becomes detached from the principal spot. Smaller portions become detached on the following days. Group 886. A small faint spot. | | | - | se in | Sun's | Ницо | GRAPHIC | SP | отв. | FACULÆ. | 1 19.44 | | | .8. | Sun's | Ницо | BRAPHIC | Spo | ors. | FACULE | |--------------------------------------|------------|--|---|--|--|--|--|---|--|---|------------|---|---|---|---|--|---|---|--| | Greenwich
Mean
Solar
Time. | Mensurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Atea for each Group
(and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | 1882.
317 ^d ·655
I. | М, Б | 877
887
887
884
885
885 | 0.815
0.297
0.278
0.387
0.696
0.761
0.832
0.923
0.983 | 237.8
342.3
346.2
116.4
77.6
66.8
60.7
52.7
97.3 | 0
218·2
174·8
173·3
148·9
125·7
121·7 | 0
-24'0
+18'9
+18'3
- 7'4
+10'5
+19'2 | 27
4
0
10
0
515 |
188
23
5
57
57
2003 | 390 c
330
50
62 | 1882.
320 ^d ·985
Nov. 18 | к, м | 889 | 0.684
0.842
0.863
0.888
0.912
0.913 | 63.4
110.3
28.5 | 83.0 | + 10-8 | 50
(895) | 146 | 312 f
34
100
438
559
35
(2686) | | Nov. 15
318·647
I. | м, н | 876
876
877
887
884
885
888
889 | 0'932
0'861
0'993
0'984
0'912
0'419
0'212
0'613
0'927
0'959 | 299°3
243°0
249°5
250°9
242°1
313°4
145°4
61°2
97°6
79°1 | 237.9
234.3
218.1
175.0
149.4
121.8
89.0
82.8 | -20°0
-18°3
-24°1
+19°0
- 7°5
+19°2
- 6°0
+11°2 | (663) 41 11 28 4 10 497 10 27 | 238
93
146
18
45
2249
49
150 | 190
403
576 sf
199 c | 322*090
Nov. 19 | к, м | 887
884
885
885
885
888
888
889
890 | 0.648
0.306
0.332
0.347
0.325
0.410
0.487 | 260°2
290°0
256°0
292°2
329°4
343°7
120°9
111°5
73°2
114°3
60°2 | 177'1
150'0
127'4
121'0
116'8
94'5
88'3
82'7
38'8 | +21.4 | 0
20
0
492
96
14
19
31
135
(807) | 124
38
16
2008
377
32
40
123
649 | 456 p
140
(1359) | | I.
Nov. 17 | м, н | 877
887
884
885
888
889 | 0.891
0.780
0.979
0.583
0.213
0.450
0.806
0.867
0.986 | 284·2
294·0
244·4
300·6
213·6
49·6
99·7
78·8
109·3 | 216'9
173'3
148'1
120'1
88'5
81'5 | -24'4
+19'2
- 7'8
+19'1
- 6'3
+10'9 | (628) 17 3 10 404 11 18 (463) | 100
35
44
2352
104
136
(2771) | 145
(2271)
1118
289
525 f
39 c
175 c
504 f
255
(2905) | 322.939 | к, м | 887
885
885
885
885
888
888
888
889 | 0.450
0.486
0.440
0.405
0.186
0.251
0.321 | 248·3
262·3
289·4
303·1
310·4
317·9
320·9
319·7
154·8
127·3
62·8
116·2
121·4
171·6 | 176.9
127.3
120.8
120.3
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0
117.0 | +18.4 | 24
3
309
0
33
0
6
23
80 | 99
7
1673
47
188
19
11
27
96
517 | 79
276
472 n
619 c
162
173 | | 320-985 | к, м | 887
887
884
885
885
888
888 | 0.930
0.691
0.688
0.676
0.798
0.753
0.437
0.150
0.295
0.549
0.617 | 286·3
242·5
276·7
256·0
292·5
292·8
247·8
347·4
14·0
105·5
102·3 | 176.5
172.2
149.4
127.3
121.1
93.4
88.3 | +19°1
+18°4
- 7°4
+10°6
+18°8
- 6°6
- 5°8 | 39
15
19
0
733
19
20 | 122
50
57
8
2417
61
76 | 38
168
181
338
483 c | Nov. 20
324.025
Nov. 21 | к, м | 885
885
888
888
889
890 | 0.842 | 298.6
306.0
228.0
199.2
15.6
120.6
110.0 | 120.8
116.3
95.9
88.4
82.9
37.9 | +19'0
+21'9
- 7'5
- 6'6
+10'6
-22'5 | (478) 229 33 0 14 73 (349) | (2684)
1583
136
11
27
55
308
(2120) | 83 | Group 876. A very fine spot, and a number of spots arranged in a straight line above it. These spots undergo several changes, and by November 14 only two regular spots remain. The whole group, therefore, then consists of three regular spots, one of them very large, and another large. Group 877. A regular spot, followed by several smaller spots. Of these latter, all but one disappear before November 9, and that one disappears before November 14. Group 884. A small regular spot. Group 885. A very fine large spot. On November 18 a large portion becomes detached from the principal spot. Group 887. Several small faint spots. The preceding spot becomes larger and darker by November 19, and the other spots disappear. Group 888. Two small spots. Group 889. A regular spot spot solve the following days. Group 890. Two regular spots close together. The preceding spot shows a tendency to break up, and several small spots form round the group on November 25 and following days. The smaller spots disappear before December 1, leaving only the second of the two original spots. | | | | .9 | Sun's | Нецю | GRAPHIC | Src | OTS. | FACULÆ. | | | | II. | Sun's | HELIOG | RAPHIC | Spo | TS. | FACULE. | |-------------------------------------|------------|--|--|---|---|--|--|---|--|--|------------|--
---|--|---|---|---|--|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | | I.
Nov. 23 | м, н | 885
888
889
890
891
892
885
885
888
889
893
890
891
892 | 0.340
0.267
0.2167
0.2167
0.680
0.723
0.961
0.879
0.923
0.872
0.839
0.554
0.551
0.534
0.597
0.571
0.8673
0.972
0.972
0.967
0.972 |
298'1
258'8
283'7
293'5
299'4
231'9
237'3
317'0
125'8
128'8
110'9
76'2
126'1
67'3
291'6
295'5
248'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
245'2
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
293'4
29 | 120'7
116'2
90'4
87'7
83'0
38'4
36'3
35'5
5'1
1'0
120'0
115'5
92'3
89'4
83'0
64'5
38'4
4'0
0'8
349'3 | + 18.5
+ 21.7
- 10.3
- 6.6
+ 10.6
- 21.9
- 25.4
- 22.5
- 19.2
+ 13.8
+ 19.5
+ 22.0
- 10.4
- 11.1
+ 12.3
- 21.9
- 25.4
- 22.7
- 20.3
+ 13.7
- 9.7
+ 19.3
+ 18.3
- 10.2
- 11.0
+ 10.9
+ 24.1
- 22.3
- 22.3
- 22.3
- 22.3
- 22.3
- 22.3 | 169 14 0 13 34 0 27 0 10 (267) 182 12 0 0 23 7 41 0 (299) 267 0 1 3 19 0 33 31 | 1766
133
18
19
85
229
5
161
27
99
(2542)
1594
129
4
1
150
70
279
5
(2545)
1130
96
12
12
89
5
128
153 | 145
233
118
695 c
207 c
207 c
114 c
1278 s
169 c
42
150
(3151)
1247 c
757 c
137 n
844 nf
71
133
267
(3456)
511 c | 1882.
327 ^d ·023
Nov. 24
327'931
Nov. 25
328'978 | K, M | 894
895
888
888
889
890
890
891
892
892
894
895
896
890
890
890
891
891
891
891
891
892
894
895 | 0.772
0.627
0.416
0.412
0.561
0.633
0.527
0.563
0.754
0.899
0.959
0.780
0.780
0.748
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475
0.475 | 288·8 257·1 255·7 283·0 308·3 100·2 186·2 186·2 186·2 186·2 182·5 129·1 127·6 67·8 68·9 104·0 100·5 73·1 259·8 281·6 300·4 283·8 219·6 214·3 209·4 150·8 143·7 52·8 109·3 103·3 74·4 70·6 107·4 |
0
344.5
330.9
117.6
94.2
88.7
83.7
66.4
358.7
35.0
65.5
1.4
4.1
1.6
358.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345.8
345. | -10.6 -11.0 +10.9 +24.0 -22.1 -22.7 -23.7 -23.1 -19.4 +12.9 +13.4 +13.7 -9.1 -7.0 +15.8 +11.0 +24.0 +10.9 -20.9 -20.9 -20.1 -22.4 +12.8 -8.9 +10.8 +15.7 | 0 0 (503) 0 0 0 22 17 24 7 38 8 14 19 0 10 87 66 9 (321) 16 5 7 3 14 22 0 5 8 8 65 39 20 15 6 6 (225) | 16
68
(2343)
320
12
10
69
35
97
26
132
23
41
84
9
72
285
305
72
(1592)
48
12
26
21
75
110
46
12
47
292
189
60
51
21
(1010) | 615 s (2275) 460 f 225 c 215 n 132 c 483 c 484 c (1999) 378 291 n 120 c 102 c | | | | 891
891
892
892
894 | | 120'4
121'2
72'5
73'2
101'9 | 5.9
1.9
4.0
358.7
349.0 | -19'7
-21'9
+13'5
- 9'2 | 17
15
34
22 | 59
39
110
122
127 | 521 f
153 c
375 c | | | 893
896
890
890 | 0.883 | 295.8
282.0
228.5
224.1
227.7 | 67.7
67.4
35.6
35.0
26.2 | +23.5
+11.1
-22.8
-25.8
-16.5 | 6
2
36
9
14 | 11
21
178
39
52 | 177 n.
82 c | Group 885. A very fine large spot. On November 18 a large portion becomes detached from the principal spot. Smaller portions become detached on the following days. Group 886. Two small spots. Group 890. Two regular spots close together. The preceding spot shows a tendency to break up, and several small spots form round the group on November 25 and following days. The smaller spots disappear before December 1, leaving only the second of the two original spots. Group 891. Three or four small spots. On November 24 two regular spots, of which the following one disappears before November 29. Group 892. Three or four small faint spots. Group 893. Three or four small spots. On November 26 only one spot remains. Group 894. A fine group, composed of a great number of spots very irregularly arranged. The group undergoes constant changes, the preceding portion tending to increase, the following to diminish. Group 895. A small regular spot. Group 897. Four or five small spots on November 26. The group rapidly increases in size on the following days, and on November 29 forms a long straight line of spots, of which the last is the largest. On December 3 only the last spot remains. Group 898. Two considerable spots, with several small spots between them | | | | e in | Sun's | HELIO | DRAPHIC | Spe | ors. | FACULE. | | | | il. | Sun's | Неглос | PRAPHIC | Sro | TS. | FACULE. | |--|------------|--|--|---|--|---|--|--|---|--------------------------------------|------------|---|---|--
--|---|---|--|--| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time, | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
330 ^d ·047
Nov. 27
331·039 | к, м | 892
894
894
894
894
897
897
895
899
899 | 0°206
0°407
0°298
0°335
0°352
0°452
0°441
0°611
0°894
0°949
0°783
0°933 | 7.2
169.3
124.9
118.0
111.3
118.7
67.5
66.0
71.3
65.1
109.3
109.3
109.3
109.3
281.2
295.8 | 345.7
348.7
345.0
345.0
345.9
341.8
341.1
331.0
304.0
296.0 | | 10
2
48
35
16
1
13
20
3
3
3
0
0 | 29
8
208
212
64
14
95
116
10
11
30
19 | 265 c
306
56
(1480) | 1882.
331 ^d ·659
I. | м, ғ | 898
900
891
892
894
894
897
897
897
893
899
899 | | 241'7
233'0
222'8
302'4
216'1
206'3
187'6
343'9
21'9
17'9
42'4
115'6
113'8
103'6
114'1
81'8
58'4 | 22'9
26'1
5'3
4'5
351'6
349'1
345'8
347'2
341'5
341'2
330'6
303'9
297'5 | 0
-17'8
-26'0
-26'0
- 20'1
+12'9
- 8'5
- 8'0
- 7'1
+ 9'3
+ 8'9
+11'5'8
-16'8
-16'8 | 22
2
5
7
19
6
6
13
0
11
7
2
5 | 138
10
26
27
141
122
66
44
5
97
9
12
40 | 760 e
380
160
185
186 | | Nov. 28 | | 899
898
898
898
891
891
894
897
897
897
897
897
899
899 | 0.933
0.743
0.638
0.617
0.576
0.285
0.409
0.109
0.177
0.184
0.197
0.268
0.444
0.779
0.854
0.645
0.839
0.975 | 247.7
235.8
241.8
238.2
235.6
314.8
211.6
207.5
194.1
173.2
149.7
36.2
48.1
55.0
248.1
55.0
112.7
111.9
51.0
98.5
112.4
84.5 | 34'9 28'7 26'7 26'2 22'8 4'8 6'0 4'5 359'7 351'7 347'8 346'6 344'1 341'2 330'7 304'4 296'7 | -23.8
-16.7
-18.1
-18.1
+12.6
-19.3
-20.4
-24.3
-8.6
-7.8
+9.5
+8.2
+11.3
+15.4
-18.0 | 50
78
6
29
12
0
9
0
34
32
27
4
16
10
18
2 | 166
166
30
77
58
8
16
7
176
286
65
9
143
18
52
37 | 389 c
212
85
101
127
188
(2910) | 332·781 | H, F | 890
898
898
898
900
900
892
891
891
897
897
901
897
901
899
899
899 | 0.953
0.838
0.907
0.882
0.813
0.838
0.859
0.631
0.629
0.373
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273
0.273 | 256·1
225·8
244·0
250·4
246·8
242·2
239·4
239·9
291·5
235·2
229·9
245·5
242·8
297·1
306·6
318·3
349·2
124·0
121·2
1·1 | 32'1' 30'0' 21'6' 21'1' 24'8' 21'9' 3-5 3-4 1'4' 350'0' 345'0' 345'0' 342'8'
342'8' 34 | -181
-183
-254
-241
+129
-204
-232
-81
-69
+922
+101
+118
+115
-164 | 13
23
11
5
0
6
0
0
15
4
5
0
3
3
3 | 115
172
87
78
33
36
9
4
8
30
58
16
21
92
28
10
13
7 | 357
298
1066 p
738 c | | 331.659
I. | M, F | 890
890
898 | 0.992
0.982
0.926
0.823
0.802
0.743 | 281°1
236°2
239°8
246°0 | 35°0
33°5
29°7 | -25°0
-23°2
-16°9 | 5
25 | 28
113 | 86
213
378 | Nov. 30
333·675
I. | м, н | 890 | o.889
o.840
o.972 | | 32.8 | -22·8
-16·3 | (98)
17
34 | 82
196 | (3271)
402
141
431 c
206 e | Group 890. Two regular spots close together. The preceding spot shows a tendency to break up, and several small spots form round the group on November 25 and following days. The smaller spots disappear before December 1, leaving only the second of the two original spots. Group 891. Three or four small spots. On November 24 two regular spots, of which the following one disappears before November 29. Group 894. A fine group, composed of a great number of spots very irregularly arranged. The group undergoes constant changes, the preceding portion tending to increase, the following to diminish. Group 897. Four or five small spots on November 26. The group rapidly increases in size on the following days, and on November 29 forms a long straight line of spots, of which the last is the largest. On December 3 only the last spot remains. Group 898. Two considerable spots, with several small spots between them. Group 899. Several very small spots in a straight line. Only the first and last remain on November 29, and of these the first disappears before December 1. Group 900. Six spots in two clusters on November 30. Three spots on December 1. | | | | .8 | Sun's | Непо | GRAPHIC | Sre | ots. | FACULE. | | | | E E | Sun's | Helioo | GRAPHIC | Src | TS. | FACULÆ. | |--|------------|---|--|---|--|---|--|---|--|---|------------|---|--|--|--|---|--|--|--| | Greenwich
Mean
Solar
Time. | Measurers. | No of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE for each Spot (and for Day). | Area for each Group (and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius, | Position Angle from Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
333 ^d -675
I. | м, н | 898
900
900
900
894
894
897
895
895 | 0.916
0.945
0.932
0.921
0.575
0.484
0.524
0.432
0.340
0.473
0.943
0.996 | 249°1
242°1
246°3
244°3
254°8
254°8
285°5
296°4
320°7
132°3
107°7
70°4 | 22.6
26.3
24.7
22.6
352.1
346.1
348.8
341.4
331.1
296.7 | 0
-18·8
-26·1
-21·7
-23·3
- 8·2
- 6·7
+ 8·5
+11·6
+15·8
-18·0 | 0 0 0 19 40 0 3 5 5 2 | 14
31
14
66
369
33
14
115
7 | 755 c 29np 202 91 | 1882.
337 ^d ·660
I.
Dec. 5
338·668
I. | м, н | 903
903
903
904 | 0.826
0.898
0.938
0.939
0.959
0.351
0.299
0.272
0.959
0.964 | 280.6
291.4
216.6
201.2
196.2
70.4
107.1 | 264.9
261.1
256.9 | -16·3
-15·1
-15·1
+18·7 | (o)
0
0
0 | (23)
5
3
22
54 | 89
107
415
(1883)
109
422
383 n
172
56 | | Dec. 1 334:752 I. Dec. 2 | м, н | 894
894
897
897
895
899
902 | 0'947
0'944
0'882
0'749
0'678
0'660
0'619
0'504
0'353
0'949
0'936 | 247.5
233.0
287.4
258.3
258.9
284.3
289.2
301.7
158.4
69.1
1112.7 | 351.6
345.8
344.2
340.5
330.2
296.1
233.6 | - 8'4
- 7'1
+ 9'8
+ 12'1
+ 15'8
- 18'6
+ 20'0 | 21
0
0
10
0
0 | (953)
164
21
2
46
4
8
8
(253) | 78 c
425
(2549) | Dec. 6 339.660 I. Dec. 7 | м, н | 903
903
903
905
904 | 0'963
0'895
0'507
0'459
0'402
0'435
0'878
0'883
0'936
0'958 | 293·3
250·1
238·5
235·7
232·8
72·3
68·7
109·0
97·5
71·3 | 265·8
262·3
258·5
214·7
181·9 | -15·1
-14·1
+ 7·5 | 3 5 4 0 8 8 (20) | (84) 10 21 9 3 40 (83) | 56
(1142)
310
552
149 c
101
161
203
(1476) | | 335·680
I,
Dec. 3
336·937
Dec. 4 | н, ғ | 894
897 | 0.773
0.858
0.933
0.960
0.911
0.864
0.907 | 287·9
245·2
259·9
285·4
66·9
114·5
261·3
277·3
119·0
70·9 | 352·9
341·2 | - 8.7
+12.1 | (3) | 82
11
(93) | 434
1201
531 c
463 c
53
630
(3312)
601
449
364
478
(1892) | 340.679
I. | м, јр | 903
903
903
903
906
904
907 | 0.960
0.942
0.664
0.633
0.592
0.597
0.750
0.892
0.874
0.889
0.917
0.960 | 251°0
231°0
247°9
243°9
243°7
245°3
131°7
64°8
78°4
99°4
89°7
67°0
101°7 | 265-2
262-1
260-0
259-5
258-7
218-2
180-4
163-5 | -14'7
-16'3
-13'2
-15'6
-14'2
-7'1
+18'4
+10'2 | 2
3
0
0
8
7
4 | 16
8
4
1
5
31
31
17 | 436
34
126 e
117 e
99
62
84
47
(1005) | | 337.660
I. | m, H | 903 | o'994
o'968
o'303
o'303 | 262.5
282.7
293.7
147.6
115.8 | 256'1 | -14.7 | 0 | 23 | 600
418
170
84 | 342'002 | к, м | 903
903
906 | o.840
o.253 | 254·3
252·0
242·8 | 264°4
257°7
221°4 | - 13.4
- 14.1
- 2.0 | 17 0 18 | 233
24
27 | 402 e | Group 894. A fine group, composed of a great number of spots very irregularly arranged. The group undergoes constant changes, the preceding portion tending to increase, the following to diminish. Group 897. Four or five small spots on November 26. The group rapidly increases in size on the following days, and on November 29 forms a long straight line of spots, of which the last is the largest. On December 3 only the last spot remains. Group 898. Two considerable spots, with several small spots between them. Group 990. Six spots in two clusters on November 30. Three spots on December 1. Group 990. Six spots in two clusters on November 30. Three spots on December 1. Group 992. Several small spots. The group undergoes constant changes. Group 992. A very small spots. Group 993. Two very small spots close together. Group 995. Two spots. The following spot disappears before December 11. Group 997. A regular spot, followed by several smaller spots. These latter have all disappeared before December 14. | | | | | M | easures | of Positi | ons and | Areas | of Spots a | nd Faculæ | upon | the S | Sun's Di | sk—con | tinued. | | | | | |--|------------|--|--|---|---|---|--|--|---------------------------------------|-------------------------------------|------------|--|--|--|--|---|--
--|------------------------------------| | 15 -1 | | | re in | Sun's | Helio | GRAPHIC | SP | OTS. | FACULÆ. | | | | ii ii | Sun's | HELIO | RAPHIC | Spo | TS. | FACULE | | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from SAxis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group and for Day). | | 1882.
342 ^d ·002
Dec. 9 | к, м | 906
904
907
907 | 0.543
0.679
0.731
0.871
0.966 | 230·5
54·7
74·2
76·8
60·0
76·9 | 0
217.1
180.8
167.0
162.4 | - 7.5
+17.9
+10.3
+ 9.3 | 0
5
31
10
(81) | 19
11
73
44
(431) | 184 <i>c</i> 275 246 (1107) | 1882.
34 ^{5d} ·933 | к, м | 909
911
910
907
908
908 | 0.810
0.917
0.830
0.358
0.269
0.201
0.637
0.666 | 294'2
298'0
241'7
300'3
321'2
333'3
58'7
61'2 | 219.8
209.3
174.8
166.5
161.8
121.7 | +25·1
-23·7
+ 9·5
+11·2
+ 9·5
+18·6
+18·0 | 0 0 3 8 0 0 58 | 10
14
24
51
23
20 | 107
307 p
152 np | | 342·675 | M, JP | 903
903
906
906
904
907
907
908 | 0.955
0.933
0.890
0.390
0.330
0.443
0.567
0.621 | 303·4
254·6
255·2
253·4
246·9
43·9
69·5
73·5 | 267.8
261.7
221.8
217.5
180.9
167.1
162.7 | -14.5
-13.4
- 6.9
- 7.9
+18.1
+11.0
+ 9.8 | 28
16
4
0
16
10 | 174
110
20
5
3
104
52 | 84
228 c
832 sp | Dec. 13
346.789
I. | н, јр | 908
908
911
910
910 | | 55.5
58.6
100.6
244.0
290.0
292.2 | 210°2
176°8
172°0 | +22.4
+21.1
-24.2
+ 9.9
+ 9.9 | 0
28
(97)
0
0
5 | 25
130
(488)
23
25
29 | 273 c
151
(990)
84 f | | Dec. 10
343.669
I. | н, је | 903
903
906
907 | 0.989
0.903
0.992
0.964
0.583
0.396 | 70°9
56°7
255°6
256°4
259°3
58°0 | 268·8
260·4
221·5
166·5 | +18.8
-14.4
-13.3
-6.7
+11.5 | 42
(116)
23
0
3
16 | 417
(885)
287
93
13 | 632 sp
254
(1398)
620 c | Dec. 14 | | 907
908
908
908
908
908 | | 300.4
52.5
50.0
52.6
47.5
51.4 | 166.6
124.8
123.2
118.4
116.7
115.7 | +11.1
+14.3
+16.8
+20.0
+23.0
+20.6 | 0
0
13
0
6
(24) | 24
5
44
104
5
115
(374) | (84) | | Dec. 11 | | 907
908
908
908
908 | 0'442
0'872
0'930
0'944
0'950
0'807 | 67.0
74.9
70.0
67.9
64.9 | 162·2
126·3
119·7
117·5
116·3 | + 9.4
+ 12.8
+ 18.3
+ 20.6
+ 23.5 | 0
0
39
13
0 | 28
3
301
127
6
(985) | 1450 s
59
(2704) | 347.773
I. | н, јр | 912
910
910
910
907 | 0.718
0.664
0.643
0.586 | 248·3
294·1
274·6
286·3
287·6
285·0
291·9 | 180°2
176°7
172°3
171°1
166°0 | + 11.6
+ 8.6
+ 10.4
+ 5.4 | 0 4 5 0 5 | 3
27
25
4
24 | 509
806 | | 344·762
I. | M, JP | 909
909
906
910 | 0.947
0.918
0.913
0.828
0.807
0.770
0.170 | 251'0
282'7
293'0
299'7
303'1
261'5
348'9 | 223.6
220.4
221.9
173.9 | +23.7
+25.6
- 7.0
+ 8.8 | 0 4 0 0 | 17
21
5 | 155
48
41
64 c | | | 908
908
908
908 | 0.253
0.306
0.357
0.412
0.467
0.944
0.946 | 18.9
25.4
27.6
35.0
37.4
78.7
63.8
109.2 | 127.6
124.6
122.5
118.0
114.8 | +12.6
+14.8
+17.2
+18.5
+20.5 | 7
0
0
8
2 | 31
27
50
190
35 | 81 c
66
97
182 | | Dec. 12 | | 910
907
907
907
908
908
908 | 0°163
0°232
0°247
0°247
0°819
0°847 | 356.6
24.2
34.0
42.4
67.5
62.4
64.5
101.8 | 172'6
166:5
163:9
162:3
119:6
117:8
117:0 | + 8.5
+11.4
+11.0
+ 9.7
+17.8
+22.7
+21.0 | 0
17
0
4
41
5
20
(91) | 1
105
2
37
267
34
127
(618) | 751 s.f | Dec. 15 348.658 I. | н, јр | 912
910
910
907
908 | 0.907
0.857
0.850 | 293'9
251'8
273'3
282'6
284'0
286'5
331'4 | 178.8
178.0
172.9
166.9
129.7 | + 2'1
+10'0
+10'3
+11'2
+14'6 | (31)
0
10
0
3 | (416)
13
22
8
10
8 | (1767) 355 286 } 150 c 209 c 111 c | Group 903. Several small spots. The group undergoes constant changes. Group 906. Two spots. The following spot disappears before December 11. Group 907. A regular spot, followed by several smaller spots. These latter have all disappeared before December 14. Group 908. A large spot, with two companions slightly smaller. Other spots appear both preceding and following the large spots on December 13 and following days, and the group forms a very long straight line of spots. The spots in the middle of the line disappear before December 16. The preceding cluster disappears before December 20. Group 910. Several small spots. Group 911. A small spots. Group 912. Two very small faint spots. | | | | ii . | Sum's | Ницион | RAPHIC | Src |)T8. | FACULE. | | | | H. | Sun's | Нилос | RAPHIC | Sro | T8. | FACULE | |-------------------------------------|------------|---|---|--|--|--|--|---|--|---|------------|--|---|--|---|----------------------------------|--|--|------------------------------------| | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from S
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | Greenwich
Menn
Solar
Time. | Measurers. | No. of Group. | Distance from Centre
terms of Sun's Radius. | Position Angle from Axis. | Longitude. | Latitude, | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
348 ^d ·658 | н, эр | 908
908
908
908 | 0°270
0°277
0°261
0°325 | 327'8
334'2
340'4
352'3 | 0
129'2
125'9
125'4 | 0
+11.9
+13.1
+12.9
+17.5 | 8 0 0 | 56
24
16
3 | 46 c | 1882.
351 ^d ·952
Dec. 19 | к, м | 913
914 | o.382
o.362 | 40°5
105°4 | 66.6 | + 10.6
- 15.3 | 17
0
(62) | 65
113
(359) | 217 e
(654) | | | | 908
908
908
913
913 | 0'316
0'344
0'385
0'752
0'791
0'859 | 3·1
5·7
11·2
76·0
74·7
5g·2 | 121.8
118.7
116.2
73.3
69.9 | +17.0
+18.7
+20.8
+ 9.6
+11.2 | 0
21
2
4
0 | 28
192
8
14
7 | 149 c } 94 c | 352'922
Dec. 20 | к, м | 908
913
913
914 | 0°832
0°256
0°226
0°885
0°744 | 293°2
318°8
350°9
106°6
65°9 | 74'4
66'7
3'2 | -12.2
+11.0
+ 3.3
+18.0 | 0
12
8
20
(40) | 35
68
37
157
(297) | 930 p
618 s
87
(1635) | | Dec. 16 | н, јр | | 0.012 | 136.9 | | | (48) | (409) | 77
319
(1995) | 354.006 | к, м | 913
915
916 | 0°923
0°437
0°537
0°689 | 293°9
295°1
74°0 | 73·8
19·1
8·3 | + 8.9
+ 6.9
-14.7 | 8 5 0 | 25
10
21 | 1196 | | I. | | 912 | 0.892
0.871
0.971
0.960 | 283.7
248.9
271.9
273.8 | 182'9 | + 1.5 + 3.3 | 0 | 24
8 | 916
39
} 209 c | Dec. 21 | | 914 | 0.757 | 76.9 | 2'4 | -15'1 | (36) | 103 | 1041 <i>f</i>
311
(2548) | | | | 908
908
908
908
908
908
913
913
913 | 0'441
0'434
0'386
0'417
0'395
0'389
0'585
0'607
0'631 | 300°1
305°1
328°3
333°8
308°7
332°8
70°6
74°0
69°8
71°8 | 129'9
128'4
119'3
118'4
125'4
117'9
73'2
71'1
70'1
67'1 | +11'4
+13'1
+17'7
+20'5
+12'8
+18'7
+10'0
+ 8'5
+11'4
+10'9 | 6
0
0
4
8
5
0
3 | 53
14
51
6
26
50
59
15
19
62 | 45 c
46 c
36 c | 355.008
Dec. 22 | к, м | 913
913
916
914
917
917 | 0.938
0.622
0.588
0.471
0.596
0.622
0.646
0.790
0.903 | 301°0
287°9
292°1
117°2
113°0
66°1
68°9
73°5
133°7 | 73.8
70.7
11.6
3.5
1.6
359.2 | +11.0
-14.3
-15.2
+12.8 | 5
0
9
29
1
4 | 32
13
22
81
12
28 | 587
93
(1169) | | Dec. 17 | н, јр | gio | 0.955 | 111.2 | 0/1 | +109 | (36) | (387) | 77 e
637
(2171)
259 | 356.030
Dec. 23 | к, м |
916
914 | 0'279 | 138'4 | 12.6 | | 4 17 (21) | 14
52
(66) | (0) | | L | | 908
908
908
908
913
913
913 | 0.958
0.627
0.574
0.530
0.519
0.383
0.436
0.493 | 228.7
290.2
295.3
307.5
311.0
60.1
61.2
64.9 | 130°5
125°8
119°8
118°1
74°2
71°0
66°9 | +11.3
+12.9
+17.4
+18.5
+ 9.6
+10.6
+10.7 | 4
6
2
8
10
0 | 50
45
29
78
75
30 | 51
40 c
91 c
86 c
37 c
76 c | I. | н, јр | 916
914
918 | 0.846
0.203
0.308
0.417
0.722
0.900
0.928 | 282.8
170.8
137.6
68.7
110.1
61.8
109.0 | 13·1
2·6
352·1 | -13·8
-15·3
+ 6·6 | 0
12
0 | 18
35
77 | 516
57 c
107
177
229 | | Dec. 18 | к, м | 908
908
908
913 | 0.815
0.766
0.702
0.206 | 285.7
289.4
298.7
22.8 | 130:4
125:1
117:6
72:7 | +11.7
+13.6
+13.4
+ 9.2 | (45)
8
0
14
23 | (407)
44
16
45
76 | 533
(1173)
365 n p
72 c | | н, јр | 914 | 0'924
0'904
0'884
0'226 | 282·5
298·1
248·4
183·6
40·6 | 3°0
353°7 | -15'4
+ 7'4 | 12 | (130)
43 | 742
154
406
80 c | The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric. The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere. Group 908. A large spot, with two companions slightly smaller. and the group forms a very long straight line of spots. before December 20. Group 913. A group of four or five spots irregularly disposed. Group 914. A small regular spot. Group 915. Two small faint spots. Group 915. A very small faint spots. Group 915. A very small spot. Group 916. Two small spots remain on December 21. Group 917. Two small faint spots. Group 918. A close cluster of very faint small spots. | | | | Distance from Centre in terms of San's Radius, | Sun's | Herio | GRAPHIC | SPOTS. | | FACULE. | | | - | ii. | Sun's | HELIOGRAPHIC | | Srots. | | FACULAL | |---|------------|--------------------------|--|---|--------------------------------|----------------------------------|--|--|---------------------------------------|--------------------------------------|------------|--|---|--|---|--|--|--|---------------------------------------| | Greenwich
Mean
Solar
Time. | Measurers, | No. of Group. | | Son's
ngle | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group
(and for Day). | Greenwich
Mean
Solar
Time. | Measurers. | No. of Group. | Distance from Centre terms of Sun's Radius. | Position Angle from
Axis. | Longitude. | Latitude. | Area of UMBRA
for each Spot
(and for Day). | Area of WHOLE
for each Spot
(and for Day). | Area for each Group (and for Day). | | 1882.
357 ^d ·658
I.
Dec. 25 | н, јр | 918 | o:258
o:800
o:849 | 6
47.3
57.8
111.1 | 351.3 | + 7'7 | 5 (19) | 18 (73) | 32 c
239
235
(1888) | 1882.
362 ^d ·738
I. | н, јр | 914 | 0.000 | 240.2
285.0
259.0
280.0 | 3°0
358°4 | -11·3
+ 7·7 | 61 | 152 | 840
504
946 e | | 358·814
I. | н, јр | 914
919 | 0.988
0.948
0.360
0.360 | 282.4
245.9
239.3
230.1
235.8 | 3.5 | -11.5 | 2 0 | 34 | 292
378
101 | | | 924
924
924
925
925
920 | 0.482 | 246·8
241·2
244·4
163·2
156·3
116·1 | 330.6
327.1
327.6
286.6
282.6 | -16·3
-18·5
-16·8
-29·0
-29·0
-14·3 | 5
4
0
6
6 | 9
15
10
5
16
28
265 | 57 e
40 e
130 e | | Dec. 26 | н, јр | 919 | 0.240
0.338
0.333 | 231.6
103.6
118.3 | 357°9
268°9 | -13.8 | 0
89
(91) | 3 ₄₉
(3 ₉₉) | 80 f
148
(999) | | | 921
926
927 | 0.511
0.899
0.986
0.872
0.973 | 64.3
99.1
108.2
115.1 | 267.5
231.4
214.8 | - 18.4
- 6.2
+ 10.1 | 4 0 57 | 6 9 167 | 482 s _J | | I. | 11, 01 | 914
920
921 | 0.510
0.919
0.856
0.872 | 242.5
103.9
78.3
119.6
100.4 | 3·7
269·4
266·3 | -15.9
-13.8
+10.3 | 5
42
10 | 16
230
24 | 799
770 s p
306 n f
73
67 | Dec. 30
363.698
I. | н, јр | | 0.954 | 282'2 | | | (192) | (682 | (3743)
381
820 | | Dec. 27
360·678 | н, јр | 914 | 0.907
0.867
0.643 | 241.6
278.1
254.6 | | | | (270) | (2015)
909
140 | 1. | | 914
928
928
924
924 | 0.973
0.883
0.856
0.773
0.736 | 258·9
287·0
288·5
251·8
249·6 | 359°4
342°6
339°2
332°2
328°6 | -11.6
+14.1
-12.6 | 8
0
9
24 | 16
25
49
101 | 253 e
211 e | | Dec. 28 | | 922
920
921 | 0.202 | 210.6
105.7
75.8 | 1.6
328.4
270.0
267.1 | -12.6
-14.2
+10.3 | 0
4
40
7
(51) | 6
9
285
18
(318) | 509 f
251 f
(1809) | | | 924
925
925
920 | 0.717
0.442
0.432
0.285 | 247'9
187'8
178'4
132'6 | 326·7
286·5
281·8 | -17.0
-17.9
-29.0
-28.6
-14.1 | 0
17
24
30
48 | 14
30
151
58
262 | 133 c
56 c
64 c | | I. | н, јр | 914
923
920
921 | 0°925
0°885
0°828
0°770
0°628
0°674 | 298·9
241·6
257·5
281·5
109·2
71·0 | 3·1
356·9
270·0
267·5 | -12'0
+ 7'0
-14'2
+10'4 | 8
5
39
8 | 23
15
237 | 187
836
691 c
368 n
149 c | Dec. 31 | | 921
926
927
929 | 0.339
0.496
0.929
0.913
0.913 | 47'4
100'0
108'3
110'7
116'3
60'1 | 268.0
230.1
214.7
204.8 | +10.5
+10.5 | 6
35
25 | 1
54
227
159 | 388 c
257 c
212 c
122
776 | Group 914. A small regular spot. Group 919. Three small faint spots. Group 920. A small regular spot. Group 921. A small regular spot. Group 922. A small spot son December 29. Group 924. Several very small spots on December 29. Group 924. Several very small spots. Group 925. Two regular spots. Group 926. A very small spot on December 30. Group 927. A regular spot. Group 928. Two small spots. Group 929. A small regular spot. Group 929. A small regular spot. MEAN AREAS of UMBR.E., WHOLE SPOTS, and FACULE upon the SUN'S DISK, as measured on Photographs taken at the ROYAL OBSERVATORY, GREENWICH, and at DEHRA DUN, INDIA, for each ROTATION of the Sun, from 1881 December 8 to 1883 January 18. The Mean Areas have been formed by taking the Means of the Areas for each day of observation throughout each Rotation of the Sun, and are expressed in millionths of the Sun's visible Hemisphere. | | | No. of Days
on which | | Mean of Daily Areas. | | |---------------------|---|-------------------------|--------|----------------------|-----------| | No. of
Rotation. | Date of commencement of each
Rotation. | Photographs were taken. | Umbræ. | Whole Spots. | - Faculæ. | | 122 | 1881 December 7'76 | 18 | 79 | 398 | 1403 | | 123 | 1882 January 2'14 | 22 | 63 | 371 | 1420 | | 124 | January 27'52 | 21 | 134 | 810 | 1893 | | 125 | February 21'90 | 26 | 125 | 618 | 1844 | | 126 | March 19'28 | 25 | 183 | 1002 | 2755 | | 127 | April 13:66 | 25 | 368 | 2122 | 2652 | | 128 | May 9'04 | 25 | 307 | 1562 | 2420 | | 129 | June 3:42 | 24 | 97 | 548 | 1883 | | 130 | June 28.80 | 23 | 97 - | 572 | 2885 | | 131 | July 24'18 | 20 | 64 | 372 | 1971 | | 132 | August 18:56 | 22 | 202 | 921 | 2011 | | 133 | September 12'94 | 24 | 270 | 1296 | 2111 | | 134 | October 8.32 | 25 | 264 | 1377 | 2153 | | 135 | November 2.70 | 26 | 398 | 2022 | 2457 | | 136 | November 28:08 | 25 | 54 | 400 | 1702 | | 137 | December 23'46 | 26 | 148 | 897 | 2300 | MEAN AREAS of UMBRÆ, WHOLE SPOTS, and FACULÆ upon the Sun's DISK, as measured on Photographs taken at the ROYAL OBSERVATORY, GREENWICH, and at DEHRA DUN, INDIA, for the Year 1882. The Mean Areas are expressed in millionths of the Sun's visible Hemisphere. | | No. of Days
on which | Mean of Daily Areas. | | | | | | | | |-------|-------------------------|----------------------|--------------|---------|--|--|--|--|--| | Year. | Photographs were taken. | Umbræ. | Whole Spots. | Faculæ. | | | | | | | 1882 | 343 | 189 | 1002 | 2154 | | | | | | MEAN HELIOGRAPHIC LATITUDE of the Spots upon the Sun's Disk, as measured on the Photographs taken at the Royal Observatory, Greenwich, and at Dehra Dun, India, for each Rotation of the Sun, from 1881 December 8 to 1883 January 18. The numbers given in the accompanying table have been formed as follows:- The Heliographic Latitude of each spot for each day has been multiplied by its area for the day, and the sum of the products for Spots North of the Sun's Equator has been divided by the sum of the corresponding Areas to form Mean Heliographic Latitude of Spotted Area North of Equator. Similarly for Spots South of the Equator. In forming the Mean Heliographic Latitude of entire Spotted Area the algebraic sum of the products for Spots North and South of the Equator has been divided by the sum of the Areas; and for the Mean Distance from
the Equator for all spots, the numerical sum of the products, without regard to the sign of the latitude, has been similarly divided. The Mean Areas have been formed by dividing the Sum of the Daily Areas by the number of days of observation for each Rotation of the Sun, and are expressed in millionths of the Sun's visible hemisphere. | No. | | No. of Days | Spots Nort | rn of the Equator. | Spots Sour | n of the Equator. | Mean | Mean | |-----------------|--------------------------|--|----------------------------|-----------------------------------|----------------------------|-----------------------------------|---|---| | of
Rotation. | Date of
Commencement. | on which
Photographs
were taken. | Mean
of Daily
Areas. | Mean
Heliographic
Latitude. | Mean
of Daily
Areas. | Mean
Heliographic
Latitude. | Heliographic
Latitude of entire
Spotted Area. | Distance from
Equator
of all Spots, | | | 1881. | | | 0 | | 0 | 0 | 0 | | 122 | Dec. 7.76 | 17 | 291 | + 24.08 | 63 | - 25·58 | + 15:31 | 24.35 | | 123 | Jan. 2'14 | 2.2 | 276 | 16.13 | 95 | 19.91 | + 6.89 | 17'10 | | 124 | Jan. 27.52 | 21 | 457 | 11.39 | 352 | 16.33 | - 0.66 | 13.54 | | 125 | Feb. 21'90 | 26 | 69 | 13.23 | 549 | 12.59 | - 9'71 | 12.66 | | 126 | Mar. 19'28 | 25 | 307 | 14.10 | 695 | 14'74 | - 5.89 | 14.57 | | 127 | Apr. 13.66 | 25 | 489 | 18.74 | 1633 | 22.65 | - 13.11 | 21.75 | | 128 | May 9'04 | 25 | 455 | 16.58 | 1108 | 22.80 | - 11:43 | 20'91 | | 129 | June 3.42 | 24 | 200 | 18.42 | 325 | 13.83 | - 1.26 | 15.57 | | 130 | June 28.80 | 23 | - 403 | 14.55 | 169 | 16.51 | + 5.24 | 14.81 | | 131 | July 24'18 | 20 | 210 | 17.22 | 153 | 12.96 | + 4.83 | 15.47 | | 132 | Aug. 18:56 | 22 | 696 | 15.55 | 225 | 16.82 | + 7.65 | 15.86 | | 133 | Sept. 12'94 | 24 | 509 | 11.67 | 786 | 22.08 | - 8.81 | 17'99 | | 134 | Oct. 8:32 | 25 | 852 | 16.92 | 527 | 22.18 | + 2.01 | 18.93 | | 135 | Nov. 2'70 | 26 | 1155 | 18.39 | 867 | 18.38 | + 2.57 | 18.33 | | 136 | Nov. 28.08 | 25 | 223 | 15.11 | 177 | 14.54 | + 1.97 | 14'86 | | 137 | Dec. 23.46 | 26. | 253 | 7'61 | 640 | 14.28 | - 8.10 | 12 | MEAN HELIOGRAPHIC LATITUDE of Spots upon the Sun's Disk, as measured on the Photographs taken at the Royal Observatory, Greenwich, and at Dehra Dun, India, for the Year 1882. | | No. of Days
on which | Spots Nona | rn of the Equator. | Spots Sour | n of the Equator. | Mean
Heliographic | Mean
Distance from | |-------|----------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------------------|-----------------------| | Year. | Photographs
were taken. | Mean of
Daily Areas. | Mean Heliographic
Latitude. | Mean of
Daily Areas. | Mean Heliographic
Latitude. | Latitude of entire
Spotted Area. | Equator of all Spots. | | 1882 | 343 | 443 | + 15.98 | 558 | - 19·26 | - 3·66 | 17:81 |