GREENWICH

SPECTROSCOPIC AND PHOTOGRAPHIC RESULTS.

1882.

SPECTROSCOPIC AND PHOTOGRAPHIC OBSERVATIONS

MADE AT THE

ROYAL OBSERVATORY, GREENWICH,

1882.

(EXTRACTED FROM THE GREENWICH OBSERVATIONS, 1882.)

GREENWICH SPECTROSCOPIC AND PHOTOGRAPHIC RESULTS, 1882.

INTRODUCTION.

Spectroscopic Observations in the Year 1882.

The spectroscopes used for these observations were mounted on the South-east equatoreal, the object-glass of which (made by Merz and Son of Munich) has a clear aperture of 12.8 inches, with a focal length of about 17^{tt} 10^{tn}.

The direct-vision "half-prism" spectroscope, constructed by Mr. Hilger, has been used regularly since July 1877. In this form of spectroscope, either great dispersion or great purity of spectrum is obtained by the use of "half-prisms," according as the incident pencil falls first on the perpendicular or on the oblique face. Either one, two, or three "half-prisms" can be used at pleasure, according to the dispersion required, and each "half-prism" is compound, being composed of a flint "half-prism" and a crown prism cemented on the oblique face so as to form the half of a direct-vision prism, as cut by a plane perpendicular to the base. With one "half-prism" a dispersion of about 20° from A to H, equivalent to that given by four flint prisms of 60°, is obtained, with two "half-prisms" a dispersion of about 75° from A to H, equivalent to that given by fifteen flint prisms of 60°, with three "half-prisms" a dispersion of about 300°, equivalent to that given by about sixty flint prisms of 60°, the pencil in each case being incident on the perpendicular face of each "half-prism" and emerging at the oblique face. For observations of the Solar prominences, where great purity of spectrum is desired, the slit and eye-piece are interchanged, so that the pencil is incident on the oblique face and emerges at the perpendicular face of each prism. The cross section of the first prism is 2 inches in height by 2 inches in breadth, of the second prism 2 inches in height by 0.6 inch in breadth, and of the third prism 1 inch in height by 0.4 inch in breadth, the pencil being made narrower

^{*} A "half-prism" is the half of an isosceles prism cut by a plane perpendicular to the base, so that the rays fall perpendicularly on the face so formed. The general theory of this form of spectroscope is given in the *Proceedings of the Royal Society*, vol. xxvi., page 8.

by the oblique emergence at each prism. The collimator and viewing telescopes have focal lengths of about 23-2 and 11-6 inches respectively with apertures of 2½ inches. Different parts of the spectrum are brought into the field by turning the "half-prisms," each through the same angle, about fixed centres, by means of a micrometer screw acting on a lever. For delicate measures a micrometer eye-piece is used.

The spectroscope is carried by two rods, which are fixed to two collar-bearings on the eye-end of the telescope, giving the means of rotation round the axis, and carrying a position-circle. The spectroscope is held by two collars with lugs on the collimator and viewing telescope, which are fixed by clamping nuts on four strong elevator-screws fixed to the two rods and passing through slots in the lugs of the two collars; and an excentricity, either radial or tangential, can be given by altering the height of the nuts or by displacing the spectroscope laterally. The slit can thus be carried round the Sun's limb radially or tangentially, as may be desired.

Occasionally for faint objects another spectroscope of smaller dispersive power is used. This spectroscope has a single prism of flint glass, with a collimator of about 20 inches focal length and a viewing telescope of about 10 inches.

This section contains:—Observations of Solar Prominences; Observation of a Solar Storm; Observations of Spectra of Sun Spots; Measures of Displacement of Lines in the Spectra of Stars and Concluded Motions in the Line of Sight; and Observations of the Spectra of Uranus, of Sundry Stars, of Comets a and b 1882, and of the Aurora of 1882 November 17.

For the observations of solar prominences, the Greenwich mean solar times are given; and the position-angle from the Sun's axis of the two extremities of each prominence, together with its height in seconds of arc. The Sun's image was always placed centrally with respect to the position-circle, a radial excentricity being given to the spectroscope, so that the slit swept round the Sun's limb.

The position-angles have been first corrected for index-error of the position-circle, which is determined at the time of observation.

The method employed for this purpose has been to set the position-circle to 90° plas the approximate index-error, so that the slit points approximately E. and W., and to move the telescope by the slow-motions until either the north or the south limb of the Sun just comes into the middle of the field. The position-circle is then read, and the spectroscope rotated through 180°, the telescope remaining rigidly clamped, and as the diurnal motion brings the Sun up to the slit again, the limb previously observed is again brought to the centre of the field by means of the rotation of the spectroscope. The position-circle is read a second time, and the mean of the two readings is taken as the zero of the position-circle.

The corrected position-angles have then been converted into Heliographic N.P.D. by applying as a correction the position-angle of the Sun's north pole, taken from the "Auxiliary Tables for determining the Angle of Position of the Sun's Axis, and the Latitude and Longitude of the Earth referred to the Sun's Equator," by Warren De La Rue, F.R.S.

The heights of the bright lines seen in the prominences or chromosphere were read off on a pearl scale, divided to 0.005 inch (corresponding to 2".4), and carried by the micrometer of the spectroscope. Other particulars are given in the note at the head of this section.

The measures of displacement of lines in the spectra of stars were made with a micrometer in the viewing telescope of the "Half-prism" Spectroscope. The eyepiece used gives a magnifying power of 14. Estimations of the displacement, in terms of the apparent breadth of the bright comparison-line, were also made; the breadth corresponding to any given width of slit being determined by a careful observation under similar conditions. 1rev. of the screw for opening the slit corresponds to 0.01 inch, or 10". It has not been thought necessary to give in detail all these particulars of the reductions. The values used in each case may be inferred from the observed motion, which is the algebraic sum of the concluded motion and of the Earth's motion. One tenth-metre corresponds at D to a motion of 31.7 miles per second, at b to a motion of 36.1 miles, and at F to a motion of 38.4 miles. For comparison with the spectrum of hydrogen or other chemical element, an image of the vacuum tube or electrodes is formed on the slit, by means of a transparent plate of glass placed at an angle of 45° with the axis of the collimator, in connexion with a collimating lens, so that the cone of rays from the comparisonlight, as well as that from the star, fills the whole of the object-glass of the collimator.

Whenever the star-line was sufficiently distinct to allow of its being seen at the same time as the bright comparison-line, a direct comparison of the two was made; in other cases the bright line was compared with the pointer or bright line of the micrometer which had just previously been placed on the star-line, giving an indirect comparison.

The reading of the position-circle is given, as it is conceivable that the results might be affected by the position of the spectroscope. The slit lies north and south when the reading is 5°.

With regard to the other observations contained in this section, it is sufficient to remark that curves have been laid down in the usual manner, connecting scale or micrometer readings and wave-lengths, and that for each series of observations a correction for index-error has been deduced from observations of comparison-lines and applied to the observed readings, to reduce them to the standard curve, from which the corresponding wave-lengths have been read off. The tabular wave-lengths of comparison-lines have been taken from Ångström's Spectre Normal du Soleil, or in the case of the spectra of carbon compounds, from Ångström and Thalén's Récherches sur les Spectres des Métalloides.

Measures of Positions and Areas of Spots and Faculæ upon the Sun's Disk on Photographs taken at the Royal Observatory, Greenwich, and at Dehra Dûn in India in the year 1882; with the deduced Heliographic Longitudes and Latitudes.

The photographs from which these measures were made were taken either at Greenwich or at Dehra Dûn, North-West Provinces, India.

The photographs of the Greenwich series were taken with the Dallmeyer Photoheliograph returned from the Transit of Venus expedition to New Zealand.

This instrument has an object-glass of 4 inches aperture and 5 feet focal length, forming an image of the Sun about half an inch in diameter; this image is enlarged by a secondary magnifier to 4 inches on the camera screen, where the sensitive plate is inserted, the whole length of the instrument being about 8 feet. The exposure is given by a shutter, having a slit of adjustible width, which is carried by a spring across the primary image. At the principal focus cross-wires are placed, which give facilities for determining the position-angles of spots on the photographs. The instrument is equatoreally mounted, though this is not absolutely necessary to its efficient action, as the exposure is practically instantaneous, amounting only to a few thousandths of a second in ordinary cases.

In the process adopted up to 1882 November 28 iodized cadmium collodion was used in connexion with the pyro-gallic acid development. Since that date bromo-iodized gelatine dry plates with alkaline development have been regularly used.

The Indian photographs, which were used to fill the gaps in the Greenwich series, were taken under the superintendence of J. B. N. Hennessey, F.R.S., Deputy Superintendent, Trigonometrical Survey of India, with a Dallmeyer photoheliograph giving an image of the Sun 4 inches in diameter, except for the period from 1882 November 7 to December 8, when another secondary magnifier, giving an image of the Sun 8 inches in diameter, was adapted to the photoheliograph under the auspices of the Solar Physics Committee. In the process adopted at Dehra Dûn bromoiodized collodion has been used in connexion with iron development.

Photographs of the Sun were taken at Greenwich on 221 days, and Indian photographs on 142 days were used to complete the total of 343 days for which there are either Greenwich or Indian photographs of the Sun available in 1882.

The first column on each page contains the Greenwich Mean Solar Time at which each photograph was taken, expressed by the day of the year and decimals

of a day, reckoning from Greenwich mean noon of January 1, and also by the day of the month (civil reckoning), which latter is placed opposite the total area of Spots and Faculæ for the day. The photographs taken in India are distinguished by the letter I.

The second column contains the initials of the two persons measuring the photograph; the initial on the left being that of the person who measured the photograph on the left of the centre of the measuring instrument, and that on the right being that of the person who measured on the right of the centre.

The following are the signatures of those persons who measured the photographs for the year 1882:—

E. W. Maunder		- M	J. Knowles	100		- K
H. P. Hollis		- H	F. Finch -		Page 1	- F
J. Power -	-	- JP	J. Hawton		- 4	- JH
H. T. James		- J				

The third column gives the No. of the group. The groups are numbered in the order of their appearance.

The next two columns give the Distance from the Centre of the Sun in terms of the Sun's Radius, and the Position-Angle from the Sun's Axis, reckoned from the Sun's North Pole in the direction n, f, s, p, both results being corrected for the effects of instrumental distortion and astronomical refraction.

The measures of the four-inch photographs were made with a large position-micrometer, specially constructed by Mr. Simms. The photograph is held with the collodion-side uppermost, on two cross-slides, which give the means of accurately centering it on the large position-circle, which rotates with it. A positive eye-piece, having at its focus a glass diaphragm, ruled into squares, with sides of one-hundredth of an inch (for measurement of areas), is carried by a micrometer-screw diametrically across the photograph, the diaphragm being nearly in contact with the photographic film, so that parallax is avoided.

For the measurement of the eight-inch photographs a larger position-micrometer, constructed by Messrs. Troughton and Simms on the same principle but with some improvements, has been used. In this instrument the distance of a spot or facula from the Sun's centre is read off to 1-250th of an inch by means of a scale and vernier instead of a long micrometer-screw.

The following is the process of measurement of a photograph:-

By means of the cross-slides mounted on the position-circle, the image of the Sun is centred as accurately as possible by rotation. The position-circle is then set to the readings 0°, 90°, 180°, and 270° in succession, and the micrometer-readings taken for the two limbs. The mean difference of the readings for the two limbs is taken

as the Sun's mean diameter on the photograph, and the mean of the half-sum as the reading for the Sun's centre.

At the principal focus of the photoheliograph are two cross-wires which serve to determine the zero of position-angles on the photograph.

The zero of the Dallmeyer Photoheliograph employed at Greenwich has been determined by allowing the diurnal motion to carry the spot or Sun's limb along the wire, a correction for the inclination of the Sun's path being applied to the reading of the position-circle so obtained, and also by running the image along the wire by the use of the R.A. slow motion, the mean of the two determinations being adopted as the zero.

Date.		Gorrecte of Position from t		Zero of Position-Circle obtained when using R. A. Slow Motion.		
		Wire a.	Wire b.	Wire a.	Wire b.	
		0 1	0 /	0 /	0 /	
1881, December	23	354. 0	83. 54	354. 0	83. 54	
1882, January	7	354. 7	84. 1	354. 6	84. 0	
March	14	354. 5	84. 4	353. 57	83. 51	
March	25	353. 16		353. 10		
April	21	353, 36	263.36	353.36	263. 3.	
May	10	353. 9		353. 6		
May	10	353. 27	83.30	353. 24	83. 2	
June	17	353. 12	83. 10	353. 12	83. 1	
July	26	353. 16	83. 10	353. 18	83. 1	
August	24	353. 18	83.12	353. 15	83.	
August	24	353. 48	83. 42	353. 48	83. 4	
September	15	353.16	83. 6	353. 10	83.	
October	20	353. 5	82.59	353. 8	83.	
November	18	353. 13	83. 13	353. 18	83.	
December	13	353. 6	83. 6	353. 9	83.	
1883, January	2	353. 7	83. 6	353. 8	83.	

In the use at Greenwich of the Dallmeyer Photoheliograph the position-circle has usually been set to some convenient reading near that for zero, so that the wires are respectively parallel and perpendicular to the circle of declination, and a correction for zero of position of the photoheliograph for the mean of the two wires has been applied to the zero of the position-circle of the micrometer. This latter has been determined from the readings of the position-circle for the four extremities of the two wires. The resulting combined correction is applied to all position-circle readings for spots and faculæ, so as to give true position-angles.

In the use of the Photoheliograph at Dehra Dûn the position-circle has always been set to the zero as determined by allowing the diurnal motion to carry a spot or the Sun's limb along the horizontal wire, and the accuracy of the adjustment has

been tested at short intervals. No correction for zero of the photoheliograph has therefore been required for the reduction of the photographs taken in India.

The uncorrected distance from the Sun's centre for the four-inch images of the Sun is given by the difference between the micrometer-readings for spots and faculæ, and the centre-reading. In the new micrometer used for the measurement of the eight-inch photographs the zero of the scale is adjusted to coincide with the centre, and the distance from the centre is given directly.

Two sets of measures of the Sun's limb and of spots and faculæ on each photograph have been taken and the mean of the two sets adopted. The Greenwich photographs have been usually measured by Mr. Maunder and one of his assistants, the Indian photographs by Mr. Hollis and Mr. Power.

Corrections are then applied for optical distortion of the photoheliographs and for refraction. The distortion has been determined for the Dallmeyer photoheliographs used in the Transit of Venus 1874 from measures of photographs of a scale of equal parts, 16 feet long, constructed by Mr. De La Rue, and lent by him for this purpose. The scale has eight plates of iron with edges carefully planed, the plates being each exactly one foot in breadth, and attached to a braced iron framework so as to leave equidistant spaces of exactly one foot between the plates. The scale was photographed at a distance of about 1,200 feet, and extended completely across the field of view.

The following table gives the distortion for the Dallmeyer Photoheliographs for images of the Sun, of about four inches diameter thus determined for every tenth of an inch distance from the centre of the field:—

Distance Correction for Distortion.			Distance from Centre.		ection for stortion.	Distance from Centre.	Correction for Distortion.		
r o		r 0.000	r 9	+	r o o35	r 18	+	0.010	
1	+	• 006	10	+	• 036	19	+	.004	
2	+	.012	11	+	• 035	20	-	.004	
3	+	*017	12	+	. 034	21	-	. 012	
4	+	.022	13	+	. 032	22	-	. 020	
5	+	. 026	14	+	.028	23	_	. 029	
6	+	.029	15	+	* 024	24	-	• 038	
7	+	• 032	16	+	* 020	25	-	. 047	
8	+	• 034	17	+	.016	26	-	. 057	

 $1^{r} = 0^{\text{in}} \cdot 10$, corresponding to $49^{"} \cdot 3$.

The distances as measured on the four-inch photographs whether taken at Greenwich or in India have been corrected for the corresponding distortion, and in cases where the centre of the Sun's image did not fall very close to the centre of the plate, a correction has been applied to the position-angles for the resolved part of the distortion. No correction has been applied to the measure of Sun's radius on account of distortion, the scales adopted in forming the tables having been so chosen that the distortion shall be 0 at the average place of the Sun's limb on the photographic plate; viz., 19^{r.}5.

No correction has been applied to the eight-inch photographs on account of distortion.

The correction for the effect of refraction has been thus found, the Sun's image being assumed to be sensibly an ellipse. The refraction being sensibly c tan z where $c = \sin 57'' \cdot 5 = \frac{1}{3600}$ nearly, and z is the apparent zenith distance, we shall have—

$$\frac{\text{Vertical Diameter}}{\text{Horizontal Diameter}} = \frac{1 - c \sec^2 z}{1 - c} = 1 - c \tan^2 z;$$

and thus the effect of refraction will be to diminish any vertical ordinate y by the quantity $c \tan^2 z$. Resolving this along and perpendicular to the radius vector r, and putting v for the position-angle of the vertex, we have for δr and $\delta \theta$, the corrections to radius vector and position-angle for the effect of refraction—

$$\begin{split} \delta \ r &= + \ c \cdot \tan^2 z \times r \cdot \cos^2 \left(\theta - v \right) = + \ c \cdot \tan^2 z \times r \times \frac{1 + \cos 2 \left(\theta - v \right)}{2} \\ \delta \ \theta &= - \ c \cdot \tan^2 z \cdot \sin \left(\theta - v \right) \cdot \cos \left(\theta - v \right) = - \ c \cdot \tan^2 z \cdot \frac{\sin 2 \left(\theta - v \right)}{2} \end{split}$$

The quantity δ r thus found is the correction, on the supposition that a horizontal diameter of the Sun is taken as the scale. But, as the mean of two diameters at right angles has been used, the scale itself requires the correction $\delta R = +c \cdot \tan^2 z \times R \times \frac{1}{2} \left\{ \frac{1 + \cos 2 (\theta_0 - v)}{2} + \frac{1 + \cos 2 (\theta_\delta + 90^\circ - v)}{2} \right\} = + \frac{1}{2} c R \cdot \tan^2 z$, where R is the Sun's mean radius and θ_0 , $\theta_0 + 90^\circ$ the position-angles of the two diameters measured. Thus the final correction to r becomes—

$$\delta r = + c \cdot \tan^2 z \times r \times \frac{\cos 2 (\theta - v)}{2}$$

The quantities $c \tan^2 z$, $-\frac{\sin 2 (\theta - v)}{2}$, and $\frac{\cos 2 (\theta - v)}{2}$ have been tabulated for use as follows, $c \tan^2 z$ being expressed in circular measure and in arc for application to distances and position-angles respectively:—

 $c \tan^2 z$.

z.	In Circular Measure.	In Arc.	z,	In Circular Measure.	In Arc.	z.	In Circular Measure.	In Arc.
0	1	,	0		,			
80	. 0089	31	70	* 002 I	7	60	. 0008	3
79	.0073	25	69	.0019	61/2	58	. 0007	2
78	. 0061	21	68	. 0017	6	56	* 0006	2
77	. 0052	18	67	*0015	51	54	* 0005	2
76	. 0045	15	66	. 0014	5	52	* 0005	2
75	. 0039	13	65	. 0013	41/2	50	* 0004	1
74	. 0034	1112	64	. 0012	4	45	*0003	1
73	• 0030	10	63	. 0011	4	40	.0002	1
72	. 0026	- 9	62	.0010	3	30	. 0001	0
71	* 0023	8	61	. 0000	3		LIKE BURNE	and a

Factors for Refraction.

$\theta-v$ $\theta-v$	$-\frac{\sin z (\theta - v)}{z}$	$\frac{\text{Cos 2}(\theta-v)}{2}$	$\theta - v$	0-v	$-\frac{\sin 2 (\theta - v)}{2}$	$\frac{\cos z \ (\theta - v)}{2}$		
0 180 5 185 10 190 15 195 20 200 25 205 30 210 35 215 40 220 45 225 50 230 55 235 60 245 70 250 75 250 75 250 80 85 265 90 270	. 000 - 099 - 17 - 25 - 32 - 38 - 43 - 47 - 49 - 50 - 49 - 47 - 43 - 38 - 32 - 25 - 17 - 09 - 00	+ · · 50 + · · 49 + · · 47 + · · 43 + · · 38 + · · 25 + · · 17 + · · · · · · · · · · · · · · · · · · ·	95 100 105 115 120 125 130 135 140 145 155 160 165 175 180	275 280 285 295 300 305 315 320 325 330 345 345 355 360	+ '09 + '17 + '25 + '32 + '38 + '47 + '49 + '50 + '47 + '43 + '38 + '32 + '25 + '17 + '09	- '49 - '47 - '43 - '38 - '32 - '25 - '17 - '09 + '17 + '25 + '32 + '38 + '43 + '47 + '49 + '50		

The position-angle of the Vertex v is readily taken from a globe.

The distance from centre in terms of the Sun's radius given in the fourth column is then readily found by dividing the measured distance r_0 , as corrected for distortion

and refraction, by the measured mean radius of the Sun, R; and the Position-Angle from the Sun's Axis given in the fifth column is obtained by applying to then Corrected Position-Angle (from the N. point) the Position-Angle of the Sun's Axis derived from Warren De La Rue's Auxiliary Tables referred to in the preceding section.

The sixth and seventh columns give the Heliographic Longitude and Latitude computed by the formulæ $\sin \lambda = \cos \rho$. $\sin D + \sin \rho$. $\cos D$. $\cos \chi$; $\sin (L - l) = \sin \chi$. $\sin \rho$. $\sec \lambda$; where L, l are the Heliographic Longitudes from the ascending node, and D, λ the Heliographic Latitudes of the Earth and the Spot respectively, referred to the Sun's Equator, ρ the True Angular Distance from centre, and χ the Position-Angle from the Sun's Axis. The quantities L and D are derived from Warren De La Rue's Auxiliary Tables previously referred to, and $\log \sin \rho$ and $\log \cos \rho$ are taken from "Tables for the Reduction of Solar Observations, No. 2" by Warren De La Rue, F.R.S.

The Heliographic Longitude of the Spot is found from l, the Heliographic Longitude from Node, by subtracting the Reduction to Prime Meridian, which is the Longitude of the Node at the epoch of the photograph, referred to the assumed Prime Meridian, the latter being the meridian which passed through the ascending node at the epoch 1854.0. The period of rotation assumed is 25.38 days.

The measures of areas given in the last three columns were made with a glass diaphragm ruled into squares, with sides of one hundredth of an inch, and placed nearly in contact with the photographic film. The integral number of squares and parts of a square contained in the area of a spot or facula was estimated by the observer, two independent sets of measures being made by two observers. The mean of the two sets of measures has been taken for each photograph. The factor for converting the areas, as measured in ten-thousandths of a square inch, into millionths of the Sun's visible hemisphere, allowing for the effect of foreshortening, has been inferred by means of a table of double entry, giving the equivalent of one square for different values of the Sun's radius, and for different distances of the spot or facula from the Sun's centre, as measured by means of the Position-Micrometer.

The individual spots in a group have in some cases not been measured separately, but combined into a cluster of two or three small spots close together, the position of the centre of gravity and the aggregate area of the cluster being given. The actual number of individual spots is usually stated in the Notes.

The Mean Areas of Spots and Faculæ and the mean Heliographic Latitude of Spots for each Rotation of the Sun, and for the year 1882, are given at the end of this section, and require no further explanation.

W. H. M. CHRISTIE.

ROYAL OBSERVATORY, GREENWICH.

SPECTROSCOPIC OBSERVATIONS

MADE AT THE

ROYAL OBSERVATORY, GREENWICH, 1882.

Position-Angles and Heights of Solar Prominences, observed with the Spectroscope, and Observations of Bright Lines in their Spectra, made at the Royal Observatory, Greenwich, in the Year 1882.

Note.—The position-angles reckoned from the north pole of the Sun's axis in the direction N., E., S., W., N., are given for the two extremities of the prominence.

The extreme height in seconds of are is given for each prominence. Where the estimated brightness of any of the bright lines seen is given, the average brightness of the line has been estimated in terms of the brightness of the corresponding part of the solar spectrum. The lines are usually fainter at the extremity than at the base. Where the estimated breadth is given, the average breadth of the line has been estimated in terms of the breadth of the corresponding dark line in the solar spectrum, except in the case of the bright line D₃, the breadth of which is estimated in terms of the dark line C. The bright lines are usually narrower at the extremity than at the base.

The "Half-prism" Spectroscope with a train of two "half-prisms" was used throughout. For viewing the prominences and chromosphere the spectroscope is reversed end for end, the slit and eye-piece being interchanged, so that the pencil is incident on the oblique face and emerges at the perpendicular face of each "half-prism." Thus the breadth of the spectrum-lines, considered as monochromatic images of the slit, is diminished, and greater purity of spectrum is obtained. In order to view a prominence in its just proportions, the breadth can be afterwards magnified by means of a small "half-prism" (direct-vision) placed between the eye-piece and the eye.

Observer, M.

Greenwich Mean Solar Time, 1882.	Position-Angle from Sun's Axis.	Height in Seconds of arc on the C Line.	REMARKS.
Mar. 1. 23. 33 22. 51 23. 32 23. 31 22. 42 23. 0 23. 3 23. 2 22. 58 22. 58 22. 58 22. 57 22. 56 22. 55 22. 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 72 36 29 48 29 43 22 17 17 29 24 19	Faint jet. Not seen in the first search. Fine bright prominence; much detail. Partly detached. Bright straight jet. Forked jet. Straight jet. Forked prominence. Straight jet. Two small but bright elevations of the chromosphere. Straight faint jet. Straight faint jet. Straight faint pec. Straight faint prominence. Very narrow jet. The chromosphere averaged 8" in height. Definition variable; wind high; observation frequently interrupted by cloud. The entire limb of the Sun was examined twice with the slit radial on the C line only.
Mar. 3. 0.33 0.35 0.38 0.39 0.41 0.45 0.47 0.50 0.52 1.12 1.11 1.10 1.10 1.9 1.8 1.5	63. 28 — 67. 48 75. 48 — 78. 38 81. 18 — 83. 28 86. 48 — 87. 38 121. 48 — 124. 8 130. 58 — 134. 3 149. 43 — 150. 18 157. 42 — 157. 59 193. 43 220. 58 — 223. 18 236. 58 — 238. 8 239. 48 — 240. 8 241. 3 — 242. 48 243. 48 — 245. 8 247. 58 — 249. 48 298. 4 — 301. 23	55 77 29 29 19 17 22 19 24 58 24 19 26 19 43 26 24	Fine bright prominence; Fine bright prominence; portions detached; much detail. Faint; partly detached. Bright; partly detached. Straight jet. Partly detached; faint. Low bank. Partly detached. Straight jet. Fine prominence; partly detached. Partly detached. Observations frequently interrupted by cloud. Part of the limb of the Sun, viz., from 30° to 194°, and from 221° to 305°, was examined once with the slit radial on the C line only.
Mar. 13, 23, 20 23, 21 23, 22 23, 2 23, 2 23, 2 23, 2 23, 2 23, 2 23, 2 23, 3 23, 1	16. 51 — 19. 11 2 60. 51 — 62. 1 124. 1 — 125. 41 7 133. 21 — 134. 11 7 139. 11 — 142. 51 8 162. 21 — 163. 11 9 167. 11 — 168. 41 9 233. 51 — 236. 21 4 301. 51 — 305. 11	34 77 29 19 19 38 48 36 31 29 96	Faint. Faint. Partly detached. Small straight jet. Faint straight jet. Straight jet. Long bank with two jets. Fine tall prominence; much detail. The entire limb of the Sun was examined once with the slit radial on the C line only.

Greenwich Mean Solar Time, 1882.	Position-Angle from Sun's Axis.	Height in Seconds of arc on the C line.	REMARKS.
d h m Mar. 15. 2.22 2.23 2.23 2.24 2.24 2.25 2.26 2.27 2.27 2.28 2.8 2.3	302.37 - 306.37	" 43 34 34 34 34 38 43 29 24 24 38 38 36 106	Faint. Bright straight jet. Much broken. Very brilliant; in rapid motion. Very bright. Faint. Faint; partly detached. Straight jet. Faint. Fine bright prominence; much detail. The entire limb of the Sun was examined once with the slit radial on the C line only.
Mar. 15. 22. 13 22. 15 22. 16 22. 20 22. 21 22. 5 22. 6	220.41 — 223.51 245.51 — 247. 1	48 36 34 41 22 67 180	Bright prominence. Straight jet. Faint straight jet. Bright straight jet. Small jet. Small jet. Fine bright prominence; partly detached; many jets. Very fine prominence; great detail; bright. The entire limb of the Sun was examined once with the slit radial on the C line only.
Mar. 18. 1. 5 1. 3 1. 1 0.59 0.58 0.57 0.57 0.55 0.55 0.55	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	17 19 31 48 41 48 41 22 65 29	Low bank. A little tuft. Much broken. Partly detached. Very faint. Faint; partly detached. Height of greater part of prominence 29", but a jet at N. part rose to 65". Faint, but showing considerable detail. The entire limb of the Sun was examined once with the slit radial on the C line only.
Mar. 19. 23. 5 23. 6 23. 7 25. 8 23. 8 23. 9 23. 10 23. 11 23. 12 23. 13 23. 15 23. 17 25. 18 23. 0 23. 1	110, 39 — 111, 59 211, 19 — 212, 29 267, 39 — 268, 49 292, 19 — 293, 49 295, 39 — 297, 19	24 19 24 24 65 19 19 29 19 48 43 24 19 24	Faint. Bright. Much detail. Bright; partly detached. Bright; bending over to N. Much broken; faint. Much broken; faint. The entire limb of the Sun was examined once with the slit radial on the C line only.
Mar. 21. 0. 5 0. 7 0. 8 0. 10 0. 11 0. 16	158. 23 - 162. 53	34 34 29 29 46 24	Very faint. Straight jet. Partly detached. Bright straight jet. Very faint. The entire limb of the Sun was examined once with the slit radial on the C line only.
Apr. 1. 1.26 1.25 1.21 1.20 1.32 1.31 1.29	199.44 — 202.44 224.34 — 226.4	41 67 24 41 24 36 26 67	Faint prominence, Fine bright prominence. Short bright jet. Faint. Faint. Very large, beautiful, and regular prominence. The entire limb of the Sun was examined once with the slit radial on the C line only.

Mean S	eenwich Solar Time, 1882.	Position-Angle from Sun's Axis.	Height in Seconds of are on the C line.	REMARKS.
Apr.	d h m 4. 0. 22 0. 24 0. 25 0. 30 0. 20 0. 21	272.45 - 273.45	41 55 26 22 17 22	Bright; partly detached. Bright; partly detached. The entire limb of the Sun was examined once with the slit radial on the C line only.
Apr.	6. 1.46 1.40 1.43 1.44 1.45	16. 13 — 17. 23 78. 43 — 82. 3 197. 23 — 200. 3 297. 43 — 305. 23 333, 43 — 335. 33	24 41 53 48 41	Faint. Faint cloud; completely detached. Exceedingly faint. Brilliant prominence. Bright prominence. The entire limb of the Sun was examined once with the slit radial on the C line only.
Apr.	7.21.45 21.44 21.43 21.42 21.58 21.52 21.49 21.48 21.48 21.47	293. 26 — 293. 36 302. 56 — 305. 56	26 29 19 19 55 34 29 29 19	Straight jet; faint. Straight jet; very faint. Faint. Very narrow prominence. The C line wholly displaced towards the blue. The entire limb of the Sun was examined with the slit radial on the C line only.
May	1. 1.45 1.44 1.43 1.41 1.41 1.38 1.37 1.35 1.46		34 36 22 34 34 36 29 19 22 77	Partly detached. Bright straight jet; no detail. Bright straight jet. Straight jet. Faint; partly detached. Partly detached. Forked prominence; considerable detail. Fine tall prominence with considerable detail. The entire limb of the Sun was examined once with the slit radial on the C line only.
May	5. 0.39 0.23 0.24 0.25 0.36 0.31 0.32 0.33 0.34 0.35 0.37 0.35	17.52 — 21. 2 66.22 — 67.12 87.12 — 91.12 94.12 — 103.42 108.42 — 116.37 118.12 — 119.22 161.52 — 162.22 195.22 — 196.32 199.52 — 202.12 219.12 — 222.42 223.12 — 229.32 304. 2 — 309.12	31 22 29 29 24 22 17 19 34 43 41 34	Very faint. Bending over to the North. Very faint. The chromosphere was very faint, averaging from 8" to 10" in height. The entire limb of the Sun was examined with the slit radial on the C line only. Several attempts were made to examine the limb on the other lines, but the Sun was always in a white haze, and no satisfactory results could be obtained.
May	13. 1. 3 1. 3 1. 4 1. 4 1. 5 1. 6 1.10 1.12 1.13 1.45	112. 32 — 118. 22 154. 22 — 156. 42 216. 22 — 219. 42 246. 52 — 249. 52	41 60 36 55 19 50 36 41 79	Bright jet. Faint; considerable detail. Faint. Partly detached; much detail. Long low bank. Faint. Very faint. Very faint. Very faint. Detached cloud; highest point 79", lowest 46". Straight jet. The entire limb of the Sun was examined with the slit radial on the C line only.

Greenwich Mean Solar Time, 1882.	Position-Angle from Sun's Axis.	Height in Seconds of arc on the C line.	REMARKS.
6.17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 67 65 38 34 41 29 34 50 43 22	Very faint. Faint. Forked prominence; considerable detail. Faint; considerable detail. Straight jet. Exceedingly faint. Bright jet. Very bright. Straight jet. Straight jet. The entire limb of the Sun was examined with the slit radial on the C line only.
6. 31 6. 32 6. 18	109. 22 — 117. 12 119. 27 — 123. 17 249. 42 — 250. 42 285. 17 — 288. 57 295. 52 — 298. 22	74 43 34 17 41 50 24 43 29	Intensely bright. The entire limb of the Sun was examined with the slit radial on the C line only.
May 16. 6.38 6.39 6.40 6.41 6.42 6.35 6.36 6.37	109. 42 — 117. 12 119. 52 — 123. 7 134. 42 — 135. 42	74 48 29 29 43 34 43 22	The entire limb of the Sun was examined with the slit radial on the C line only.
May 16. 20. 26 20. 25 20. 24 20. 32 20. 31 20. 31 20. 30 20. 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84 19 46 41 19 19 24 31 26	Bright jet. Bright prominence; considerable detail. Fairly bright; considerable detail. Small straight jet. Bright jet. The entire limb of the Sun was examined with the slit radial on the C line only.
May 16. 20. 43 20. 45 20. 47 20. 48 20. 57 20. 38 20. 38 20. 40 20. 41	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	72 17 48 41 19 22 29 36 22	The entire limb of the Sun was examined with the slit radial on the C line only.
May 16, 22, 8 22, 10 22, 11 22, 12 22, 14 22, 15 22, 16 22, 4 22, 5 22, 6 22, 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 84 43 34 29 17 17 24 29 24 38	Faint. The entire limb of the Sun was examined with the slit radial on the C line only.

Greenwich Mean Solar Time 1882.	e,	from n's A	-		Heig Secon are the C	ds of on								REMARKS.			
0, 13 17, 23, 46 23, 47 23, 48 23, 49 23, 50 23, 50 23, 51 23, 58	9 13.58 17.48 29.18 55.33 56.33 75.28 89.58 89.58 111.8 134.18 151.33 1193.18 1213.48 257.28 265.58 268.38 276.28 290.48		64. 2 82. 1 92. 5 100. 1 12. 2 36. 3 53. 1 95. 8 96. 48 17. 48 60. 28 67. 28 75. 38 92. 38	8 8 8 3 3 8 8 3 8 8 3 8 8 3 8 8 8 8 8 8	20 44 17 17 55 55 24 38 36 14 22 22 24 24 24 21 19 22 21 19 22 21 21 21 21 21 21 21 21 21 21 21 21	98877755	Par Fire Smr Str Par Smr Exc	Fine arched prominence. Small straight jet. Partly detached. Fine bright prominence. Two jets bending over to the North. Bending over to the South. Small jet. Straight jet. Partly detached. Small straight jet. Small straight jet. Exceedingly narrow faint prominence. The entire limb of the Sun was examined once with the slit radial on the C lin									
2. 3	53. 30 70. 0 118. 30 124. 30 194. 50 212. 0 308. 30	- 5 - 7 - 12 - 12 - 19 - 21	53. 20 53. 50 71. 20 10. 50 16. 30 7. 20		43 53 22 19 29 43 17 62 14		Very fine forked prominence. Bright arched prominence; much detail. Bright straight jet. Straight jet. Bending over to the South. Fine bright forked jet. The entire limb of the Sun was examined once with the slit radial on the C line only.										
23. 35 23. 36 23. 30	126. 21 - 147. 31 - 249. 41 - 275. 31 - 341. 31 - 357. 31 -	- 14 - 25 - 28 - 34	9.31 1.31 0.21		22 36 22 14 29 22	- 11	Bright Faint	y det	ched	prom	ie Su	n was	exa	amined on C, D_3 , and also on D_1 , D_2 , b_1 , b_2 , b_4 , E, and 1474 K. othing.			
Greenwich Mean Solar Time, 1882.	Position- Angle from Sun's Axis.	in :	Heig Second D ₃	ght Is of a	F	C	Bright D ₃	tness.	F	С	Brea D ₃	dth.	F	REMARKS.			
	0 / 14. 15 } 16. 45 } 47. 45 } 49. 15 } 60. 5 } 70. 5 } 71. 5 72. 45 } 78. 0 } 80. 25 } 130. 5 }	" 29 29 19 19 17 34	" 31 34 19 19 17 34	" 2? 5?	" 24 12	1 3 3 4 3 4 1 5 1 ·	1/3 3/4 1/2 1/5 I										
23. 10	133. 25 { 243. 45 { 244. 15 }	24	22		34	3 4	1		1 5	24 24	121 293		23	Bright straight jet. Faint short jet.			

Greenwich	Position Angle	in i	Hei	ght is of a	no.		Bright		- 15		Brea			REMARKS.
dean Solar Time, 1882.	from Sun's Axis.	O	D_1	1474	E	C	Da	1474 K	F	С	D_3	1474 K	F	
d h m Sept. 7.23.2 22.41	263. 45 } 267. 55 } 283. 15 } 286. 25 }	72	72	5	72	1	4	1001	10	-	10 30	1	?	Tall broken prominence. Broken jet. Whilst being watched at about 25 ^h , o ^m , on the C line, a filament rose from the prominence to the height of 41°. The C line on the southern edge of the prominence was displaced towards the red by o·5 tenth-metre, corresponding to a motion of recession of 14 miles per second. At 25 ^h , 50 ^m , it was very faint, and only 14" in height.
22.40	297. 45 302. 45	55	55		55	1	1		13	200	1/2		1	Fine bright tree-like prominence. The entire limb of the Sun was examined once with the slit radial on the C, D ₁ , D ₂ , D ₃ , E, b ₁ , b ₂ , b ₃ , b ₄ , 1474 K, and F lines.
Nov. 7. 23. 43 23. 58	14. 4 64. 54 66. 29	29	17	100	177	1			I	1	242 242		1 2	Faint; seen only on the C and D ₃ lines, . The C line on the northern edge of the prominence was displaced towards the red by 1 o tenth-metre, on the southern towards the blue by about ½ tenth-metre, corresponding respectively to a motion of recession of 28 miles per second, and to a motion of approach of 9 miles. The F line appeared most unusually bright. The 1474 K line, the b, D, and E lines, and several others near E, were fuzzy and ill-defined near the limb, but the limb boiled too violently for any short bright lines to be certainly made out. No displacement was now detected on the C line, but the prominence was slowly increasing in height, and the upper portion seemed to be becoming detached from the lower. Long low prominence; no detail; seen only on C and D ₂ .
0.1	94, 54 161, 54 163, 49	1 ,	9 2	9	2				489		1	14 12		Faint; seen only on C and D ₃ . Bright straight jet. The F line was displaced o'l tenth metre towards the blue, corresponding to a motion of approach of 8 miles per second. Small prominence; seen only on the C and D ₃ lines. The entire limb of the Sun was examined twice with the slit radial on all the lines from B to F.

OBSERVATION of a SOLAR STORM at Position-Angle (from Sun's Axis) 296° 20' on 1882 May 13.

A very remarkable storm took place at the above position-angle from 1^h. 12^m. to 1^h. 15^m., and had evidently been in progress for some time previously. Whilst the spectroscope was being centred on the Sun, about 0^h. 45^m, a short straight jet had been noticed here, some 26" in height. At 1^h. 13^m, there was a prominence divided into three parts, and extending from 294° 32' to 298° 22'. The uppermost part was completely detached, its highest point being 79" from the limb, its lowest 46", its average distance 65". It showed a displacement on the C line of 1·5 tenth-metres towards the red, corresponding to a motion of recession of 43 miles per second. The middle part was on the C line of 1·5 tenth-metres towards the red, corresponding to a motion of recession of 43 miles per second. The middle part was on the C line of 1·5 tenth-metres towards the red, corresponding to a motion of recession of 43 miles per second. The middle part was on the C line of 1·5 tenth-metres towards the red, corresponding to a motion of recession of 45 miles per second. The middle part was on the C line of 1·5 tenth-metres towards the red, corresponding to 298° 22'. The uppermost portion as seen on the C line in the two from 14" to 17" in height, and extending from about 296° 22' to 298° 22'. The uppermost part manner, moving in a diagonal direction along the spectrum, so minutes between 1^h, 13^m, and 1^h, 15^m, developed in the most extraordinary manner, moving in a diagonal direction along the spectrum, so that it was at the same time travelling rapidly towards the red end of the spectrum and away from the Sun's limb, growing fainter and spreading out meanwhile, and becoming diffused at its edges as it extended itself, until at last it reached the line \(\theta\) 6573·5, a displacement of 11·4 tenth-metres, and attained a distance from the limb of 96", having moved through 18" in 2 minutes. By 1^h, 15^m, the entire prominence had disappeared. The uppermost part when first seen at 1^h, 12^m, was very bright, and ext

OBSERVATIONS of SPECTRA of SUN SPOTS made at the ROYAL OBSERVATORY, GREENWICH, in the Year 1882.

The numeration of the spots is taken from the Photographic Results.

The observations were made by Mr. Maunder with the Half-prism Spectroscope mounted on the South-East Equatoreal. With the spectroscope in the direct position, one "half-prism" gives a dispersion of about 18½° from A to H, and two "half-prisms" a dispersion of about 80°. Occasionally the spectroscope was reversed end for end, the slit and eye-piece being interchanged. The spectroscope in this position gives great purity of spectrum. The wave-lengths of the lines observed and the corresponding elements are taken from Angström's Spectre Normal du Soleil. The wave-lengths of lines not given in Angström's map are inferred from the wave-lengths of the neighbouring lines. Lines not given by Angström are distinguished by an asterisk. The amount of broadening is expressed in terms of the normal breadth of the line,

SPOT No. 718.

1882 April 4.

The spectrum showed but little absorption, either general or selective. Not many lines were broadened, and these as a rule but to a slight extent. The "bands" first seen on 1880 November 27 were visible, but were faint. Definition poor. One-prism train direct. Magnifying power 28.

The following lines between b and F were observed to be changed over the spot. The C and D lines were also examined.

Wave- length.	Element.	Amount of Broadening.	Remarks.	Wave- length.	Element.	Amount of Broadening.	Remarks.
Tenth- metres.	FINE STATE		¥ .	Tenth- metres.			
6562.1	Hydrogen		C. Not perceptibly broadened. The edges of the line were a little fuzzy over the spot.	5120'1	Titanium	(A "band," 1'o tenth- metre in breadth, seen only over the spot, lies on the more refrangible
2882.1	} Sodium	1/3	The D lines.				side of this line. The line seems to coincide
5183°1 5172°2 5166°9	Magnesium Magnesium Iron and magnesium.	2.	The b lines. These were very little affected. The edges of the lines were a little fuzzy over the spot.				exactly with one edge of the "band." If, there- fore, the "band." is only the line greatly broadened, it is displaced
5158.6	Iron Iron	1 1	Displaced towards the red. Displaced towards the red.				towards the blue by
5156.5			One of the "bands" of	5117.8*	}		Two "bands," each 1'o
			1880 November 27. Breadth o 7 tenth-metre.	2116.0*	1		tenth-metre in breadth, seen only over the spot.
2	N. 1 1			5115.0	Nickel		Not seen at all over the spot.
5155°2 5154°7 5153°2	Nickel Sodium	44-14-1		5112.5*	3.5		Greatly broadened; 1.0 tenth-metre in breadth over the spot.
5152'7 5151'4	Sodium and copper Iron	(+-(+-)c-)c		5110.0*			Greatly broadened; about
5150'3	Iron	**	Greatly broadened. About o 3 tenth-metre in	5109.0 5109.0	Iron	1 2 2	breadth over the spot.
5147.6	Iron	1.	breadth over the spot.	5105'1	Iron Copper	1 5	PARTY NAME OF
5145.9	Iron and nickel	1 5 I	THE RESERVE TO A SECOND	5103.8		1	
5138.8	Iron	1 5	Marine Street	2101.0			Greatly broadened; about
5138.3*			Line about o'2 tenth- metre in breadth, seen	100		1377	o'2 tenth-metre in breadth over the spot.
7.26			only over the spot.	5099.2	Nickel	671 To 1	
5136·9 5136·4*	Iron and nickel	1 5	Line about o'2 tenth-	50g8·3	Iron	Slightly	A bread band or cluster of
5133.1	Iron	5	metre in breadth, seen	5093.5*	}		lines, seen only over the spot.
5131.0	Iron	5	only over the spot.	5092.0			A "band," 1 o tenth-metre
5128.7	Titanium Iron	Very slightly broadened.					in breadth, seen only over the spot.
5125.6		y sli	Contract of the second	50go+5	Iron	1 5	
5124.5	Iron Iron	Very	10 Lane 15 15 1	5089.5* 5087.5	}	5	Three "bands," each 1 o tenth-metre in breadth,
5121.5	Iron		Mary Street Street	5085.5*	1	.)	seen only over the spot.

Wave- length.	Element.	Amount of Broadening.	Remarks.	Wave- length.	Element.	Amount of Broadening.	Remarks.
Tenthmetres. 5083.7 5082.6 5081.9 5076.0 5074.2 5071.8 5070.0 5065.0 5062.6 5061.0	Iron Iron Iron Iron Iron	Slightly Slightly 1 1 2 2 2 1	Four lines, each very faint and narrow on the general disk, but o'2 tenth-metre in breadth over the spot.	Tenth- metres. 4990'5 4988'5 4984'8 4977'9 4975'9 4975'2 4965'5 4964'8 4961'8	Iron and titanium Iron Iron Nickel and titanium. Iron Iron	Slightly	
5055*g 5055*4* 5054*8*	Iron		From this line to 2 5055 4 there extends in the spot-spectrum a broad band, apparently made up of a number of fine lines, but which the dispersion employed could not satisfactorily resolve. Another broad band, also apparently made up of	4956 · 9 4954 · 4 4952 · 2 4952 · 0 4947 · 5 4947 · 5 4938 · 0 4938 · 0 4937 · 4 4936 · 5	Iron Iron Iron Iron Iron Iron Iron Iron	Slightly	
5051°6 5049°5 5048°3 5047°9 5043°5 5041°3 5040°3 5057°7 5035°9 5035°5	Iron Iron Iron Iron and calcium Iron Titanium Titanium Titanium		a number of fine lines, which could not be satisfactorily isolated.	4935·2 4933·6 4932·9 4931·3 4929·6 4927·0 4918·3 4913·4 4911·3	Nickel Barium Iron Iron Iron Iron Iron Iron Iron Iron Iron	Slightly Slightly 1 1 1 1 1 1 1 1 1 1 1 1 1	
5035.0 5032.3* 5030.3 5029.1 5027.4 5026.5 5024.2* 5023.8* 5021.9	Nickel Iron Iron	1 14 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A line o 6 tenth-metre in breadth, seen only over the spot.	4904 1 4902 6 4896 5 4896 0 4892 3 4891 0 4890 2 4884 4 4888 1 4886 8 4886 0	Iron Barium Iron Iron Iron Iron Iron Iron Iron Iron	خباه اخام واه واه واه احتاج اخم اخت	
5021 9 5021 3 5019 5 5017 8 5016 8 5013 6* 5014 4 5013 3 5009 0*	Iron (Iron and titanium Nickel Iron Titanium	Slightly?	Very greatly broadened over the spot.	4884.7 4881.1 4879.2* 4877.6 4875.5 4872.7* 4871.4 4870.6 4869.1* 4867.7 4865.4	Iron and calcium Iron Iron Iron Iron Iron Iron Iron Iron	Slightly I	Not shown in Fievez's map.
5000°7 5003°2 5002°1 4998°9 4997°5 4996°1 4993°4	Iron Iron Iron Titanium Iron	Single 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4864.5* 4863.7 4860.7	Iron Hydrogen	5-44-55	F. Not perceptibly broadened. The edges of the line were a little fuzzy over the spot.

Note.—Ångström's map shows only two of the four lines between λ 5138.8 and λ 5136.4, but Fievez's Spectre Solaire shows all four. Only the two lines given by Ångström, viz., λ 5138.8 and λ 5136.9, could be seen on the general disk, but all four were seen distinctly over the spot, although the dispersion employed was much less than that employed by M. Fievez. This observation was repeated on May 20.

SPOT No. 729.

1882 April 14.

The greater part of the spot showed scarcely any trace of absorption either general or selective, and it was only over the darkest part of the various nuclei that any marked difference in the spectrum could be perceived.

The wind was so high and the interval of sunshine was so short that but little could be made out. The spectrum, however, did not differ greatly from that ordinarily shown by Sun-spots. The "bands" were seen to be fairly distinct, and two or three fresh bands near b on the red side were noticed. The spectrum of the largest nucleus gave evidence of an absorption both general and selective rather beyond the average. Most of the lines usually broadened between C and F were affected to a considerable extent. C, F, and the two D lines were broadened by about one-half. All four lines were very diffused at their edges over the spot. The b lines were in a part of the spectrum which was very dark over the spot, and appeared enormously broadened, an appearance probably due not so much to any change in the lines themselves as to the broadening and deepening of many of the fine faint lines in their immediate neighbourhood.

The wave-lengths of the "bands" referred to above, and on April 21, are as follows:-

Group I.—5120'1, 5117'8, 5116'0. Group II.—5096'4, 5095'3, 5094'2. Group III.—5092'8, 5092'1. Group IV.—5089'5, 5087'5, 5085'5. Group V.—5058'3, 5055'8, 5053'8, 5052'5.

SPOT No. 729.

rase April 21

The two principal nuclei of the spot were examined and their spectra showed much general absorption, but the selective absorption was not at all unusual in character or amount. A large number of lines were broadened, but none to any great extent. The D and b lines were broadened by about one-half, C and F by about one-third, and the E lines by about one-quarter. All these lines had very ill-defined edges over the spot. 1474 K was a little broader and darker, but as sharp as usual. The "bands" could just be detected. No difference was perceived between the two nuclei. The definition was very bad, the Sun being in white haze. One-prism train direct. Magnifying power 28. Position angle of slit 5°.

SPOT No. 726.

1882 April 21.

The general absorption was not so marked as for Spot No. 729; the selective absorption was therefore easier to observe. C and F were about half as broad again as usual; b_1 and b_2 were broader by about one-fourth; b_3 and b_4 were scarcely affected; the D lines were doubled. All these lines were much sharper than in the spectrum of Spot No. 729; whilst the E lines and 1474 K showed much the same appearance as over that spot. The "bands," though not prominent, were more easily seen over the present spot than over Spot No. 729. No displacements were noticed, nor was any difference detected between the spectra of the East and West nuclei. One-prism train direct. Magnifying power 28. Position angle of slit 348° .

SPOT No. 759.

1882 May 20.

Early in the morning it was believed that the spot spectrum showed several marked cases of twisting or displacement; but a more careful examination later on, made under more favourable circumstances, showed that this appearance was entirely due to fresh lines, of which a large number were seen over the spot, which were not distinguishable on the Sun. The "bands" were also strongly marked, and in some instances were traceable to a great distance from the spot. The definition was very variable, usually very bad.

The following lines between b and λ 5043 were observed to be changed over the spot. The C and D lines were also examined. Nothing remarkable either as to displacement or great broadening of the lines of the spectrum or as to the appearance of new lines was noticed in the spectrum from λ 5043 to F.

Wave- length.	Element.	Amount of Broadening.	Remarks.	Wave- length.	Element.	Amount of Broadening.	Remarks.
Tenth-				Tenth-			
metres.			1000	metres.			
6562.1	Hydrogen	4	C.	5123.3	Iron	+	
5895'1	Sodium	1	D _i .	5121.3	Iron	1	
5889 1	Sodium	11	D. The extension towards	5120'1	Titanium	8 .0	A "band," o'8 tenth-
			the blue appeared to be		10.000		metre in breadth, seen
			twice as great as that				only over the spot, lies
			towards the red.				on the more refrangible
E. 02	Magazinia	1	b ₁ . Very ill-defined over				
2183.1	Magnesium	4			The second second		side of this line. The
- Barrer	March Control of Control		the spot.				line seems to coincide
5172.5	Magnesium	1	b_2 . Very ill-defined over				exactly with one edge
			the spot.				of the "band." If, there
5171'2	Iron	***	Very much broadened,				fore, the "band" is
			o'3 tenth-metre over				really only the line
			the spot.				greatly broadened, it is
5168.5	Iron and nickel	1	b ₅ . Very ill-defined over				displaced towards the
0.00	Tron and money	- 4	the spot.				blue by o 4 tenth-metre
=	Trem and	1	b4. Very ill-defined over	5117.8*	3		Two "bands," each o's
5166.9	Iron and	4			}		touth motor in boardsh
	magnesium.	4	the spot.	2110.0	1		tenth-metre in breadth
5164.7	Iron	3					seen only over the spot.
5164'2	0.000	3	100 S 200 S S 10 S T T T	2112.0	Nickel	**	Not visible over the spot.
5162.3*	(***)		A "band," o 8 tenth-metre	5113.8*		**	A "band," o'8 tenth
			in breadth, seen only				metre in breadth, seen
			over the spot.				only over the spot.
5161.8	Iron	1 5	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5109'9	Iron	Slightly	The state of the s
			A "band," o 6 tenth-metre	2100.0	2000000	Slightly	
5159.6*	(8.8)	**			***		Greatly broadened; abou
			in breadth, seen only	2101,0	***		
			over the spot.				0.2 tenth-metre in
5156.2*		12.2	A "band," o 7 tenth-metre		100	150	breadth over the spot.
			in breadth, seen only	5098.3	Iron	1	
			over the spot.	5096.5*			A broad "band" formed o
5153.2		Slightly	and the second second	Sales Sales		1 2 30 1	three lines, connected by
5152.7	Sodium and copper	10		0.00			a dark haze, seen only
	Iron						over the spot, The
5151'4		10			>		centres of the lines have
5150.3	Iron		A ((1 - 12) and double motion	10,000			wave-lengths 5096'4
5190.5	2.5	***	A "band," 1 o tenth-metre	1.5			
			in breadth, seen only				5095'3, and 5094"
			over the spot.	5094.0	J		respectively.
5147.6	Iron	1		5092.8*	17		Two "bands," each o
5145.9	Iron and nickel	1		5092'1*	1		tenth-metres in breadth
5144.6		1		520			seen only over the spot.
5142'2	**	1		5090.5	Iron	4	
	Iron	1	The second secon			- CO.	Three "bands," each 1 'c
5141.8	ARTON AND AND AND AND AND AND AND AND AND AN	8	- William Comments	5089.5*	1		tenth-metre in breadth
5141'4	Tron	6	The second secon	5087.5		4 4	seen on the Sun as wel
5138'8	Iron	4	Tine about at 2 torth	5087 5			as over the spot, bu
5138'3"		7.7	Line about o'3 tenth-	5085.5*	,	0	much less distinctly.
			metre in breadth, seen	12752	No. of the last of	011 1 41	made sold distinctly.
	100 100 100	100	only over the spot.	5083.4		Slightly	100 100 100 100 100
5136.9	Iron and nickel	1/5		5082.6	Iron	Slightly	100
5136'4"			Line about o'3 tenth-	5081'9		1	
1			metre in breadth, seen	5078.0	Iron	2 2	
		1000000	only over the spot.	5076.4*			Not shown in Fievez'
51221-		I would be	Line about o'i tenth-			1	map. Seen only ove
5133.7*		**	metre in breadth, seen	1 - 1 - 1 - 1		BAR BUTTO	the spot, o'2 tenth
		1 2 2 3					metre in breadth.
		10 10 10 10 10	only over the spot.		7	1	
5133.1	Iron			5076.0	Iron	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5131'0	Iron	1000		5074.2	Iron	- 5	Very greatly broadened
5129'4*			Line about o'2 tenth-	5071'8	Iron	1.5	o.6 tenth-metre i
2222 1	100%	1	metre in breadth, seen			Total Control	breadth over the spot.
			only over the spot.			The same of the same of	breadth over the spot.
	Titanium			5068.3	Iron	1	Displaced slightly toward
EARDAN		1		0000 0			the red. Diffused a
5128.7	Take and						
5126.8	Iron	3					the edges.
	Iron	Slightly		5066.5	Iron	1 2	the edges.

Wave- length,	Element.	Amount of Broadening.	Remarks.	Wave- length.	Element.	Amount of Broadening.	Remarks.
Tenth- metres, 5064.5	Iron and titanium	1/5	Double line. The two components were not separated by the disper-	Tenth- metres. 5053.8*			Line about o 4 tenth-metre in breadth, seen only over the spot. Line about o 2 tenth-metre
5063.2*			sion employed. Line about o 2 tenth-metre in breadth, seen only over the spot. A "band," o 7 tenth-metre in breadth, seen only	5051'1 5049'5 5048'3 5047'9	Iron Iron Iron	155 210144	in breadth, seen only over the spot.
5059°9 5058°3*	Iron	1/2	over the spot. A "band," o 7 tenth-metre in breadth, seen only over the spot.	5046.0*	**		Line about o 2 tenth-metre in breadth, seen only over the spot. Line about o 1 tenth-metre in breadth, seen only
5055:8*			A "band," o 7 tenth-metre in breadth, seen only over the spot.	5044.5* 5043.5 4860.7	Iron Hydrogen	Slightly	F.

SPOT No. 876.

1882 November 8. 22h.

The spectrum of this spot was examined in a brief interval of sunlight, but only one or two lines could be observed. The D lines were doubled in breadth, the b lines were broader by one-half, whilst the F line was hardly, if at all, affected. One-prism train direct. Magnifying power 28. Position angle of slit 315°.

1882 November 9d. 23h. to 10d. 1h.

The group was broken up into a great number of small spots, which proved very difficult to observe on account of their small size.

The spectrum could only be mapped from about F to C. One-prism train direct. Magnifying power 28. Position angle of slit 95°.

The following lines between λ 4854°9 and λ 4919°9 were observed to be changed over the spot:—

Wave- length.	Element.	Amount of Broadening.	Remarks.	Wave- length,	Element.	Amount of Broadening.	Remarks.
Tenth-metres, 4854'9 4859'3 4860'7 4863'7 4865'4 4867'7 4870'6 4871'4 4877'6 4878'0* 4881'1 4883'0	Iron and nickel Iron Hydrogen Iron Nickel Cobalt Iron Iron Iron Iron Iron Iron Iron	Slightly Slightly Slightly Slightly	Not shown in Fievez's map.	Tenth-metres. 4884 7 4888 1 4890 2 4891 0 4899 5 4902 6 4904 1 4907 1 4913 4 4916 6 4918 3 4919 9	Iron and titanium Iron Iron Barium Iron Nickel Iron Iron Iron	Slightly	

SPOT No. 885.

1882 November 17^d, 23^h, to 18^d, 1^h,

The following lines were observed to be reversed, i.e., bright instead of dark, over the principal nucleus of the spot:—C, D₁, D₂, D₃, and F. Of these, C and F were exceedingly bright, particularly F; and this, notwithstanding that the mist enfeebled the blue and violet portions of the spectrum. D₃ was only perceived for a short time, apparently when the mist was lightest, about 23^h 50^m. D₁ and D₂ were not only reversed but extravagantly broadened, each line forming a very broad and ill-defined dark band, quite six tenth-metres in breadth, with a sharp, narrow, bright line in the centre, apparently at the normal place of the line. This appearance and the reversal of D₃ were noticed whenever the definition and light were a little better than usual. The reversal of C and F took place over the bright tongue, which all but divided the largest nucleus of the spot into two nearly equal portions. The reversal of the sodium lines was not noticed at the point where C and F were brightest.

The third and fourth lines of hydrogen could not be detected, but the mist made it impossible to observe the extreme ends of the spectrum.

The b lines and 1474 K showed no appreciable change. The strong calcium lines between C and D were doubled in breadth. The E lines were less strongly affected, and were, perhaps, one-third as broad again as usual.

The general absorption of the spot was small, that is, the continuous spectrum was not so much fainter than that of the general disk as might have been expected.

The Sun was not well seen, the day being misty and cloudy. Two-prism train reversed. Magnifying power 28.

1882 November 19d. 23h, to 20d. oh.

The spectrum of the principal nucleus was again examined. The general absorption was more marked than on November 18, and more lines were noticed to be broadened. The general absorption was not, however, uniform; here and there, there were broad ill-defined patches, noticeably darker than the rest of the spectrum. The district lying between \(\lambda \) 4850 was one of the most marked of these.

The C line was seen reversed right across the great nucleus. D_3 and F were suspected to be reversed, but, owing to the mist, could not be clearly seen as bright lines. D_1 and D_2 also could not be seen as bright lines, but they presented exactly the same appearance as on November 18 at those times when the mist was too dense to permit the reversal to be clearly seen; that is, they were very much broadened, were very ill-defined, and much fainter than usual in the middle. Several other lines, amongst them λ 4957, λ 4920, and λ 4918, closely resembled the D lines. The 1474 K line did not appear to be affected, but one near it, either λ 5301 or λ 5307,—there was not time to properly identify the line, but it was believed to be λ 5307,—vanished over the spot.

The calcium and iron lines between C and D were much broadened, and also those near λ 5600 and λ 5856. These were broader by about two-thirds; the E lines were broader by about one-half; the b lines by one-quarter. All these lines were, as a rule, well-defined, that is to say, they did not show the "smudged" appearance seen in the D lines and the three iron lines near F, mentioned above. Two-prism train reversed. Magnifying power 28.

The spectroscope was afterwards placed in the direct position, as used for observation of stellar spectra, and only one "half-prism" was employed. With this dispersion, a remarkable reversion of the F line was noticed. At the preceding edge of the great nucleus there was a broad bright flame, which, touching the F line at the extreme preceding edge of the nucleus, sloped away from the nucleus in the preceding direction, and from the F line towards the blue. It was inclined to the F line at an angle of about 40°, was 1, or, perhaps, 1½ tenth-metre in average breadth, and extended to a distance from the F line of 3 or, perhaps, 3½ tenth-metres. It was pointed at each end, and was nearly but not quite straight, being a little twisted near its centre. A displacement of 3½ tenth-metres towards the blue would correspond to a motion of approach of 134 miles per second. Time of observation, November 19d. 23h. 20m.

The Sun was not well seen, the day being misty.

November 21.

The Sun was only seen through fog and was very faint. The spot-spectrum was therefore a dense black band, in which it was very difficult to perceive any details. The C and F lines were reversed over the greater portion of the area of the spot, not, however, over the very darkest part of the principal nucleus, but over all its fainter portions. D₃ and, perhaps, 1474 K seemed to be reversed over the same region. The latter line seemed to be displaced nearly 1 tenth-metre towards the red. The D lines together covered quite 10 tenth-metres, and ran one into the other; they were very ill-defined, and appeared exactly as on November 20. They extended further towards the blue than towards the red; in fact, the broadening seemed traceable twice as far in the first direction as in the second. A very large percentage of the lines between D and F had a similar appearance to that shown by the D lines and the iron lines near F on November 20, i.e., they were very much broader than on the general disk, were very ill-defined, and were much fainter than the corresponding lines on the Sun, especially about their centres. It is therefore probable that a clearer day would have shown them as distinctly reversed, especially as the F line showed precisely the same "smudged" appearance whenever the fog became too thick for it to be seen as a bright line.

Group α and the lines at λ 6200 were very much broadened, principally on the side nearer the blue.

A momentary gleam of clearer sunlight showed F reversed in the most intricate and beautiful manner right across the great nucleus, not over its entire area, but at short intervals from one side to the other, even over its blackest portion. These stars of brilliant blue light were on the average about twice as broad as the dark F line on the general disk, sometimes four times as broad, and were but little, if at all, displaced.

The Sun was in a yellow fog during the whole time of examination. Two-prism train reversed. Magnifying power 28.

Measures of Displacement of Lines in the Spectra of Stars, as compared with those of Royal Observatory, Greenwich,

Note.—The motion corresponding to the displacement actually observed may be inferred from the Concluded Motion by adding the Earth's Motion algebraically.

The "Half-prism" Spectroscope was used throughout. The numerals in the third column denote the number of "Half-prisms" used. Each "Half-prism" is compound, and is composed of a flint "half-prism," (i.e., the half of an isosceles prism, cut by a plane perpendicular to the base,) and a crown prism, cemented on the emergent face, so as to form the half of a direct-vision prism. With one such half-prism, a dispersion of about $18\frac{1}{2}$ ° from A to H, equivalent to that produced by four flint prisms of 60°, is obtained; and with a train of two a dispersion of about 80°, equivalent to that produced by sixteen flint prisms of 60°. The dispersions have been inferred from measurements of the distance between b_1 and b_4 as compared with the wave-length measure.

Date, 1882,		Number				Disp	lacement.	Width
Greenwich Sidereal Time.	Observer.	of Half- Prisms.	of Position Circle.	Objects compared.	Micrometer Readings.	Measured.	Estimated in Terms of the Breadth of the Comparison Line.	of Slit.
d h m			0	25.02. 14.050	r	*		r
Feb. 10. 5. 0	M	1	6	γ Orionis F	0.309	+ 0.103	½ towards red	0.162
5. 35 6. o	,,	,,	,,	γ Orionis F H β	o:379 o:293 o:335	+ 0.086	g towards red	0.162
0. 0	,,	,,	,,	γ Orionis F H β	0.285	+ 0.020	1/4 towards red	0.162
Feb. 10. 6.10	м	1	6	β Tauri F	0.298	- o.oeo	3 towards blue	0.16
6, 25	,,			β Tauri F	o:358 o:268	- 0.000	3 towards blue	0.10:
	2.2	,,	,,	Ηβ	o·353	— o·o85	} towards blue	0.16
6. 40	,,	,,	,,	β Tauri F	o·346 o·372	- 0.026	1 towards blue	0.16
eb. 10. 7. 0	M	1	6	Sirius F	0*234			-
				Η β	0.222	+ 0.000	1 towards red	0.16
	1.3	3.3	,,,	Sirius F	0.532	+ 0.028	1 towards red	0'16
	3.3	,,	,,	Sirius F	0.596			
			1-12	Η β	0.224	+ 0.045	1/6 towards red	0.19
	,,	,,,	.,,	Η β	0.242	+ 0.056	1 towards red	0'16
	1.2	2.2	2.2	Sirius F	0.300	1 2016	1 towards red	0.16
8. 0	,,		.,,	H 3	0.254	+ 0.046	W 2000	0.10.
	,,	9.9	,,,	Η β	0.332	- 0.034	1 towards blue	0.19
Peb. 10. 8.50	M	1	6	Procyon F	o·568		9	
	1	Par		$H \beta \dots Procyon F \dots$	0.429	+ 0.138	² / ₃ towards red	0.19
9. 0	,,	7.7	,,	Η β	0.430	+ 0.032	½ towards red	0.16
Feb. 10. 9.20	м	1	6	Castor F	0.263	The same		
				H β	0.346	+ 0.012	1 towards red	0.19
	"	9.9	1,7	Castor F	0.397	+ 0.144	2 towards red	0.16
	,,	,,	,,	Castor F	0.412	1 0111	å towards red	0.16
0.45			-	Η β	0.364	+ 0.140	g towards red	0.10
9.45	9.2	,,	3.3	Η β	0.524	+ 0.001	% towards red	0.16

TERRESTEIAL ELEMENTS, and CONCLUDED MOTIONS in the Line of Sight, from Observations at the in the Year 1882.

1^{rev.} of the micrometer corresponds, with one "half-prism" to 1°03 tenth-metres or 372 miles per second for the b lines, and to 7°99 tenth-metres or 307 miles per second for the F line; and with two "half-prisms" to 2°0 tenth-metres or 73 miles per second for b and to 1°67 tenth-metres or 64 miles per second for F.

1 rev. of the screw for opening the slit corresponds to 0.01 inch, or about 10".

The slit lies north and south when the reading of the Position-Circle is 6°.

The estimations of the displacements have been made by indirect comparison with the comparison-line, except where the contrary is expressly stated.

Earth's Motion in Miles per	Concluded M in Miles p	otion of Star er Second.	REMARKS.
Second.	Measured.	Estimated.	
+16.0	+ 15.4	+ 11.9	Star-line and spectrum faint. Light cloud interfered with the observations. Hence the measures were made with great difficulty.
+16.0	- 0.6	- 2.1	
+16.4	- 34.9	- 33.1	Definition good. Direct comparison showed an unmistakeable but small displacement towards the blue.
+16.4	- 42.6	— 38·7	
+16.4	- 24.4	- 22.0	
+ 9.3	- 6.6	- 3.8	Repeated and careful direct comparisons failed to show any decided displacement at all. If there was any it was towards the red, in accordance with the measures. Direct comparison is, however, difficult when the amount of displacement is small. The clock
+ 9.3	+ 8.6	+ 4.6	drove badly at the time of the last measure, rendering it doubtful. The second and three following measures seemed good.
+ 9.3	+ 3.6	+ 1.0	
+ 9.3	- 1:3	- 3.8	
+ 9.3	+ 4.9	+ 1.0	
+ 9.3	- 19.8	- 20.5	
+ 8.5	+ 34.3	+ 28.7	Definition good.
+ 8.5	+ 20.8	+ 19'4	
+10:3	- 5·o	- 4.7	Star-line broad and ill-defined. Spectrum faint. Definition good for last measure.
+10.3	+ 34.1	+ 26.9	
+10.3	+ 32.9	+ 26.9	
+10.3	+ 17.8	+ 12'0	

Date, 1882,			Reading			Disp	placement.	Width
Greenwich Sidereal Time.	Observer.	of Half- Prisms.	of Position Circle.	Objects compared.	Micrometer Readings.	Measured.	Estimated in Terms of the Breadth of the Comparison Line.	of Slit.
d h m			110		r	T TE		r
Feb. 10. 9.55	M	1	6	Pollux F	0°188 0°242	- 0.024	½ towards blue	0.162
	2.3	,,	"	H β Pollux F	0.538	- 0.013	Coincident	0.162
10.10	7.2	3.3	17	Η β	0'240	+ 0.028	1 towards red	0.162
10.10	2.3	,,	,,	Pollux F	0.166	- o.oz8	1 towards blue	0.162
Feb. 11. 0. 0	M	1	6	Sky F Η β	o:398 o:372	+ 0.026		0.162
	,,	,, .	,,	Sky F	0.381		200	324
		,,	,,	Hβ Sky F	0.348	+ 0.010	1010-1114	0.162
	,,	,,	,,	Η β Sky F	o·368 o·384	- 0'020	100	0'165
	33	,,	,,	Η β	o:388 o:378	- 0'004		0.162
				Η β	0.370	+ 0.008		0.162
Mar. 14. 0. 0	м	1	5	Sky F	0.763			4
	2.2	22	,,	H β Sky F	0.762	+ 0,001	Coincident	0'144
	,,	,,	33	Η β Sky F	0.428	+ 0.030	Coincident	0,144
	,,	,,	,,	Η β	oʻ768 oʻ790	+ 0.010	Coincident	0.144
	,,	,,	,,	Hβ Sky F	oʻ793 oʻ775	- 0.003	Coincident	0.144
				Η β	0.769	+ 0.000	Coincident	0,144
Mar. 14. 7.30	M	1	5	Sirius F	0.621			
7. 45	3.7	,,	,,	$H \beta \dots$ Sirius $F \dots$	o·562 o·596	+ 0.059	½ towards red	0'144
7.55	2.2	,,	,,	Η β	o·543 o·598	+ 0.023	1/3 towards red	0.144
8. 5	,,	,,	,,	Η β	o·536 o·582	+ 0.065	1/3 towards red	0.144
8. 15				Η β	o·548 o·531	+ 0.034	½ towards red	0.144
0,10	2.2	,,	,,	Η β	0.206	+ 0.025	1 towards red	0.144
Mar. 14. 8.35	M	1	5	γ Geminorum F	0.398	Page 1		., .
8.45	2.2	,,	,,	β	o·436 o·488	- 0.038	1 towards blue	0.144
g. o	3.3	,,	,,,	H β	0°452 0°373	+ 0.036	½ towards red	0.144
		1		Нβ	0.443	- o [.] 070	1 towards blue	0'144
9.10	, ,	,,	,,	γ Geminorum F H β	0.412	- o·o37	½ towards blue	0.14
Mar. 14. 9. 20	M	1	5	Procyon F	0.696			
9. 25	,,	,,	,,	$H \beta \dots Procyon F \dots$	0.648 0.782	+ 0.048	1 towards red	0.144
9.35	,,	,,	,,	$H \beta \dots Procyon F \dots$	o.686 o.418	+ 0.096	½ towards red	0.144
9.45	23	,,	3.3	Hβ Procyon F	o:663 o:698	+ 0.055	½ towards red	0.144
3.10	1	(2.2)	1 30	Ηβ	0.654	+ 0'044	1/4 towards red	0'144

	Earth's Motion in Miles per	Concluded M in Miles p	fotion of Star er Second.	REMARKS.
	Second.	Measured.	Estimated.	
	+ 9·3 + 9·3 + 9·3	- 26°0 - 13°0 - 0°7	- 20·5 - 9·3 - 3·7	Definition good but spectrum and lines faint.
	+ 9:3	+ 8.0 + 3.1 - 6.2 - 1.2 + 2.5	- 14'9	The faintness of the hydrogen spectrum rendered direct comparison absolutely impossible and made fair and trustworthy measures difficult. There was, however, no sign of any displacement. The hydrogen spectrum was very well defined though faint.
		+ 0·3 + 9·2 + 3·1 - 0·9 + 1·8		
	+ 13.6 + 13.6 + 13.6 + 13.6	+ 4.5 + 2.7 + 5.4 - 3.2 - 5.9	+ 11.2 + 11.3 - 3.0	Line well seen though the spectrum was tremulous. Direct comparison showed a small but distinct displacement towards the red.
	+ 18.0 + 18.0 + 18.0	- 29°7 - 6°9 - 39°5 - 29°4	- 32·9 - 7·4 - 36·6 - 32·9	
TO STATE OF THE PARTY OF THE PA	+ 15·5 + 15·5 + 15·5	- 0.8 + 14.0 + 1.4 - 2.0	+ 3·1 + 21·7 + 9·3 + 3·1	Definition fair.

Date, 1882,		Number	Reading		3.0	Disp	lacement.	Width
Greenwich Sidereal Time,	Observer.	of Half- Prisms.	of Position Circle.	Objects compared.	Micrometer Readings.	Measured.	Estimated in Terms of the Breadth of the Comparison Line.	of Slit.
d h m						r		r
Mar. 14. 10. 0	M	1	5	Castor F $H \beta$	0°525 0°413	+ 0.115	3 towards red	0.144
10.10	,,	,,	"	Castor F	0.212	+ 0.096	3 towards red	0.144
10. 25	,,	,,	,,	Castor F	o·436 o·398	+ 0.038	½ towards red	0.14
Mar. 14. 10. 40	M	1	5	Pollux F	o·343 o·415	- 0'072	1 towards blue	0'144
, 10.55	2.2	,,	,,	$H \beta$	0°324 0°408	- 0.084	2 towards blue	0.14
Apr. 5. 9.55	M	1	6	Sirius F	0'942		3 towards and	
10.10	,,	2.2	,,	$H \beta \dots \dots$ Sirius $F \dots$	o:825 o:898	+ 0.112	3 towards red	0,12
10.20	,,	,,	,,	H β	0.821	+ 0'077	§ towards red	0,12
				Η β	0'798	+ 0.020	1 towards red	0,12
Apr. 5. 10. 35	M	1	6	Procyon F H β	0.955 0.825	+ 0.130	3 towards red	0.12
10.50	2.2	2.2	* * *	Procyon F	0.816 0.816	+ 0.106	½ towards red	0.12
Apr. 5.11. 0	м	1	6	Castor F	0°906 0°776	+ 0.130	3 towards red	0.12
11. 15	3.7	. , ,	, ,,	Castor F	0°943 0°809	+ 0.134	3 towards red	0.12
Apr. 6. 0. 0	М	1	6	Sky F	o·453 o·572	- 0.110	1	0.12
	,,	>>	,,	Sky F	0°429 0°484	- o·o55	1 13 23 17	0.12
	,,	,,	,,	Sky F	o·548 o·500	+ 0.048	1.0115	0.12
	,,	,,	,,	Sky F	o·508 o·443	+ 0.062		0.12
	,,	,,	,,	Η β	0°448 0°450	- 0'002		0.12
Apr. 8. 9.30	м	1	6	Sirius F Η β	0°249 0°188	+ 0.061	½ towards red	0.51
9.40	,,	,,	,,	Sirius F Η β	0'251	+ 0.064	3 towards red	0'21
9.45	2.2	,,	,,	Sirius F	0.510		towards red	0'21
9. 55	,,	,,	,,	H β Sirius F	0.177	+ 0'042		
10. 5	2.3	,,	,,,	H β Sirius F	0°172 0°242	+ 0.124	3 towards red	0'21
10. 15	111	,,	,,	H β	0.243	+ 0.022	1 towards red	0.51
				Ηβ	0.184	+ 0.026	3 towards red	0'21
Apr. 8. 10, 35	M	1	6	θ Leonis F θ Leonis F θ	0.828 0.810 0.838	+ 0.018	Coincident.	0'21
10.45	,,	27	,,	Ηβ	0.814	+ 0'024	1 towards red	0.51
10.55	2.3	2.2	22	θ Leonis F Η β	o'908 o'788	+ 0.130	1 towards red	0.31

	Earth's Motion in Miles per	Concluded M in Miles pe		REMARKS.
	Second.	Measured.	Estimated.	
				Definition fair.
	+ 16.7	+ 17.7	+ 27.9	Definition fair,
	+ 16.7	+ 12.8	+ 27.9	
	+ 16.7	- 5:0	- 1.8	
		20		
	+ 16.3	- 38.4	- 46.0 - 41.1	
-	+ 16.3	- 42.1		
	+ 14'1	+ 21.8	+ 28.3	Spectrum very tremulous. Direct comparison showed little or no displacement.
	+ 14.1	+ 9.6	+ 14.2	
	+ 14.1	+ 1.3	+ 3.6	
	+ 17'4	+ 22.5	+ 25.0	Spectrum fairly steady but faint for a star of this magnitude.
1	+ 17'4	+ 15.2	+ 17.9	
-				Spectrum rather faint but steady, and definition fair.
	+ 18.0	+ 21'9	+ 24.4	
-	+ 18.0	+ 23.2	+ 24.4	
		— 36·6		
		- 16.9		
		+ 14.7		
		+ 20.0		
		- 0.6		
9.	+ 14.0	+ 4.7	+ 4.7	Spectrum very tremulous but star-line very distinctly seen and easy to bisect. Direct comparison showed a small displacement towards the red, just enough to be clearly
	+ 14.0	+ 5.7	+ 8.4	made out. The last two measures were not made under such good circumstances as the first four.
	+ 14.0	- 1.8	- 4.0	
	+ 14.0	+ 34.2	+ 30.8	
	+ 14.0	+ 2'9	+ 4.7	
	+ 14.0	+ 3.3	+ 8.0	
	+ 10.0	- 5.4	- 10.0	Spectrum faint. Star-line broad but faint.
	+ 10.0	- 3.5	- 3.5	
	+ 10.0	+ 26.0	+ 26.4	

Date, 1882,		Number	16			Dis	placement.	Width
Greenwich Sidereal Time.	Observer.	of Half- Prisms.	of Position Circle.	Objects compared.	Micrometer Readings.	Measured.	Estimated in Terms of the Breadth of the Comparison Line.	of Slit.
d h m	100		0			r		2
Apr. 8.11.20	M	1	6	ð Leonis F	0.376		24-2-11	
11.30	-			H β	0.468	— o'og2	3 towards blue	0.51
	,,	,,	3.5	Ηβ	0.482	- 0.063	1/4 towards blue	0'21
Apr. 8. 11. 45	м	1	6	Spica F	1,108			
11.55	1.7			Η β	1.099	+ 0.000	Coincident.	0'21
11, 55	2.7	3.2	13:	Spica F	0.993	- 0.075	3 towards blue	0'21
12. 5	33	2.2	,,	Spica F	0.978	1000000000		
12. 15	,,		P 330	Η β	0.952	- 0.110	3 towards blue	0.51
	3.9	3.3	"	Η β	1.063	- 0.111	½ towards blue	0.51
Apr. 8.12.30	м	1	6	α Coronæ F	0.861	The gard		
12.40		1		Η β	0.826	+ 0.032	½ towards red	0'210
12.40	,,	,,	33	α Coronæ F Η β	0.821	+ 0.056	1 towards red	0'210
June 12. 15. 50	м	1	2	Arcturus F	0.546			
				Ηβ	0.598	— oʻo52	1 towards blue	0.300
16. 10	3.3	,,	,,	Arcturus F Η β	0.248	- 0.060	1 towards blue	0.300
June 12. 16. 35	м	1	2	V management of the second			***********	
	-	-	4	β Libræ F	0.334	- 0'122	3 towards blue	0.300
17. 0	2.7	,,	2.2	β Libræ F	0.434		11. 111	
				Η β	0'492	— o.o28	1/8 towards blue	0,500
June 14. 16. 15	м	1	2	a Coronse F	0.882	/		
16. 20	,,,	,,	,,	Hβ α Coronæ F	o.808	+ 0.514	1 towards red	0'200
16.30				Ηβ	0.676	+ 0'232	1 towards red	0.500
	. , ,	"	,,	a Coronæ F Η β	0.702	+ 0.042	1 towards red	0'200
16.35	3.3	22	,,,	a Coronæ F	0.814			
				Η β	0.652	+ 0.165	2 towards red	0'200
June 14. 16. 50	м.	1	2	α Ophiuchi F	0.845		***************************************	
16.55	,,	,,	,,	Hβ α Ophiuchi F	0'732	+ 0.113	½ towards red	0'200
	1000	***		H 8	0.821	+ 0'142	2 towards red	0.300
17. 0	,,	2.2	,,	α Ophiuchi F	0°908 0°795	+ 0.113	l towards red	0.300
17.10	,,	,,	,,	α Ophiuchi F	0.769	7 0113	g towards red	0 200
				Η β	0.735	+ 0.034	‡ towards red	0.500
June 14. 17. 25	M	1	2	α Lyræ F	0.552			
17. 35	Hara .		100	Hβ α Lyræ F	0.617	- 0.065	1 towards blue	0.500
7,00	2,	,,	,,	Η β	0.423	- 0.128	2/3 towards blue	0'200
June 14. 17. 50	м.	1	2	α Aquilæ F	0.488			
M 12		106	020	Η β	0.536	- 0.048	towards blue	0'200
18. 0	7.3	,,	,,	α Aquilæ F	o*468 o*552	- 0.084	1 towards blue	0.500
18. 15	2.2	,,	,,	«Aquilæ F	0.477	- 0 004	3 towards blue	0 200
18.30		100		Hβ	0.242	- 0.065	1 towards blue	0.500
10100	3.3	,,	"	α Aquilæ F	0.348	- 0'212	ı towards blue	0.300

	Earth's Motion in Miles per	Concluded M in Miles p	lotion of Star er Second.	REMARKS.
	Second.	Measured.	Estimated.	
			17/4	C
	+11.3	- 39·5	- 41.1	Spectrum fairly well defined and steady.
- 1	+11.2	- 30.6	- 29'9	
				Spectrum bright but somewhat tremulous. Star-line faint and not well defined.
	- 0.1	+ 5.9	+ 0.1	
	- 0.1	- 22.9	- 22:3	
	- 0.1	- 30.6	- 29.8	
	- 0.1	- 34.0	- 37.2	
	- 4.8	+ 15.6	+ 19.7	Star-line dark. Spectrum faint. Definition poor.
	- 4.8	+ 22.0	+ 23.5	
				Star-line somewhat faint but sharp and well defined.
	+13.5	- 29.1	- 28.6	
	+13.3	- 31.6	- 28.6	
	+ 9.9	- 47.3	- 46.9	Star-line broad. Spectrum very faint.
	+ 9'9	- 27.7	- 3o·5	
				Definition good.
	+ 8.7	+ 57.0	+ 53.0	
	+ 8.4	+ 62.5	+ 53.0	
	+ 8.4	+ 4.3	+ 3.6	
	+ 8.7	+ 41.0	+ 32.4	
	- o.8	+ 35.5	+ 31.6	Definition fair. Star-line broad and nebulous.
1	- o.8	+ 44*4	+ 41.9	
	- 0.8	+ 35.5	+ 31.6	
	- 0.8	+ 11.2	+ 9.6	
	_ 00			The position for observing was very uncomfortable. The measures would otherwise have
	- 2.9	- 17.0	- 17.6	been much easier to make and probably more accordant. Definition good.
-	- 2.9	- 36·3	- 38.2	
	- 9.2	- 5·5	2:1 37 t min an astronom of hydrogen was compared with	Definition very good. Last measure rough, being made rather hastily. Note.—The spectrum of hydrogen was compared with the sky spectrum on June 16, and
	- 9'2	- 16.6	- 11.3	the H \(\text{\beta}\) in seemed to be perfectly coincident with the \(\text{F}\) line of the sky spectrum. The adjustments of the spectroscope had remained unchanged from June 12.
	- 9'2	- 10.7	- 6.3	
	- 9.5	- 55.8	- 52.5	

Date, 1882,	123	Number	-	100000000000000000000000000000000000000		Disp	Width	
Greenwich Sidercal Time.	Observer.	Half- Prisms.	of Position Circle.	Objects compared.	Micrometer Readings.	Measured.	Estimated in Terms of the Breadth of the Comparison Line.	of Slit.
d h m July 10, 18, 0	M	1	0	- Onkinski E	2		Toronto Si	
18. 20	,,	"	9	α Ophiuchi F	0.320 1.031 0.318 1.043	- 0'101 - 0'124	1 towards blue 2 towards blue	0.588
July 12.17.15	M	1	9	α Aquilæ F	0.923	- o'og6	1 towards blue	0.380
17, 30	,,	33	,,	α Aquilæ F	0'889 1'027	- 1.038	½ towards blue	0.580
July 15. 18. 25	M	1	9	a Cygni F	0.380		I towards bloo	
18, 55	,,	5.5	9.9	H β	o:536 o:492 o:558	- 0.066	½ towards blue	0.580
July 24. 19. 25	м	1	9	β Cassiopeiæ F	o·673 o·648	+ 0.025	, towards red	0.580
19.40	.,,	,,	,,	β Cassiopeiæ F H β	0.436	+ 0'124	1 towards red	0,580
July 24. 20. 0	м	1	9	α Pegasi F	0.182		1/2 towards blue	
20. 15	,,	,,	,,	α Pegasi F H β	0°324 0°337 0°370	- 0.132 - 0.033	1 towards blue	0.580
July 29. 18. 30	м	1	5	α Lyræ F Hβ	0.572		14	
18. 45	"	,,	**	α Lyræ F. H β	0.698 0.566 0.692	- 0.136 - 0.136	½ towards blue	0.222
July 29.19. 0	м	1	5	Moon F	0'253			
19. 5	> >	,,	,,	Ή β	0°256 0°269 0°264	- 0.003 + 0.002		0.227
19. 10	9.9	,,	,,	Moon F Η β	0.216	- o o o 38		0.227
19. 15	,,	,,	,,	Moon F Η β	0.898	- 0.014		0.552
19.20	,,	,	"	Moon F Η β	0.80g	+ 0'002		0:227
Aug. 2.19. 0	М	1	5	α Aquilæ F H β	o.249 o.476	+ 0.013	% towards red	0,110
19. 15	2.2	,,	,,	α Aquilæ F H β	o:498 o:467	+ 0.031	1 towards red	0.110
Aug. 2. 20. 15	м	1	5	ζ Aquilæ F Η β	o*258 o*338	- 0.080	- towards blue	0,110
20.40	,,	,,	3.3	ζ Áquilæ F Η β	o:388 o:373	+ 0'015	1 towards red	0,110
Aug. 2.21.15	м	1	5	α Delphini F Hβ	0'142 0'224	- oʻo82	3 towards blue	
21.35	,,	,,	"	α Delphini F H β	0.532	+ 0.002	Coincident	0.110
Aug. 2.21.50	м	1	5	α Pegasi F H β	0.219	- 01103	1 towards blue	
22. 0	. ,,	22	,,	α Pegasi F H β	o-828 o-855	- 0.103	½ towards blue	0.110

	Earth's Motion in Miles per			DEMARKS
The second second	Second.	Measured.	Estimated.	REMARKS.
				Definition good but spectrum faint.
ı	+ 6.7	- 37.7	- 41.7	
	+ 6.7	- 44.8	- 48.6	
	- 2.6	— 26·9	- 32.4	Spectrum faint. Clouds forming. Line not so well seen in the second as in the first observation.
	- 2.6	- 3g·8	- 49'9	
	_ 5.8	- 42.0	- 46.7	Definition variable. Spectrum bright.
	- 5.8	- 14'4	- 15.2	
	- 11'2	+ 18.9	+ 21.7	Cloud passing. Observation difficult and unsatisfactory.
	- 11.3	+ 49.3	+ 46.2	
	- 12.8	- 29*4	- 39.7	Cloud passing. Observation difficult and unsatisfactory. Note.—The spectrum of hydrogen was compared with the sky spectrum on July 27; the H β line seemed to be perfectly coincident with the F line of the sky spectrum. The
	- 12.8	+ 2.7	+ 2.3	adjustments of the spectroscope had remained unchanged from July 10.
	+ 3:3	- 42'0	- 45·o	Spectrum faint for so bright a star, but fairly steady.
	+ 3.3	- 42.0	- 45.0	
		- 0.9		Coincidence appeared perfect. Moon spectrum faint. Definition fair.
	100	+ 1.5	32 -	
		- 11.7	5	
	1000	- 4.3	2 - 1	
		+ 0.6		
	4- 2.8	+ 19'6	+ 23.2	Definition good,
	+ 2.8	+ 6.7	+ 10.2	Definition good.
			1000	Spectrum so faint that bisection of the line was all but impossible. The definition of the
	+ 5.5	— 3o·o	- 31·5	star-line was, however, good and the spectrum steady.
	+ 5.5	- 0.9	+ 1.0	
9	- 14	- 23.8	- 24.6	Spectrum so faint that bisection of the line was almost impossible. The definition of the star-line was, however, good and the spectrum steady.
	- 14	+ 2.0	+ 1.4	
	- 1111	- 20.5	- 21.4	Definition good. Spectrum steady and not too faint for work.
	- 11.1	+ 2.8	+ 1.8	

Date, 1882, Greenwich Sidercal Time.	Observer.	Number of Half- Prisms.	Reading of Position Circle.	Objects compared.	Micrometer Readings.	Displacement.		Width
						Mensured.	Estimated in Terms of the Breadth of the Comparison Line.	of Slit.
d h m			9					
Aug. 2. 22. 10	M	1	5	Moon F	0.038	+ 0.034	1 100000	0'119
	,,	23	1.7	Η β Moon F	0.867			
	,,	-,,	,,	Η β Moon F	0.888	- 0.031		0,118
			- 3	Ηβ	0.800	- 0.013	100000000000000000000000000000000000000	0,110
	33	3.3	1,	Moon F	0.888	+ 0.013		0.110
22.30	,,	,,	1,7	Moon F Η β	0.962	+ 0.030		0.110
Aug. 4.21.50	м	1	5	α Lyræ F	0.213			
21.55	33	,,	11	Η β	o·599 o·456	- o.o86	§ towards blue	0.133
	118			Η β	0.568	- 0.113	1 towards blue	0.133
Aug. 4. 22. 25	M	1	5	α Cygni F	o.484 o.885	- 0'095	1 towards blue	0'133
22.30	22	,,	9.9	α Cygni F	o:865		-	100000
				Η β	0.005	- 0.037	‡ towards blue	0.133
Aug. 4. 22. 40	N	1	5	α Cygni F	0.817	- 0.079	1 towards blue	0.133
22.50	7.2	3.3	2.2	α Cygni F	0.839	- 0.020	towards blue	551151515
Aug. 8, 19, 30	M	1	5	$H \beta \dots \dots$ Arcturus b_1, \dots	0.112	- 0.030	8 towards blue	0.133
19.45		-		Mg ₁	0.300	- o·185	1/3 towards blue	0.121
19.40	,,	3.3	33	$Mg_1 \dots Mg_1 \dots$	0.220	- 0.034	½ towards blue	0.171
Aug. 8. 20. 0	N	1	5	Arcturus $b_1 \dots \dots$ $Mg_1 \dots \dots$	0'172	- 0'107	1/3 towards blue	0.141
Aug. 8, 20, 20	M	1	5	γ Aquilæ b_1	0.844	2 "		
20.30	,,	,,	,,	$Mg_1 \dots \dots$ γ Aquilæ $b_1 \dots \dots$	0.881	- 0'047	10 towards blue	0.171
A				Mg ₁	0.052	- 0.046	1 towards blue	0.121
Aug. 8. 20. 50	N	1	5	γ Aquilæ b_1	0.962	- 0.031	Coincident	0.171
Aug. 8. 21. 15	N	1	5	η Pegasi b ₁	0.080			
22. 25	,,	,,	,,	Мg ₁	0.361	- 0'029	1 towards blue	0.171
Ana 9				Mg ₁	0.374	- 0.013	Coincident	0'171
Aug. 8. 21. 45	М	1	5	η Pegasi b ₁	0.828	+ 0.014	Coincident	0'171
22. 0	(9)9	,,	,,	η Pegasi b_1	0.40	- 0,011	Coincident	0'171
Aug. 21, 20, 0	M	1	5	γ Draconis b ₁	0.681			
20. 15	,,	.,,	,,	$Mg_1 \dots \dots$	0.682	- 0,011	Coincident	0.120
A				Mg ₁	0.686	- 0.022	1 towards blue	0.120
Aug. 21. 20. 45	М	1	. 5	β Cygni b ₁ Mg ₁	0.600	+ '0.084	% towards red	0.120
21. 0	2.2	2.2	1,9	β Čýgni b ₁	0.204	- 0.082	1 towards blue	0.120
21.20	1,		2.2	β Cygni b ₁	0'461		S S	
21.35	,,	31	,,	β Cygni b_1	o·579 o·448	- 0.118	½ towards blue	0.120
				Mg1	0.268	- 0'120	3 towards blue	0.120

Earth's Motion in Miles per	Concluded M in Miles pe		REMARKS.
Second.	Measured.	Estimated.	
	+ 10.4		Coincidence appeared perfect.
The same	- 6.5		
	+ 3.7		
	+ 9'2	W 188	
+ 4.1	- 30.5	- 26.1	Spectrum steady and bright. Definition very satisfactory.
+ 4.1	- 38.5	- 31.6	
- 3.2	- 25.9	- 24:3	Spectrum steady and bright. Definition very satisfactory.
- 3.3	- 8.1	- 10.5	
- 3·2 - 3·2	- 21°0 - 12°2	- 24·3 - 7·8	
			Definition poor. Spectrum very tremulous. Measures rough.
+ 14.1	- 82·9 - 26·7	- 69.1 - 69.1	
+ 14.1	- 53.9	- 69.1	Definition good. Spectrum steady but faint. Star-line exceedingly faint.
+ 4.2	- 22.0	- 20.9	
+ 4.2	- 21.6	- 20.9	
+ 4.5	- 16.0	- 4.5	Definition fair. Spectrum fairly bright but somewhat tremulous.
- 9.0	- 1.8	- 7.4	
- 9.0	+ 4.5	+ 9.0	
- 9.0	+ 14'2	+ 6.0	
- 9.0	+ 4.9	+ 9.0	Wind high; spectrum somewhat tremulous and lines rather faint and ill-defined for this star,
+ 4.3	- 4.6	- 4.3	which usually shows them very distinctly.
+ 4.3	- 13.5	- 16.2	Definition poor. Wind high, spectrum tremulous. The star-line was decidedly better
+ 5.8	+ 25.4	+ 42.1	seen in the three later observations than in the first.
+ 5.8	- 38.1	— 35·7	
+ 5.8	- 49·6	- 65.7	
+ 5.8	- 50.4	— 77·6	

Date, 1882,		Number				Disp	lacement.	Width
Greenwich Sidereal Time.	Observer.	of Half- Prisms.	of Position Circle.	Objects compared.	Micrometer Readings.	Measured.	Estimated in Terms of the Breadth of the Comparison Line.	of Slit.
đ h m			0		r	r		r
Aug. 21. 22. 15	M	1	5	γ Cygni b_1	0.662	- 0.000	Coincident	0.120
22.30	,,	,,	,,	γ Cygni b_1	0.601	- 0.081	1 towards blue	0'150
Aug. 21. 22. 50	м	1	5	α Cygni b ₁	0.623			
23. 0	,,	,,	,,	$\begin{array}{c} \operatorname{Mg}_1 \dots \\ \alpha \operatorname{Cygni} b_1 \dots \end{array}$	o:689 o:576	- o.oee	1/3 towards blue	0,120
	22	7.7	22	Mg ₁	0.681	- 0.102	½ towards blue	0'150
Aug. 21. 23. 30	м	1	5	ζ Cygni δ ₁	o·656 o·644	+ 0.012	1 towards red	0.120
23.45	,,	23	,,	ζ Cygni b ₁	0.631		2 11 11 11 11 11	Val
				Mg ₁	0.642	- 0,011	1 towards blue	0.120
Oct. 8. 22. 35	M	1	5	α Cygni b ₁	0.692	- 0.081	3 towards blue	0,100
22.50	,,	,,	,,	α Cygni b ₁	0'722	10000	The state of the s	
				Mg ₁	0.608	- 0'114	3 towards blue	0.100
Nov. 8, 23, 23	N	1	5	α Lyrae F	o.200	- 0.160	3 towards blue	0.11
	,,	2.3	,,	α Lyræ F	0'294			0,144
0. 4	,,	,,	,,	Hβ α Lyræ F	o.360	— o.066	½ towards blue	0.144
		100	100	Ηβ	0.313	- 0.132	½ towards blue	0'144
	"	33	,,	α Lyræ F Η β	0.084	- 0.134	½ towards blue	0.144
Nov. 8. 1.10	N	1	5	α Persei F Η β	0.341	- 0.113	½ towards blue	0.144
Nov. 9. 0. 10	м	1	5	α Pegasi F	0.889			
0.30	,,		1	Hβ α Pegasi F	0'907	- 0.018	1 towards blue	0.333
20000000		22	2.7	Ηβ	0.878	- 0.144	½ towards blue	0.535
0.45	3.2	2:2	,,	α Pegasi F H β	0.72 0.863	- 0.110	} towards blue	0.232
1, 0	,,	,,	2.2	α Pegasi F H β	o'722 o'868	- 0.146	½ towards blue	0.535
Nov. 9. 1.30	м	1	5	γ Pegasi F	0.876			
	0.00			Нβ	o·958 o·853	— oʻo82	½ towards blue	0.535
1.45	,,	3.3	,,,	γ Pegasi F	0.962	- 0.100	2 towards blue	0.535
Nov. 9. 2. 0	M	1	5	β Persei F	0.618			
2, 10	1	Tue !	-	Η β	o:518 o:478	+ 0.100	g towards red	0.535
	"	33	3.3	Η β	0.482	- 0.004	Coincident	0.535
Nov. 9. 2.30	M	1	5	Capella F	0'999	1 0.066	1 toward and	015.25
3. 5	,,	,,	,,	H β Capella F	o.872	+ 0.066	1/4 towards red	0.535
				Ηβ	0.855	+ 0.050	1 towards red	0.535
Nov. 10. 0.55	N	1	5	Capella F	0.343	+ 01033	1 towards red	0.002
1. 3	,,	,,	,,,	Η β	0.339	+ 0.032		
	100	200		Ηβ	0.301	+ 0.038	1 towards red	0.002

Earth's Motion in Miles per	Concluded M in Miles p	otion of Star er Second.	REMARKS.
Second.	Measured.	Estimated.	
+ 1.0	- 1.0 - 31.1	- 1·o	Definition poor. The first measure appeared the better.
- o.8	- 23·7 - 38·2	- 39°1	Definition fair. Wind still high and spectrum unsteady but bright.
- o.e	+ 5·1 - 3·5	+ 12.6	Definition poor. Spectrum faint and unsteady.
+ 6.0	- 36·1 - 48·4	- 47°0 - 60°7	Spectrum faint for so bright a star. Thin cloud or light mist. Spectrum rather too narrow. Lines steady but faint. Definition fair.
+ 7·5 + 7·5	- 56·6 - 27·7	- 59°3 - 42°0	Star spectrum very bright.
+ 7.5	- 48·6 - 48·6	- 42°0	Satisfactory observation.
- 4'2	— 3o·2	— 30.3	Considered good. The sky clouded up suddenly before another measure could be obtained.
+14.6	- 20°1 - 58°8 - 48°4 - 59°4	- 22·2 - 52·5 - 44·9 - 52·5	Star spectrum faint. Star-line ill-defined. Definition poor.
+11.8	- 37°0 - 45°2	- 37·1 - 42·1	Definition poor. Spectrum faint.
- 2·1	+ 32.8	+ 32.4	Definition fair. Spectrum bright.
- 9·3	+ 29.5	+ 28.3	Spectrum faint, but definition fair. Sky clouding over. Last measure bad. Interrupted by cloud.
- 3.1 - 3.1	+ 18.9	+ 24·8 + 24·8	A good measure. Tolerably good. Line fairly distinct.

(F for the	Star or	Moon is co			ydrogen, and b		with Mg1, Mg2,	Mg _s of Magnesi	ium.)
					ession; — Ap				
Date, 1882.	ver.	Number of Measures.	ber of	Position	Width of	Line.	Earth's Motion in Miles per	Concluded Mo in Miles pe	tion of Star r Second.
2,310,30021	Observer.	Numb	Number of Prisms.	Circle.	Slit.	"Line.	Second.	Measured.	Estimate
				βC.	ASSIOPEIÆ.				
July 24	м	2	1	9	r 0°289	F	- 11.2	+ 34.1	+ 33
					December				T I I
				γ	PEGASI.				
November 9	М	2	1	5	0.535	F	+ 11.8	- 41.1	- 39
				β	Persei.				
November 9	м	2	1	5	0.535	F	- 2.1	+ 16.8	+ 17
				a	Persei.				
November 8	N	1	1	5	0.144	F	- 4.3	- 30.2	- 3o
				α Aurie	GÆ (Capella).				
November 9	M	2 2	1	. 5 5	0°232 0°097	F	- 9·3 - 9·1	+ 22.5 + 19.9	+ 22
			-	γ (ORIONIS.				
February 10	м	3	1	6	0.162	F	+ 16.0	⊥ 8·5	+ 5%
	3			β	TAURI.				
February 10	м	3	1	6	0.162	F	+ 16.4	- 34°o	- 31.3

Date, 1882.		Observer.	Number of Measures.	Number of Prisms.	Position Circle.	Width of Slit.	Line.	Earth's Motion in Miles per	Concluded Mee in Miles per	tion of Star Second.
		Op	Nur	N. N.		Sitt		Second.	Measured.	Estimated.
					γ Gi	EMINORUM.				
March	14	м	4	1	5	0.144	F	+ 180	- 26.4	- 27'4
-11		4			a Canis M	AJORIS (Siriu	1).			979
February	10	м	6	1	6	0.162	F	+ 9.3	- 17	- 3:3
March	14	at	5	1	5	0'144	F	+ 13.6	+ 0.7	+ 64
April	5	м	3	1	6	0.120	F	+ 141	+ 10.9	+ 154
7,18	8	м	6	1	6	0.310	F	+ 14.0	+ 8-2	+ 8.9
			7.		а Симін	ORUM (Caston	r).			
February	10	м	4	1	6	0*165	F	+ 10.3	+ 19'9	+ 15.3
March	14	м	3	1	5	0'144	F	+ 16.7	+ 8.5	+ 18.0
April	5	м	2	1	6	0.120	F	+ 18.0	+ 22.5	+ 24'4
					a Canis I	Minoris (Proc	yon).		CHIE	
February	10	М	2	1	6	0.162	F	+ 8.5	+ 27.6	+ 241
March	14	M	4	1	5	0.144	F	+ 15.5	+ 3.3	+ 9.3
April	5	м	2	1	6	0'159	F	+ 17'4	+ 18.8	+ 21%
67-1					а Семіне	ORUM (Pollux).			
February	10	M	4	1	6	0165	F	+ 9.3	- 14'4	- 12'
March	14	м	2	1	5	0.144	F	+ 16.3	- 40.3	- 43'6
						E Leonis.		1.09		
April	8	м	2	1	6	0.510	F	+ 11'2	— 35·o	- 35%
					6	Leonis.				
					1		1			4,744

Date, 188	7	ver.	er of	Number of Prisms.	Position	Width of	Line.	Earth's Motion in Miles per	Concluded Mo in Miles pe	tion of Star r Second.
Date, 188	2	Observer.	Number of Measures.	Numb	Circle.	Slit.	James.	Second.	Measured.	Estimated
					a Vire	einis (Spica).				
April	8	м	4	1	6	r 0'210	F	- 0.1	- 21.2	- 22:3
					а Воот	ns (Arcturus).				
June	12	м	2	1	2	0'200	F	+ 13.2	- 30.4	- 28.6
August	8	M N	2 I	1	5 5	0,141	$b_1 \\ b_1$	+ 14.1	- 54.8 - 53.9	- 69°
			P (15)		β	Libræ.				
June	12	м	2	1	2	0.300	F	+ 9.9	- 37:5	- 38
					a (Coronæ.				Tes.
April	8	м	2	1	6	0'210	F	- 4.8	+ 18.8	+ 21'
June	14	м	4	1	2	0.300	F	+ 8.7	+ 41.2	+ 35%
					α O	рніисні.				120
June	14	м	4	1	2	0.300	F	- 0.8	÷ 31.6	+ 28"
July	10	м	2	1	9	0.588	F	+ 6.7	- 41.3	- 45·s
		1 :	4315		γD	RACONIS.				I A
August	21	м	2	1	5	0.120	<i>b</i> ₁	+ 4.3	- 9.0	- 10.3
					a Ly	RÆ (Vega).				
June	14	М	2	1	2	0.200	F	- 2.9	- 26.7	- 27'9
July	29	м	2	1	5	0.227	F	+ 3.3	- 42.0	- 45.0
August	4	M	2	1	5	0*133	F	+ 4.1	- 34.5	- 28.8
November	8		4	1	5	0.144	F	+ 7.5	- 45.5	- 46.4
				5-76	ζ.	AQUILÆ.				
August	2	м	2	1	5	0.110	F	+ 5.5	- 15.5	- 15.3

Date, 1882.		Observer.	Number of Measures.	Number of Prisms.	Position Circle.	Width of Slit.	Line.	Earth's Motion in Miles per Second.	Concluded Mot in Miles per	ion of Star Second,
		OB	M	Nu				Second.	Measured.	Estimated.
					β	CYGNI,				
August	21	м	4	1	5	0.120	b_1	+ 5.8	- 28.2	- 34.2
					у А	QUILÆ.				
August	8	M N	2	1	5 5	0.121	b_1 b_1	+ 4.5 + 4.5	- 21.8 - 16.0	- 20'9 - 4'5
					∝ Aqui	LÆ (Altair).		100	W. S.	Contract of the second
June	14	M.	4	1	2	0.500	F	- 9.2	- 22'2	- 18.3
July	12	м	2	1	9	0.588	F	- 2.6	— 33·3	- 41'1
August	2	М	2	1	5	0.110	F	+ 2.8	+ 13.1	+ 16.7
	11 12	93			2	CYGNI.				
August	21	м	2	1	5	0150	<i>b</i> ₁	+ 1.0	- 16.1	- 21'0
THE ST					α]	DELPHINI.				
August	2	м	2	1	5	0.118	F	- 1'4	— 10'9	- 11.6
					a	CYGNI.				
July	15	м	2	1	9	0.588	F	- 5.8	- 28.2	- 30'9
August	4	M N	2 2	1	5 5	o.133	F	- 3·2 - 3·2	- 17.0 - 16.6	- 16.0
August	21	M	2	1	5	0.120	b_1	— o.8	- 31.0	- 49
October	7	м	2	1	5	0.100	<i>b</i> ₁	+ 6.0	- 42.2	- 53
						ζ Cygni.				G BAR
August	21	M	2	1	5	0.120	b ₁	- 0.6	+ 0.8	+ 0.0
THE.						PEGASI.				
August	8	N	2	1 1	5 5	0.121	b_1 b_1	- 9.0 - 6.0	+ 1.2	+ 9'

	No.	rer.	ar of ures.	er of	Position	Width of	-	Earth's Motion in Miles per	Concluded Mo in Miles pe	tion of Star r Second.
Date, 1882		Observer.	Number of Measures.	Number of Prisms.	Circle.	Slit.	Line.	Second.	Measured.	Estimated
					a	Pegasi.				
July	24	м	2	1	9	r 0°289	F	- 12.8	- 13:3	- 18:
August	2	м	2	1	5	0.110	F	- 11.1	- 8.9	- 9.
November	9	M	4	1	5	0.535	F	+ 14.6	- 46.7	- 43
July	20	м	5	1		Moon.	F		- 3·o	
July August	29	M	5	1	5	0'227	F F		- 3·o + 2·6	
						09		•••		
					Sky	SPECTRUM.				
February	11	м	5	1	6	0.162	F		+ 1'2	
March	14	M	5	1	5	0'144	F		+ 2.7	**
April	6	M	5	1	6	0.120	F		- 3.9	

OBSERVATIONS of the SPECTRA of URANUS, of sundry Stars, of Comets a and b 1882, and of an Aurora, made at the ROYAL OBSERVATORY, GREENWICH, in the YEAR 1882.

URANUS.

1882, March 16d. 71h.

Single-prism Spectroscope. Micrometer B.

Observer, M.

The spectrum showed four broad dark bands, and two or three very faint lines. The bands seemed to be shaded at the edges on both sides. The measures of the positions of the faint lines are very rough. The following wave-lengths for the bands and lines were inferred from a curve formed from measures of the lines in the solar spectrum; the index error for the time of observation being determined by measures of the positions of the D lines of sodium and of the sharp edges of the principal bright bands in the spectrum of a Bunsen flame.

Band or Line.	Wave-length	
The state of the s	tenth-metres.	
Spectrum begins about	5960	
Band I. Diffused, broad and dark band	5714	
Band II.	5430	
Faint line	5232	
Faint line	5039	
Faint line	4906	
Band III., probably F	4857	
Band IV.	4593	
	4450	
Spectrum ends about	4400	

Types of Stars.

1882, March 16.

Single-prism Spectroscope.

Observer, M.

The spectra of the four following stars, of which the three last are not in Secchi's Catalogo delle Stelle di cui si è determinate lo Spettro luminose, were examined to determine the type to which they belong.

- δ Leonis. Type I. F and g strongly marked. F broad and diffused.
- θ Leonis. Type I. F and g strongly marked. F narrow, darker, and more condensed in the centre than in δ Leonis.
- μ Ursæ Majoris. Type II. A fine example. The b lines very strong, and the E group distinct.
- ψ Ursæ Majoris. Type I. apparently. The F line very faint and diffused. The lines in the spectrum seen with great difficulty.

COMET a 1882 (WELLS).

1882, April 22.

Single-prism Spectroscope. Position Circle, 348°.

Observer, M.

Only a continuous spectrum could be detected. This was very fairly bright from the star-like nucleus, and a faint spectrum could also be traced for some distance down the tail. With a fairly narrow slit the spectrum could be traced from a little below D to a little below F, say from a 5900 to a 4900. The sky clouded before any more definite observations could be secured.

1882, April 24.

Single-prism Spectroscope. Position Circle, 348°. Width of Slit, oin o3 and oin og.

Observer, M.

Only a continuous spectrum could be detected. This was not equally bright throughout, there being two ill-defined maxima in the green and greenish-blue. The spectrum was traceable from about λ 6000 to λ 4400.

1882, May 11.

Half-prism Spectroscope. One "half-prism" reversed. Magnifying power, 28. Position Circle, 270°.

Observer, M.

The Comet gave simply a continuous spectrum, which was easily traceable from about λ 6100 to about λ 4700. No bright bands or break of continuity was detected either with a wide or narrow slit. The continuous spectrum seemed remarkably bright from the nucleus, considering the comparative faintness of the Comet, and the high dispersion, 5° from A to H, employed.

1882, May 13.

Half-prism Spectroscope. One "half-prism" reversed. Magnifying power, 15. Position Circle, 270°.

Observer, M.

Very careful and repeated examination failed to show any definite bands. Once or twice an ill-defined maximum was suspected, a little to the red of the green band of the Bunsen-flame spectrum, in other words near E; but as the spectrum is naturally brightest about this point, but little weight can attach to the suspicion.

The spectrum was traced for a distance from the centre of the nucleus of nearly one minute in each direction, and from about λ 6150 to about λ 4300.

1882, May 20.

Half-prism Spectroscope. One "half-prism" reversed. Magnifying powers 15 and 28. Position Circle, 270°. also Single-prism Spectroscope. also Eyepiece-prism.

Observer, M.

With none of these dispersions could any bright bands, properly so called, be distinguished; but two faint broad dark bands, or what gave that impression, crossed the spectrum. Practically the same observation as on April 24, when two maxima of light were noticed, the maxima observed on that occasion lying respectively between and on the blue side of the two minima observed now.

A third dark band was suspected near D on the blue side of that line.

These dark bands seemed to be sharp at the edges, but were all exceedingly faint, the most refrangible least so, the middle one much fainter, the third by far the faintest of the three.

The spectrum described above was that from the nucleus and head. The tail showed a very short continuous spectrum visible only in the green. At least it gave that impression. It might be mistaken for the bright green band of carbon, but it seemed too regular for this to be the case, there being no trace of a sharp edge towards the red to be detected. It also extended too far towards the red. The spectrum from the nucleus was traced from about $\lambda\,6150$ to $\lambda\,4300$.

The following measures were obtained with the Single-prism spectroscope of two of the dark bands, as compared with the sharp edges of the bright bands in the blue and green of the spectrum of a Bunsen-flame, the wave-lengths being inferred by means of a curve formed from measures of the lines in the solar spectrum.

tenth-metres. 4818 4811 and 4855. Band in the blue..... 5493. Band in the green

1882, May 22. 9h. to 101h.

Single-prism Spectroscope.

Observer, M.

The continuous spectrum alone was visible, but the sky spectrum in its neighbourhood was so strong that no bright bands could possibly have been seen unless they had been exceedingly bright. Only the spectrum from the central nucleus could be examined, and this was too narrow to show dark bands. The sky clouded over at half-past ten.

1882, May 31.

Single-prism Spectroscope. Micrometer B.

Observer, M.

The hindrances to observation were very great, the Comet being in a very awkward position. It was also very difficult to keep it on the slit.

The spectrum from the nucleus was a bright but very narrow ribbon of light of irregular intensity.

The spectrum of the Comet was compared with those of sodium and of a Bunsen-flame.

Nature of Object.	Wave-length.
A bright point near D	tenth-metres. 5902.7 5328 5146 4862

The above measures are exceedingly rough.

These irregularities were only seen at times. At times, however, the whole spectrum seemed full of bright lines, but the hindrances to observation were so great that no continued view could be obtained of them.

The general appearance of the spectrum was not altered from May 20, except that its greatly increased brilliancy allowed the details to be better seen.

1882, June 7.

Half-prism Spectroscope. One "half-prism" direct.

Magnifying power, 14. Position Circle, 92°.

Observer, M.

The moment the Comet came on the slit the exceeding brilliance of the line in the yellow was remarked. There was also a continuous spectrum, but no lines either bright or dark were noted in it. The yellow line was, however, so exceedingly brilliant, and so far outshone the rest of the spectrum, that it would be scarcely an exaggeration to say that the Comet shone by monochrematic light. The Comet rose in cloud, and was not seen in the spectroscope until 15^h, 30^m.; it was clearly seen in the 3ⁱⁿ finder, as a planetary disk of very nearly the same colour as Mars, until 15^h, 50^m, four minutes after sunrise, when it was accidentally lost, and the sky clouded over before it could be picked up again. The tail was masked by the daylight.

A very rough measure of the position of the bright line gave its wave-length as 5894.5 tenth-metres, or 2.5 tenth-metres to the red of the D lines, a displacement which, assuming its identity with the pair of yellow sodium lines, would correspond to a receding motion of 79 miles per second. The actual movement of recession of the Comet at the time was 18.5 miles per second.

1882, June 10, 18h-22h.

Observer, M.

The Comet was seen in full daylight just after perihelion passage at 20h, with the 12\frac{3}{4} inch equatoreal, using negative eye-pieces with powers of 60, 130, 220, and 310. With the lowest power, a light red glass was necessary, but with the powers 220 and 310 the light of the sky was not too strong for the eye, and the Comet could be easily seen as a dull yellow stellar point of light, the disk being no larger than that of a star. It was judged to be not so bright as Capella, which had been seen previously, making every allowance for the much brighter background on which the Comet was seen. On putting in the transit micrometer (which has a much larger field) to determine its place, the Comet was lost, after having been seen distinctly for a quarter of an hour, and it was not picked up again afterwards. A white haze had gradually formed round the Sun, and the sky became overcast about noon.

COMET & 1882.

1882, October 25, 15h-18h.

Half-prism Spectroscope. One "half-prism" direct. Width of Slit, or 732.

Observer, M.

The Moon was so bright, and there was so much mist, that the Comet was not seen until 17th. At 18th it was lost in

The spectrum showed the usual three bands, but no sodium lines. The bands, which were, as usual, sharp and very bright at their less refrangible edge, and gradually faded away towards the blue end of the spectrum, each extended so far in that direction as almost to touch the next band, and rendered it very difficult to ascertain whether there was a continuous spectrum or not. It was believed that there was one, but that it was faint.

Direct comparison showed that the three bands were generally coincident with the three principal bands given by a Bunsen-flame. But a small displacement towards the red was noticed in the case of the green band. It was also suspected that different parts of the nucleus showed very considerable displacements inter se, but the faintness of the spectrum and the short time available for observation prevented the suspicion from being verified as thoroughly as could have been wished. The cometary band was very sharp at the less refrangible edge, most unusually so for a comet, and was much better defined than the band of the flame spectrum, and the individual measures each seemed very satisfactory, but, as will be remarked, they gave widely differing results. It was also noticed that when the telescope was moved by means of the slow-motion rods the edge of the band would seem to shift its position with regard to the occulting bar, by an extreme amount of or 1, or perhaps even or 2 in one or two instances.

Measures of the Green Band.

OV: de amount	Micrometer	Displa	cement.	Inferred Wave-length of Comet Band.	Motion in Miles per Second corresponding	
Objects compared.	Readings.	In Revolutions.	In Wave-length,		to observed Displacement.	
	r	r	tenth-metres.	tenth-metres.		
Comet	1,000				2	
Bunsen-flame	1'052	- 0.02	- 0.24	5163.5	- 19.5	
Comet	1.008					
Bunsen-flame	0.018	+ 0.180	+ 1.85	5165.9	+ 66.8	
Jomet	0.945	1.400000000	1	5-6	1 =16	
Bunsen-flame	0.862	+ 0'020	+ 0.51	5164.2	+ 7.6	
Comet	1.013	- 0.120	- r·55	5162.5	- 56·o	
Comet	0.001	-0130	100	01020		
Bunsen-flame	1.013	- o.o2	- o.24	5163.5	- 19'5	
Comet	0.383		2000		100000	
Bunsen-flame	0.380	+ 0.003	+ 0.03	5164.0	+ 1.1	
Comet	0.339	V	142	2 22	190	
Bunsen-flame	0'432	- 0.093	- o·96	5163.0	- 34.7	
Comet	0.22			- /-		
Bunsen-flame	0.369	+ 0.183	+ 1.88	5165.9	+ 67.9	
Comet	0.200		- 0.10	5163.0	- 3.6	
Bunsen-flame	0.219	- 0.010	- 0.10	3103.9	- 30	
Comet	0.570	+ 0.038	+ 0.30	5164.4	+ 9.0	
оппен-паше	0 332	7 0 0 3 8	1 0 39	01044	, 90	
Means		IVI CONTRACTO	+ 0.69	5164.1+0.55	+ 2.5	

1882, October 30, 151h. to 18h1.

Half-prism Spectroscope. One "half-prism" direct. Width of Slit, 1"-183.

Observer, M.

The usual three cometary bands were seen, and a faint continuous spectrum, but nothing further could be made out. The blue and yellow bands were too faint for measurement, but closely coincided in position with the corresponding bands of the spectrum of the Bunsen-flame. No displacement of the green band could be detected with any degree of certainty; nor could any bright lines be detected upon it.

Measures of the Green Band.

01:	Micrometer	Displa	cement.	Inferred	Motion in Miles per Second
Objects compared.	Readings.	In Revolutions.	In Wave-length.	Wave-length of Comet Band.	to observed Displacement,
	*		tenth-metres.	tenth-metres.	
Comet	0'419	-			
Bunsen-flame	0.372	+ 0'047	+ 0.48	5164.5	+ 17.3
Comet	0.353		1		
Bunsen-flame	0.334	+ 0.018	+ 0'20	5164.2	+ 7.2
Comet	0.254	- 0.044	- 0.45	5163:5	- 16.2
Comet	0.318			01000	-102
Bunsen-flame	0'214	+ 0.004	+ 0.04	5164.0	+ 1'4
Comet	0.188				
Bunsen-flame	0.198	+ 0.050	+ 0.51	5164.3	+ 7.6
Comet	0.320	1 00000	1 -1.2	5.6.	
Bunsen-flame	0.302	+ 0.045	+ 0.43	5164.4	+ 15.5
Bunsen-flame	0.323	- 0'020	- 0.51	5163.8	- 7.6
Comet	0.388			01000	7.0
Bunsen-flame	0.322	- 0.034	- o·35	5163.6	- 12.6
Comet	0.521				
Bunsen-flame	0.335	- 0.064	- 0.66	5163.3	- 23.8
Comet	0.306	1 01010	1 2172	E.C	
Bunsen-flame	0.588	+ 0.018	+ 0.10	5164.5	+ 6.9
Means		- 0.001	0'12	5164.0±0.00	- 0'4

1882, November 10, 17h.

Half-prism Spectroscope. One "half-prism" reversed.

Observer, M.

The blue band was no longer visible, the yellow band was exceedingly faint, and even the green band was too faint for measurement. The latter showed a very sharp edge on its less refrangible side, a circumstance noticed on both the former occasions when the spectrum of the Comet was observed, and the more remarkable that the bands in the spectra of comets are generally somewhat diffused. It is probable, therefore, that on a better view the band might have been resolved into fine lines.

The mean of all the measures of the less refrangible edge of the Green Band in the Comet's spectrum gives the following result for its wave-length.

5164.0 \pm 0.1 tenth-metres.

Thalén's wave-lengths for the less refrangible edges of the bands in the spectrum of the Bunsen-flame have been assumed throughout, as follows:—

Band.	Wave-length,
Yellow band	tenth-metres. 5633°0 5164°0 4736°0

AURORA.

1882, November 17, 5h. 20m. to 9h. 0m.

Hand Spectroscope ("half-prism"). One "half-prism."

Observer, M.

The Aurora at the commencement of the observation was a red one, of no particular shape, a ruddy glow extending all over the N.W. About $5^{\rm h}$, $30^{\rm m}$, a brilliant arm shot up from the N. horizon to the zenith, principally red but with a green vein in it. The rosy colour disappeared soon after this. The principal red display lay between Vega and ϵ and η Ursæ Majoris, a broad band of light. A fainter band, at right angles to the first, went down to Boötes,— α Coronæ Borealis shining in the centre of it,—and up toward and nearly to the zenith.

The green Aurora during the time of observation consisted, with one remarkable exception, of little else than a pale green light fringing the upper edge of the London smoke cloud. The exception was the sudden appearance of a magnificent streak of light, much more brilliant than the great Comet, and about one-quarter as long again. When first seen it had already risen some 20°, and just at that moment it bore a great resemblance to the Comet in general outline. Rising in the E.N.E., and slowing mounting, it seemed nearly to follow a parallel of declination, passed just above the Moon, and sank with an even regular motion down to the W. It faded somewhat after passing the meridian, and disappeared at about 6^h. 5^m. 59^s. G. M. T. It took about two minutes to cross the sky. It slowly increased in length up to meridian passage and decreased after it, its greatest length being perhaps about 30°.

No view was obtained of the spectrum of the red Aurora, nor of this great bright cloud.

The single-prism Spectroscope, when pointed to the pale green light in the north, showed the green Auroral line very brilliantly, and also a great number of faint lines further to the blue. But it was quite impossible to see the pointer, and no measures could be made.

The Hand "half-prism" Spectroscope showed only the green line, and the following determinations were obtained of its position as compared with that of the D lines given by a sodium-flame, the wave-length being inferred by means of a curve formed from measures of lines in the solar spectrum between D and b:—

1	Auroral Line Centre.	D Lines Centre.	Wave-length of Auroral Line inferred.
F	r	r	tenth-metre s.
	0.810	1.532	5531
	0.299	1.338	5524

	Auroral Line.			D Lines,		
Blue Edge.	Red Edge.	Inferred Reading for Centre.	Blue Edge.	Red Edge.	Inferred Reading for Centre.	Wave-length of Auroral Line inferred.
r o·565 o·535 o·444	o:6o3 o:715 o:755	r 0.584 0.625 0.600	r 1.177 1.203 1.172	r 1.464 1.432 1.322	r 1:321 1:318 1:247	tenth-metres. 5525 5542 5561

Mean wave-length of Auroral line...........5537 \pm 4.5 tenth-metres.

ROYAL OBSERVATORY, GREENWICH.

MEASURES OF POSITIONS AND AREAS

OF

SPOTS AND FACULÆ

UPON THE SUN'S DISK

ON

PHOTOGRAPHS

TAKEN WITH THE

PHOTOHELIOGRAPHS
AT GREENWICH AND IN INDIA;

WITH THE DEDUCED

HELIOGRAPHIC LONGITUDES AND LATITUDES.

1882.

MEASURES of Positions and Areas of Spots and Faculæ upon the Sun's Disk on Photographs taken at the Royal Observatory, GREENWICH in the Year 1882, and at DEHRA DUN in INDIA from 1881 Dec. 22 to the End of the Year 1882.

Norg.—The Greenwich Mean Solar Time at which the photograph was taken is expressed by the Day of the Year and decimals of a day, reckoning from Greenwich Mean Noon of January 1.

For convenience of reference the Month and Day of the Month (Civil Reckoning) are added.

The letter L signifies that the photograph was taken in India; the time given is Greenwich Mean Solar Time.

The position-angles are reckoned from the North Pole of the Sun's Axis in the direction N., E., S., W., N.

4243				Sun's	Нвило	GRAPHIC	Sr	ors.	FACULE.	41 14			m ,	Sun's	Неггос	RAPHIC	Sec	ors.	FACULAE.
Greenwich Mean Solar Time.	Measurers,	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each*Group (and for Day).
1881. 354 ^d ·778 I.	н, м	628 631 631 632 632	0.950 0.893 0.412 0.436 0.512 0.547	0 300.7 289.3 207.8 198.1 50.4 55.4	245'4 238'8 189'7 186'4 153'4	+28·2 +16·1 -23·3 -26·5 +17·1 +16·7	55 0 0 2 2 2	377 16 12 19 9	363 f	1881. 359 ^d ·690 I Dec. 27	н, м	634 634		245.9 288.9 172.3 165.1 58.9	109:5	-26·3 -28·2	18 19 (37)	93 73 (166)	815 105
Dec. 22		63o 63o		118'4	136.4	-19.6 -19.6	(61)	9 13 (462)	237 n f (600)	360·705 I.	н, м	635 634 634	0.817 0.986 0.419 0.436	292.0 287.9 292.0	178.4 109.8 104.1	+17°1 -25°4 -28°2	o 16 8	31 97 81	220 187 s 108 c
I.	п, л	627 631 631 632	0.302 0.302 0.302	287.0 299.5 226.8 215.1 36.9	244'1 190'6 185'3 151'6	+28.7 -23.3 -27.2 +16.1	10 0 2 0	365 3 6 8	547 f	Dec. 28	н, м		0.773	118.0			(24)	(209)	672 974 (2161)
Dec. 23	н, м	633	0.368	51°0 283°5 69°8	148.8	+11.2	(16)	(411)	(1692) 711 253	I. Dec. 30		634 634 636	o.820 o.820	233·7 224·9 57·3	103.0 103.0	-25.5 -28.2 +25.5	17 13 0 (30)	103 25 11 (139)	1163 f (1863)
I. Dec. 24 357.684	н, м		0.989	109'4		7	(0)	(0)	354 (1318) 286	363 [,] 76 ₂	н, м	634 634 637 638	0.803 0.738 0.582 0.691	24C'2 234'9 324'3 63'1	109.6 102.0 103.0	-25'4 -27'4 +25'2 +15'8	10 0 3 0	103 14 14 87	788 n p
I.		631	0.804 0.767 0.931 0.975	242'1 237'4 64'2 112'1	182.1	-23.6 -26.1	6	38 7	258 c 121 c 457 689	Dec. 31			0.821 0.982 0.982	52.6 73.9 119.4		-	(13)	(218)	727 377 94 (2091)
Dec. 25 358.700	н, м	631 631 634	0'904 0'881 0'490	244.8 241.6 147.6	189°1 185°4	-23.8 -26.0 -26.8	(7) 0 0	(45) 43 29 26	(1811) 407 e 204 e	364 [.] 672	м, н	634 637 637	0'918 0'901 0'712 0'671	290.5 243.2 310.0 315.8	110.0 84.0 78.5	-25.5 +24.5 +25.9	0 0	63 9 6	255 410 n p
Dec. 26		634	o:527 o:863 o:915	144.6 63.3 113.6	105.9	-27.7	7	15	236 569 (1416)			638 638 638 638	o·506 o·532 o·566 o·577	52·3 51·5 55·7 53·5	22.9 21.7 18.4 18.4	+16.3	2 8 8 7	8 33 32 17	

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 627. Regular spot with several small markings north of it.

Group 631. A number of small faint spots. These spots undergo great changes, and are not seen on the photograph on December 24, but are seen again on December 25 and 26.

Group 632. Several small faint spots in a straight line.

Group 633. Several small scattered spots.

Group 634. Two spots. The following spot breaks up into two on December 27, the lower portion of which disappears before December 31, and the upper before January 1.

Group 635. A small faint spot, seen only as it passes off the Sun at the West limb.

Group 636. Small faint spot, seen only on one day.

Group 638. An irregular cluster of many very small spots on December 31. These increase somewhat in size until January 5 and 6, after which they rapidly decrease, and the group has nearly disappeared before it reaches the W. limb.

				M	Leasures	of Posit	ions and	l Areas	of Spots a	nd Faculæ	upon	the S	un's Di	sk—con	tinued.				4
			ii ii	Sun's	Helio	GRAPHIC	SP	OTS.	FACULÆ.				H. H.	Sun's	Herro	PRAPHIC	Sro	TS.	FACULÆ.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1881. 364 ^d ·672 I. 1882. Jan. 1	м, н	639	o·928 o·843 o·877	0 119.3 45.8 73.2	340.7	-28.3	(36)	18 (186)	153 f 243 132 (1193)	1882. 4 ^d ·666	м, н	644 643 643	0.907	o 231.1 46.3 49.6 61.3 107.4	o'1 317.8 314.4	° -17.7 +18.0 +18.3	1 90	11 24 4	209 32
0.690 I. Jan. 2	Ј, Н	634 638 638 638 639 639	0.357 0.387 0.422 0.819	244.6 28.6 29.9 37.9 122.3 122.3 72.2	109'9 23'9 22'5 18'4 342'5 335'5	-25.4 +14.9 +16.2 +16.1 -28.1 -29.8	37 6 14 16 0 0 (73)	84 17 64 70 12 8 (255)	214 sf 65f 203 (482)	Jan. 6	J, M	638 642 642 643	0.949 0.878 0.855 0.783 0.726 0.396 0.857	305.0 290.2 295.5 297.4 18.2 54.9	20.7 12.2 6.9 317.4	+16.2 +16.2 +12.0	(150) 14 76 7 0	(467) 193 310 61 22	142 (859) 392 399 c
2.012 Jan. 3	Ј, М	638 638 638 639 639	0.341	298.4 237.1 336.4 345.1 354.3 130.3 128.2 69.1	24.6 21.7 18.6 342.9 337.2	+15.7	10 20 7 4 0 (41)	17 153 62 9 8 (249)	303 272 115 f 284 (974)	Jan. 7 6.709 I.	J, н	638 642 642 645	0.877	304.5 287.6 292.2 292.9 60.3 53.4	21'9 12'7 7'5 237'1	+ 14.9 + 17.2 + 16.5 + 28.5	(97) 0 38 2 8	(586) 116 250 15 38	159 130 (1417) 392 56 c 165 c 86
2.669 I. Jan. 4	м, н	638 638 638 640	0.386	296·3 243·9 323·5 329·0 334·7 103·8 63·7	18.2	+17.5	16 6 0 0 (22)	62 36 5 7 (110)	289 618	Jan. 8 7'9 ³ 9 I.	м, н	642	0.954 0.954 0.903 0.871 0.865 0.715 0.975	72'0	13°4 356°6	+17'1	(48)	(419) 94 26	330 (1029) 280 98 98 34 63 395 c
3.717 I. Jan. 5	J , н	641 638 638 642 643 643	0.555 0.526 0.422 0.674	304.9 309.0 325.3 57.1 58.8	22.0 19.0 8.5 317.6 314.4	+15.5 +16.6 +18.4	5 22 29 9 5 0 (70)	24 108 100 23 34 17 (306)	716 sp	Jan. 9	Ј, М	646 645 645 647 648 648	0.843 0.914 0.929 0.914 0.765 0.358	239'1 58'2 57'2 288'3	287.5 237.4 232.0	-28·1 +26·7 +28·3 +22·7 +14·9	0 0 11 (36) 14 21	11 15 44 (190) 86 85 19	212 c 126 s (1306) 377 109 c
4·666 I.	м, н	641 638 642 642	0.586	306.0	20.5	+15.0	94 31	30 211 163 24	476 s p	Jan. 13		649	0.572	16.5	234'4 186'3	+28.6	4 44 (87)	382 (592)	445 f 203 (1134)

Group 634. Two spots. The following spot breaks up into two on December 27, the lower portion of which disappears before December 31, and the upper before January 1.

Group 636. An irregular cluster of many very small spots on December 31. These increase somewhat in size until January 2 and 6, after which they rapidly decrease, and the group has nearly disappeared before it reaches the W. limb.

Group 645. One fainty on the first seem on January 1. A second smaller and fainter appears behind it on January 2. Both disappear before January 4.

Group 645. The rest of the group 646. Small spot.

Group 647. Two spots. These both diminsh in size on the following days, the followings spot disappearing before January 7, the preceding before January 8.

Group 645. Two spots. These both diminsh in size on the following favs, the following favs, the following favs, the following favs and the group favored fa

			I.I	Sun's	HELIO	GRAPHIC	Sr	OTS.	FACULÆ.	9.0			ii ii	Sun's	Helio	GRAPHIC	Spo	OTS.	FACULÆ
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 12 ^{d-687} I. Jan. 14 13.701 I. Jan. 15 14.666 I. Jan. 16 15.658 I.	J, H H, JP	647 648 648 648 649 650 650 650 647 648 648 648 650 650 650 650	0.962 0.950 0.857 0.851 0.336 0.338 0.376 0.554	294.7 286.4 299.7 301.4 352.6 599 11.0 1.6 66.4 68.6 121.3 306.4 295.1 299.3 321.0 324.1 330.7 342.5 58.6 59.5 110.2 295.9 304.3 303.4 310.2 46.3 47.9 46.6 295.8 295.8 295.8 295.8 295.8 295.1 295.8	289'3 288'1 238'5 233'8 231'6 234'9 187'1 181'7 286'5 238'5 233'8 233'7 234'2 188'4 185'7 282'5 238'8 237'4 238'8 237'4 238'8 237'4 238'8 237'4 238'7 188'4 7188'4	+22'4 +235 +14'8 +15'0 +28'9 +15'5 +15'5 +15'5 +15'3 +21'1 +24'2 +14'6 +13'3 +14'5 +16'3 +14'5 +16'3 +14'6 +16'3 +14'6 +13'5 +14'6 +13'5 +14'6 +13'5 +14'6 +13'5 +15'0 +	9 0 16 2 0 0 37 0 (64) 0 2 5 3 2 2 19 20 (53) 0 14 3 0 19 7 0 (43)	31 7 54 10 5 19 202 29 (357) 5 18 34 10 8 8 6 87 69 (237) 61 45 78 11 124 19 6 (344) 3 8 8 8 8 8 8 8 8 8 8 8 8 8	90 262 257 nf 718 f 165 (1492) 185 502 p 292 c 159 (1138) 883 p 322 f 246 86 (1537) 367 648 nf	Jan. 18 17.788 I. Jan. 19 18.662 I. Jan. 20 19.970 Jan. 21 20.896 I.	н, јр	648 648 650 650 651 651 651 652 652 653	0.853 0.850 0.819 0.353 0.373 0.556 0.582 0.868 0.932 0.469 0.279 0.276 0.596 0.932 0.946 0.935 0.932 0.946 0.935	290'7 289'1 290'9 347'0 353'4 31'2 34'9 110'1 286'1 287'3 287'1 316'8 321'8 190'3 184'4 6'1 106'5 120'4 285'6 284'6 303'9 224'3 217'5 345'6 107'2 123'5 293'6 321'9 322'3 97'6 239'4 290'1 322'3 397'6 239'4 290'1 322'5 328'1	239.0 239.0 235.4 188.3 186.2 165.4 162.3 240.6 239.8 235.2 188.1 11.65.5 97.4 239.7 239.7 236.2 188.2 172.6 165.3 97.4 188.5 164.7 97.4	+14.7 +13.3 +13.9 +15.0 +16.6 +23.5 +23.5 +13.9 +14.9 +13.9 +15.1 +16.0 -17.2 +14.9 -17.2	16 0 9 3 5 2 (35) 18 11 0 9 0 0 14 (52) 30 41 16 0 0 5 19 (111) 33 5 61 19 (118)	92 25 273 5 97 (213) 158 84 65 81 92 4 16 145 (564) 224 249 85 7 9 85 7 9 10 25 20 10 10 10 10 10 10 10 10 10 10 10 10 10	1143 n 881 (2024) 1966 n 194 f 222 (2382) 2042 n 425 f 288 (2755) 412 n 215 f 143 s 102 (872) 282 991 n

Group 647. A cluster of several irregular spots. The group changes very much on the following days.

Group 648. A dark spot with several faint spots following. The spot undergoes very great changes, diminishing in size to January 15, and then increasing again; the leading spot divides into two portions, and one of the smaller fragments greatly increases in size on January 19.

Group 649. Small faint spot, probably the same group as Group 645.

Group 650. Irregular spot, breaking up into three on January 16.

Group 651. Two small spots, of which the following is only seen on January 18.

Group 652. Two very faint small spots: each divides into two parts on January 19.

Group 654. Two small spots. They break up into several small fragments on January 23, but the parts of the preceding spot coalesce on January 24, and the following spot remains divided into two small portions.

Group 655. Several very small spots. Only one fragment is left on January 23.

N. A.				М	easures	of Positi	ons and	Areas	of Spots an	nd Faculæ	upon	the S	un's Di	sk—con	tinued.				
Partie		14	re in	Sun's	HELIC	GRAPHIC	SP	отв.	FACULÆ.				e in	Sun's	HELIO	ORAPHIC .	Sro	TS.	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude,	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 20 ^d ·896 I. Jan. 22 21·767 I.	н, јр	650 655 653 654 654	0.838 0.891 0.933 0.948 0.963 0.584 0.370 0.476 0.535 0.783 0.807	58.4 114.8 73.5 246.5 288.0 307.3 124.4 141.8 138.5 97.9 57.4	188·2 145·2 97·8 97·2 92·7	+15.7 +15.9 -17.2 -27.1 -28.5	(41) o o 19 8 6	(293) 28 6 164 29 32	345 320 343 (2877) 448 845 nf 72 c	1882. 25 ^d ·662 I. Jan. 27	н, јр	653 659 659 656 657 658 658 658 658	0.889 0.563 0.291 0.291 0.325 0.533 0.721 0.740 0.777 0.824 0.838 0.931 0.941	247'1 247'3 17'3 20'9 26'5 130'4 59'1 62'8 64'0 65'2 62'4 101'1 109'3	98.0 60.2 59.2 56.7 38.6 25.0 22.3 18.8 14.1 13.5	0 -174 +103 + 99 +111 -254 +173 +156 +156 +166 +193	16 2 0 3 2 7 0 28 0	127 4 2 12 8 20 4 227 4 16	1166 82 c 28 c 49 c 963 c 551 46 (2885)
Jan. 23 23.092 Jan. 24	J, M	653 654 654 656	0.854 0.937 0.858 0.204 0.358 0.404 0.877 0.939	72'4 116'3 303'4 175'3 178'6 163'2 115'8 72'9	97'9 98'3 91'3 38'4	-17·3 -26·5 -28·2 -25·2	(33) 62 28 5 20 (115)	(259) 181 51 19 68 (319)	134 473 (2184) 63 316s p 118 (497)	26 [.] 932 Jan. 28	J, M	653 659 656 657 658 658	0·323 0·436 0·539 0·603 0·674	244'1 251'4 325'9 144'0 44'7 53'1 53'2	59.0 32.0 25.2 18.5 13.9	+18.0 +10.1 +12.1	40 17 1 6 42 5 (111)	181 114 6 13 239 16 (569)	288
23·758 I. Jan. 25 24·784	н, јр	654 654 653 656 656 657 658	0.800 0.845 0.943	214'1 199'8 189'2 212'6 117'7 118'3 69'8 71'9	105.5 98.5 93.9 98.2 38.8 34.0 22.8 17.2	-26.0 -26.6 -26.7 -17.6 -25.4 -26.8 +16.9 +15.8	0 0 0 22 5 3 0 0 (30)	7 42 11 86 38 20 27 180 (411)	63 c 150 c (213)	27.679 I. Jan. 29	н, лр	653 660 660 659 659 657 658 658	0.718	253.5 247.8 246.7 243.8 302.9 312.6 28.6 41.6 44.4 52.2 72.0	98.0 83.4 81.9 78.4 62.5 56.6 25.7 18.7 13.8	-17'2 -20'0 -20'4 -21'6 + 9'4 +10'6 +17'4 +16'2 +18'6	14 2 0 0 13 3 1 26 4	71 15 12 3 44 25 9 222 15	779 c 130 c 55 c 157 c 52 c 270 166 (1609)
I. Jan. 26		653 654 654 656 656 656 656 657 658	0.803 0.408 0.485 0.442 0.456 0.665 0.715 0.725 0.835	239.6 238.6 222.3 217.1 211.1 122.5 121.2 121.7 64.7 68.7	98.0 97.9 93.9 92.2 38.5 34.0 33.3 24.6 18.8	+17.4	12 2 0 0 3 0 6 4 21 (48)	141 12 4 7 18 9 11 18 206 (426)	163 n (452)	30·944 Feb. 1	J, M	659 658 661 662 662	o-996 o-954 o-939 o-530 o-194 o-799 o-834 o-965	248.6 260.7 282.6 314.8 253.7 60.3 61.2 101.6	63·7 18·6 6·4 308·5 304·8	+ 9°5 + 16°2 - 9°2 + 19°8	20 52 0 26 0 (98)	88 272 16 94 12 (482)	216 94 483 f 629 f 137 (1559)

Group 650. Irregular spot, breaking up into three on January 16. The following portions are much smaller than the preceding, and disappear before January 20.

Group 653. Small regular spot.

Group 654. Two small spots. They break up into several small fragments on January 23, but the parts of the preceding spot coalesce on January 24, and the following spot remains divided into two small portions.

Group 655. Several very small spots. Only one fragment is left on January 23.

Group 656. Two small spots; both gradually diminish in size, and the following spot disappears before January 27.

Group 658. Regular spot. Several small spots break out in its neighbourhood on January 27.

Group 659. Three or feur very small spots, arranged in a straight line.

Group 660. Several very small spots, arranged in three close and small clusters.

Group 661. Two small spots, with a very small one near it on February 1 and 2.

1882 1, 17 1882 1,				E.	Sam's	Heriod	RAPHIC	Spe	ors.	FACULÆ.		18	-	ii i	Sun's	Неплос	BEAPHIC	Sro	TS.	FACULE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean Solar	Measurers.	No. of Group.		Angle from	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Mean Solar	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Angle from	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
Feb. 2 32'987 J. M. 664 0'888 101'9 0'903 127'3 32'987 J. M. 6793 127'3 6794 284'6 6795 294'7 6794 284'6 6795 294'7 6794 284'6 6795 294'7	31 ^d ·662	н, јр	658 658 661 661 662 662	0.862 0.983 0.646 0.637 0.386 0.341 0.701 0.739	327.8 244.0 281.5 302.1 304.8 262.4 258.9 54.5 55.9	64'1 20'6 19'1 8'9 5'9 309'2 305'8	+10·1 +14·9 +16·1 - 8·7 - 9·6 +19·0	3 45 0 0 13 1	56 331 10 4 43 5	642 605 f 194 c	34 ^d ·688	н, јр	664 666 666 667 667 668	0.476 0.815 0.850 0.895 0.925 0.952	106·9 110·1 68·7 70·1 72·1 71·6 78·5	279°2 278°7 255°1 251°2 241°5 235°7	-13.4 -15.1 +13.2 +13.2 +12.9 +14.3 + 8.8	0 6 0 6 11	7 10 7 20 49 52	897 c 348 c (2845)
658 0*819 294*9 192 +16*2 79 409 944 ¢ 666 0*249 124*0 281*3 -14*4 8 48 48 666 0*259 373*3 3090 +18*9 5 33 0*296 73*2 281*3 0*296 73*2 281*3 0*396 73*2 2790*0 -15*0 0 9 9 25 0*396 73*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 281*3 0*396 74*2 0*3	Feb. 2			0.888	127.3			0	13	86 (3013)		н, јр	665 664	o.856 o.142	256·9 254·4 145·3	352.7	-16·7 -13·3	2	69	606 339 n 51 c
I.		J, M	665 662	0.819 0.404 0.529 0.735 0.796	294'9 237'8 37'3 102'4 51'3	349°7 309°0	+18.3 -18.3	5 12	17 33 67	944 c 215 c 460 446			664 664 666 666 666 667	0.249 0.276 0.287 0.680 0.723 0.635 0.826	124.0 117.3 122.0 61.8 65.1 62.4 67.7	281·3 279·0 255·6 251·4 248·6 241·8	-14.4 -13.6 +13.6 +12.9 +11.7 +14.3	8 3 0 9 3 22 3	48 43 9 25 7 46	210 6
662 0.451 21.9 30.92 +18.3 2 14 0.956 10.43 285.7 -13.3 2 13 0.64 0.958 10.42 282.2 -13.4 4 9 9 122.6 664 0.604 10.40 282.5 -13.6 1 186 122.6 664 0.604 10.40 10.40 282.5 -13.6 1 186 122.6 664 0.604 10.40 10.40 282.5 -13.6 1 186 122.6 664 0.604 10.604 10.40 282.5 -13.6 1 186 122.6 664 0.604 10.604 10.603 279.8 -13.4 12 77 664 0.604 0.604 10.603 279.8 -13.4 12 77 664 0.604 0.605 10.602 278.7 -15.4 0 4 664 0.605 10.602 278.7 -15.4 0 4 665 0.944 74.2 251.1 1.2.6 0 44 667 0.986 74.6 667 0.986 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 667 0.88 74.6 668 0.88 74.6 74.6 74.6 74.6 74.6 74.6 74.6 74.6		н, јр		o.858 o.858	244.7 301.2 291.8					359 418			668	0.878	78.0 76.4	233.8	+ 7.3	0	3 52	398 (2257)
Feb. 4 34:688 II. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			662 664 664 664 664 664	0.451 0.560 0.581 0.604 0.643 0.640 0.657	21'9 104'3 104'2 104'0 108'8 103'3 106'2	309'2 285'7 284'2 282'5 280'1 279'8 278'7	+ 18·3 - 13·3 - 13·4 - 13·4 - 15·4	2 2 4 1 0 12	14 13 9 186 4 77 4	122 C	20000	н, јр	664 664 664 664	0.950 0.227 0.132 0.132 0.130	304'4 237'7 233'5 230'2 221'2 183'4 200'0	288·5 286·4 283·7 282·1 281·4	-13.6 -12.8 -13.7 -13.9	8 10 1 0	65 64 45 29	355 154
I.				o·986 o·786 o·854	74.6 47.0 56.6			0	84	336 238 (3102)	Trate -		666 667 668	0.678	48.6 60.3 71.7	255·2 241·3 237·2	+13·9 +14·5 + 7·7	0 0 13 9	7 11 83 121	79
664 0.380 107.9 284.5 -12.7 6 41 0.784 302.5 664 0.429 252.2 289.5 -13.6 51 343		H, JP	665 662 664	0.968 0.716 0.429 0.337	288.2 252.2 353.2 110.6	351·5 309·3	-12.8 +18.7 -12.8	0 0	16 6 57	585 e	37.835			0'949 0'941 0'784	262.9					(679) 268 93 68 94

Group 658. Regular spot. Several small spots break out in its neighbourhood on January 27.

Group 659. Three or four very small spots, arranged in a straight line.

Group 662. A small spot, with a very small one near it on February 1 and 2.

Group 664. One very small faint spot when first seen on the E. limb on February 2. The group rapidly increases in size, expanding into a long line of spots, of which the preceding one is the largest. The group undergoes constant change, and is largest shortly after passing the central meridian.

Group 666. A small spot on February 4. The spot somewhat increases in size on February 5 and 6, and several small spots form behind it. The group undergoes constant change, and is largest shortly after passing the central meridian.

Group 667. One spot, which slowly diminishes until its disappearance on February 10.

Group 668. Three spots. The middle spot disappears before February 7, and the other spots increase somewhat in size, the preceding spot becoming eventually the larger.

			e in	Sun's	HELI	OGKAPHIC	Si	ors.	FACULE.				.E	Sun's	HELIO	GRAPHIC	SP	OTS.	FACULA
Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radins.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 37 ^d ·835 I.	н, др	664 664 666 666 669 669 667 668 668	0°304 0°270 0°311 0°340 0°380 0°333 0°376 0°521 0°502 0°608 0°940	244.3 240.5 13.9 17.1 20.5 140.5 138.8 48.0 63.4 66.2 49.7	281°11 278°8 260°5 259°0 256°9 251°7 249°3 241°3 238°0 230°7	0. -13·9 -14·0 +11·0 +12·3 +14·3 -21·2 -22·8 +14·3 + 7·0 + 8·8	22 0 9 2 0 0 0 0 14 14 (114)	159 19 28 28 25 5 5 4 81 61 (824)	99 c 78 c 305 (1124)	1882. 42 ^d ·015	J, M	666 668 671 671 670 670 670 672 672		289'4 305'2 179'3 167'3 156'4 64'0 66'8 67'9 106'8 108'9 109'3 58'5	261·2 231·1 209·7 207·3 205·0 174·3 171·4 166·7 136·6 135·2 129·4	0 +11°5 + 8°4 -18°0 -17°5 -17°2 +10°6 + 9°9 +10°9 -18°1 -20°0 -20°3	0 2 11 3 24 71 5 79 39 0	14 9 67 17 58 204 17 350 190 60 174	483 c 312
39 [.] 974	J, M	664 664 664 666 666 667 668 668 670 670	0.888 0.814 0.742 0.711 0.687 0.684 0.513 0.474 0.369 0.250 0.281 0.905 0.950 0.831 0.888	297.5 256.8 258.3 259.9 258.4 256.0 307.9 315.6 344.6 351.6 21.2 73.9 76.1 57.6 64.7	291°5 284°8 282°2 280°2 279°8 261°1 256°5 242°5 238°8 174°4 167°0	-14·6 -13·2 -11·9 -12·8 -14·4 +12·3 +13·4 +14·1 + 7·6 + 8·5 +11·5 +10·9	57 8 6 8 0 25 22 38 24	393 30 32 44 34 77 47 47 4 143 80 214 330	520 e 243 180 (1530)	Feb. 12 42.643 I.	н, јр	668 668 673 671 671 674 670 670 670	0'982 0'951 0'817 0'680 0'652 0'641 0'245 0'192 0'212 0'212 0'209 0'526 0'588 0'635 0'640	256·5 301·9 293·7 293·0 290·3 305·1 216·6 211·6 197·2 11·3 12·5 56·8 61·5 60·8 64·5	240.8 239.4 234.4 210.3 208.3 204.9 198.9 175.0 169.9 167.1 165.7	+10°2 + 7°7 +15°9 -18°0 -17°5 -17°2 + 5°2 + 5°0 +10°5 +10°5 +10°5 +10°5	(269) 0 7 0 8 5 8 2 0 21 10 10 18	5 72 7 26 144 106 5 4 120 71 68 134	(2409) 1263 387 734 156 c 14 c 65 c
40'974	J, M	664 664 666 666 668 668 671 671	0.923 0.933 0.859 0.677 0.623 0.360 0.289 0.322 0.355	298·2 257·3 258·7 297·1 302·6 313·0 333·2 126·8 122·7	293.2 283.3 261.6 256.2 238.9 231.1 208.0 205.4	-14'3 -13'2 +12'6 +13'8 + 7'6 + 8'2 -17'7 -17'5	80 0 9 2 27 17 4	416 83 34 18 129 50 9	509 1074 c	Feb. 13 43'952	J, M	675 675 675 672 672 672 678	0.782 0.806 0.812 0.896 0.910 0.945	54.6 53.4 54.9 107.4 109.3 109.8 283.4 285.9	158·2 156·6 155·4 137·3 135·4 129·7 239·8 213·4	+ 22'0 + 24'0 + 23'2 - 18'6 - 20'4 - 20'9 + 7'4 + 1'9	0 0 18 3 8 (118)	12 10 7 87 32 132 (1042) 113 32	224,f 745 s (3811) 1195 n
Feb. 11 42°015	J, M	670 670 670 670	0.333 0.797 0.821 0.868 0.897	70.8 73.1 73.3 60.8 301.9 256.8	173.8 170.9 166.0	-17-5 +10-8 + 9-7 +10-9	73 16 45 (273)	4 205 60 348 (1356)	445 c 278 (2306) 230 1051 f			676 671 671 670 670 670 675	0.367 0.444 0.468 0.378 0.336 0.383 0.438 0.621 0.673	288.0 244.2 241.0 27.9 39.5 45.5 41.4 41.4	209°2 210°5 204°4 175°2 170°0 165°8 158°8 155°8	+ 19 + 1.6 -17.9 -17.0 +10.4 +10.4 +11.3 +21.5 +24.2	7 0 14 57 9 51	12 20 51 200 28 225 7	

Group 664. One very small faint spot when first seen on the E. limb on February 2. The group rapidly increases in size, expanding into a long line of spots, of which the preceding one is the largest. The group undergoes constant change, and is largest shortly after passing the central meridian.

Group 666. A small spot on February 4. The spot somewhat increases in size on February 5 and 6, and several small spots form behind it. The group undergoes constant change, and is largest shortly after passing the central meridian.

Group 667. One spot, which slowly diminishes until its disappearance on February 10.

Group 668. Three spots. The middle spot disappears before February 7, and the other spots increase somewhat in size, the preceding spot becoming eventually the larger.

Group 669. Two very small spots.

Group 669. Two very small spots.

Group 669. Two small spots. Some very small spots appear between them on February 12. The members of the group increase in size until the central meridian is passed.

Group 671. A small spots. Some very small spots appear between them on February 12.

Group 672. A small spots.

Group 673. A small spots.

Group 674. Two small spots.

Group 675. A cluster of very small spots.

Group 675. A cluster of very small spots.

Group 675. A cluster of very small spots.

Group 676. Two small spots.

Group 677. Two small spots.

Group 678. Two small spots.

Group 679. A cluster of very small spots.

A H			.8	Sun's	HELIO	BAPHIC	Spe	ors.	FACULE.			311	.H	Sum's	HELIOG	RAPHIC	Spo	TS.	FACULÆ.
Greenwich Mean Solar Time.	Measurers,	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 43 ^d ·952 Feb. 14	J, M	672 672 672	0.761 0.759 0.805	100.9 100.0 110.8	0 135·2 134·9 130·8	-20°3 -16°6 -19°8	6 0 9 (218)	31 30 97 (1024)	(1195)	1882. 47 ^d ·083	J, M	677 677 678 678	0.632 0.676 0.719 0.754 0.903	0 110'9 108'5 109'8 111'8	0 104.6 100.9 97.5 94.7	0 -18.6 -17.6 -19.0 -20.9	7 14 1 2	27 41 13 23	280 a 187
44'997 Feb. 15 45'940	J, M	668 676 676 670 670 670 672 672 672 672 677 678	0.418 0.418 0.418	280°1 280°0 249°2 353°8 133°3 22°0 113°7 110°5 115°2 114°0 107°0 108°9 287°9 277°0 277°8 307°1 252°9 314°5	239'4 215'1 210'2 203'7 175'4 172'3 166'2 158'2 137'8 134'8 135'5 130'4 104'2 96'4 215'7 210'2 196'8 203'6 175'7	+ 7°1 + 2°3 + 1°9 - 17°3 + 1°6 + 1°0 + 1°1 - 18°9 - 17°7 - 2°°4 - 2°°9 - 18°3 - 2°°1 + 2°3 + 1°9 + 2°9 - 17°1 + 1°3	12 24 12 10 39 0 23 0 49 20 0 6 19 (216)	74 151 60 54 208 5 159 6 170 114 8 8 37 54 15 (1115)	451 c (1072) 523 304 c 127 nf 174 s p	Feb. 17 47'993	J, M	676 680 670 681 675 672 677 677 678 682 683	0.844 0.747 0.644 0.557 0.628 0.237 0.233 0.475 0.511 0.564 0.610 0.918	253·7 278·8 272·4 293·9 290·5 297·7 251·8 319·5 218·6 208·8 116·2 112·3 116·3 63·6 102·3 122·8 107·9 71·7	69.7 51.0	+10·3 +11·7 -15·9 +22·2 -17·5 -18·7 -18·3 -17·2 -18·3 -21·4 +20·8	(239) 30 1 25 12 2 7 0 47 0 17 2 2 0 0 (145)	(838) 94 8 118 41 10 45 5 233 8 75 9 7 10 32 (695)	304 107 586 np 956 c
Feb. 16		670 675 672 672 672 672 677 677 678	0'483 0'368 0'392 0'428 0'524 0'801 0'832	336.4 358.4 119.8 123.1 116.7 119.7 107.9 106.9	166·1 159·3 138·7 137·9 134·6 129·0 104·8 101·5 95·0	+11.3 +21.7 -17.1 -18.9 -17.5 -21.5 -18.5 -18.0 -20.9	18 0 1 47 4 1 18 3 9 (193)	110 3 - 8 187 23 - 8 68 14 46 (1014)	646 c	49°078 Feb. 19	J, M	670 672 677 678	o.402 o.303 o.386 o.886 o.934	309°2 285°8 238°1 128°3 124°7 67°7 102°7	176·8 137·9 102·4 97·2	-18·9 -17·7 -19·3	17 38 18 0	71 191 46 27 (335)	70 429 (897)
47'083	J, M	676 676 671 670 670 675 672 672	0.929 0.868 0.606 0.499 0.542 0.223	280·8 274·6 274·0 254·5 297·3 308·7 336·9 157·6 142·8	217'1 210'7 203'7 176'0 166'3 156'3 137'9 134'9	+11.7	84 11 0 37 17 1 65	210 53 10 141 49 24 238 9	130 347 c 190 s p	49.764 I. Feb. 20	н, л	670 672 672 677 677 678 678 683	0.512 0.408 0.213 0.187 0.302	283·8 245·0 237·4 150·8 144·3 138·9 139·1 101·6 52·3	137.0 129.1 101.6 101.3 97.9 95.7 50.1	-18.7 -19.3 -17.8	9 19 0 7 0 0 0 0	74 164 11 61 20 11 16 39 (396)	628 e 117 (1783)

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 668. Three spots. The middle spot disappears before February 7, and the other spots increase somewhat in size, the preceding spot becoming eventually the larger. Group 670. A fine group, consisting of a number of spots arranged in three clusters in a straight line. The middle portion disappears before February 15. The group decreases after passing the central meridian, the preceding spot less rapidly than the others.

Group 671. Two small spots. Some very small spots appear between them on February 12. The members of the group increase in size until the central meridian is passed, and then diminish rapidly.

Group 672. A small regular spot, followed by a number of small spots, which, however, disappear soon after the central meridian is passed.

Group 673. A cluster of very small spots.

Group 676. Two small spots.

Group 676. Two small spots.

Group 677. An irregular spot, with several small spots near it.

Group 680. A small spot.

Group 681. Two small spots.

Group 682. A small spot.

Group 683. Several small spots. The group is not seen on February 19.

	-19		s. in	Sun's	Helio	GRAPHIC	Spe	ots.	FACULÆ.	-17-5			e in	Sun's	HELIO	PRAPHIC	Src	ors.	FACULÆ.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers,	No. of Group,	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 51 ^d ·912 Feb. 22	Ј, М	672 677 678 683 684 685	0.982 0.857 0.418 0.384 0.481 0.877 0.958 0.909	296.4 253.1 242.4 233.4 105.3 103.1 101.4 65.9	138·8 102·2 98·5 51·0 17·5 5·1	0 -18·1 -17·7 -19·9 -13·6 -13·6	43 45 14 8 10 28 (148)	195 147 50 32 27 86 (537)	180 299 c 467 c 731 (1677)	1882. 56 ^d ·933 Feb. 27 57·773	Ј , М	685 687	0°159 0°983 0°933 0°945 0°911 0°764 0°131	236·2 251·4 259·1 215·8	6.3 292.6	-13·1 -14·0	11 65 (76)	45 207 (259)	228 c 274 (1236) 63 132 146
52.787 I.	н, јр	672 677 678 683 684	0.936 0.560 0.537 0.275 0.759	252°9 249°0 243°7 114°8 103°4	138:3 101:0 98:6 53:1 18:3	-18.6 -17.6 -20.0 -13.6 -14.9	28 4 6 2	144 100 53 21 8	724 c	Feb. 28 58.944	J, M	688 687	0.242 0.930 0.949	142.9 59.5 251.7	353·5 293·1	-13·7	63)	13 154 (188)	558 s j 603 (1502) 262
Feb. 23 53.675	н, јр	685 672 677	0.874 0.907 0.985 0.717	252°2 252°0	137.9	-12'4 -18'7 -17'9	(59) 36 9	(370) 109 86	480 sf 524 (1815) 675 c	Mar. 1		687	o.864 o.863 o.883	296·2 258·4 101·5 60·4	293.0	- 13 5	46 (46)	227	68 369 479 8, 451 (1629)
I. Feb. 24		678 683 683 683 684 685	0.671 0.096 0.125 0.107 0.616 0.765 0.886	247.8 156.9 152.6 172.4 104.9 100.1 57.0	97'4 54'0 52'8 47'9 18'3 6'0	-20°1 -12°3 -13°6 -13°3 -14°9 -12°4	9 4 0 2 6 0 11 (68)	41 7 12 19 6 66 (346)	849 c 42 c 660 f 801 (3027)	59*897 Mar. 2	Ј, М	687 687 687	0.952 0.795 0.612 0.650 0.656 0.799 0.941 0.953	256·2 297·8 99·1 98·8 102·1 53·0 72·6 58·6	296.4 293.5 293.5		3 17 44 (64)	23 72 233	363 448 285 420 372 (1888)
54.711 I. Feb. 25	н, јр	677 678 683 683 684 685	0.856 0.819 0.233 0.235 0.206 0.419 0.597 0.936	253.0 249.8 247.4 239.4 240.2 110.0 101.2 51.3	101'9 97'5 55:3 54:6 53:1 18:7 5:9	-18·3 -20·6 -12·1 -13·9 -14·8 -12·5	8 0 2 0 0 8	55 8 15. 7 18 6 65 (174)	499 P 88 c 117 (704)	61.110	J, M	689 687 687 687	0.898 0.857 0.410 0.359 0.420 0.432 0.854 0.879	300°1 255°7 50°5 104°7 101°6 106°5 47°2 68°4	299.8 297.7 295.1 293.3	-12.0 -13.2	o 15 36 47	36 82 175 215	661 202
56.022 Feb. 26	Ј, М	684 685	0°945 0°177 0°342	251°0 137°7 107°4	18·3 5·8	-14.6 -12.7	2 10 (12)	3 69 (72)	986	Mar. 3	J, M	60.	0.881	300·3 256·5	2,6,5		(98)	(508)	228 (1760) 597 334
56·g33	Ј, М	686	o·986 o·852 o·784	247'9 252'7 305'4	56.6	+21.8	0	7	430 199 105 e			689* 689 687 687		263·3 21·2 124·5 110·3	346.6 300.0 299.0 294.7	- 9'9 + 8'1 -12'0 -11'3	2 12 26 36	12 41 92 204	

Group 672. A small regular spot, followed by a number of small ones, which, however, disappear soon after the central meridian is passed.

Group 673. An irregular spot, with several small ones near it.

Group 683. Several small spots.

Group 684. A small spot.

Group 685. A spot which slowly divides into two portions about February 27.

Group 685. A spot which slowly divides into two portions about February 27.

Group 686. Two very small spots.

Group 687. A regular spot. Another spot breaks out to the north of it, and some small spots appear before it on March 2. The group undergoes several changes during its course.

Group 689. Two small spots.

Group 689. Two small spots.

			.E	Sun's	Herro	RAPHIC	Sro	TS.	FACULE.		7		且	Sun's	Неплос	RAPHIC	Sron	rs.	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Su Axis.	Longitude.	Latitude,	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 62 ^d ·044 Mar. 4 62·711 I. Mar. 5 63·701 I. Mar. 6 64·791 I.	J, М Н, ЈР	687 687 687 687 687 687 687 687 687 687	0'245 0'781 0'898 0'947 0'947 0'120 0'091 0'083 0'134 0'887 0'976 0'133 0'177 0'7893 0'820 0'977 0'568 0'412 0'755	297.0 258.3 348.4 227.2 210.0 147.2 150.3 88.2 254.8 249.0 232.0 57.1 86.7 61.2 260.7 259.5 251.3 84.3	300.6 300.6 302.4 300.0 294.7 293.4 240.2 220.2 302.6 294.6 293.2 240.5 221.4	-13.7 + 9.1 -11.9 -11.7 -11.2 -13.9 +19.7 + 0.1 -11.7 -11.0 -13.9 +19.8 - 0.4 -12.1 -11.0 -14.2 - 0.5	60 (136) 0 0 16 15 22 0 89 (142) 8 15 20 0 41 (84) 14 12 21 42 (89)	205 (554) 54 55 61 87 157 14 182 (560) 62 142 161 9 226 (600) 67 115 165 290 (637)	202 425 (1558) 215 85 85 83 e 120 e 339 e 676 e 378 e (1896) 69 e 92 e 131 e 24 e 399 e 151 (848) 94 72 e 104 e 485 f (755)	1882. 66 ^d ·805 I. Mar. 9 67·697 I.	н, јр	692 696 693 693 694 694 695 687 687 687 693 693 693 694 694 695	0'709 0'283 0'248 0'211 0'668 0'731	254·3 254·0 262·6 322·6 73·5 102·4 102·6 76·1 305·3 257·9 261·1 256·9 310·3 314·0 224·6 57·8 97·9 103·7 103·5 72·6	265·2 244·9 242·0 221·3 190·3 184·4 183·1	+23.5 -17.1 -17.2 - 0.7 - 8.8 -14.5 -14.8	4 7 0 12 6 51 8 0 0 (164) 0 7 22 20 4 7 19 6 8 8 47 0 16 0 16 16 0 16 16 17 19 19 19 19 19 19 19 19 19 19 19 19 19	29 20 9 42 33 299 58 15 33 (941) 15 61 106 101 16 33 56 96 37 39 276 6 54 20 14	171 c 146 c 395 c 880 f (3458) 849 435 1682 c 237 110 c 305 c 118 c 226 c 407 c 1193 n 95 (5657)
65.687 I. Mar. 8 66.805 I.	н, је	687 687 687 692 693 693 693 694 695	0.533 0.610 0.924 0.985 0.872 0.883 0.805	294°2 305°7 258°6 260°7 258°6	297.3	-15.7 +23.4 +24.0 - 0.9 -14.7 + 8.5 -13.4 -11.8 -13.8	14	85 205 133 8 17 21 7 285 18 20 (799)	134 c 425 f 854 n (1765) 62 707	68·672 I.	н, ле	687 687 692 692 693 693 697 691 694 694	0.958 0.903 0.868 0.834 0.861 0.811 0.417 0.126 0.495 0.556	316·2 293·7 257·3 260·1 256·4 255·6 257·2 305·3 249·6 242·6 334·6 105·6 104·6	293·5 292·8 284·6 279·5 275·7 270·9 264·4 3246·6 221·8 185·2 185·2 183·8	-11.5 -15.3 -15.8 -14.7 +23.0 +23.1 -15.9 -17.6 - 0.7 -13.9 -14.1 + 9.9	12 2 0 2 23 10 19 16 56 16 0	161 76 19 24 23 112 52 190 114 266 46 9 51 179 (1322	688 115 149 949 6 779 6 299 6 322 6 147 6 102 6 735 J 464 6 (4749)

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facular relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 687. A regular spot. Another spot breaks out to the north of it, and some small spots appear before it on March 2. The group undergoes several changes during its course.

Group 689. Two small spots.

Group 691. A regular spot.

Group 693. A number of small spots.

Group 693. A number of small spots.

Group 694. Two small spots in a straight line. The preceding spot increases in size.

Group 695. A very small spots. The preceding spot increases in size, and the following spot diminishes.

Group 695. A very small spot. It greatly increases in size, and other small spots appear behind it.

Group 697. A number of small spots arranged in two straight lines at right angles to the Sun's Equator on March 10. The group alters its shape, forming one straight line nearly parallel to the Sun's Equator on March 11. The first and last spots are then the largest. The intermediate spots disappear on March 12.

Group 698. Two very small spots.

Group 699. A small regular spot, followed by several smaller spots. It becomes a large irregular cluster of many spots on March 17, quite unlike its appearance on March 16.

			H.	Sun's	HELIO	GRAPHIC	Spe	ors.	FACULÆ.				ii	Sun's	Herro	GRAPHIC	Src	тв.	FACULE.
Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Area of UMBHA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 69 ^d ·756 I. Mar. 12 71:051	н, јр	693 693 697 697 691 694 695 695	0°960 0°779 0°956 0°914 0°684 0°611 0°322 0°285 0°413 0°464 0°797 0°885 0°929	254-6 300-1 297-4 299-9 256-0 251-2 290-0 116-6 46-5 55-4 106-1 68-7 57-8 65-6	271.7 264.1 247.6 241.5 221.9 189.2 186.8 181.8 136.0	+23.4 +23.6 -14.9 -17.1 - 0.6 -14.3 + 9.6 + 8.6 -17.6	17 0 30 14 49 8 16 2 18		856 200 1009 e 156 e 192 e 121 e 113 e 800 s p 221 92 173 (3933)	1882. 73 ^d ·071 Mar. 15 73·900	J, M	699 699 701 702 691 695 695 695 699 699	0°460 0°527 0°576 0°684 0°991 0°823 0°961 0°653 0°683 0°660 0°630 0°297 0°316 0°384 0°426	311'1 271'8 255'2 291'3 293'9 138'7 1293 118'2 119'3	223·3 190·3 190·3 190·3 190·3 189·6 187·2 185·2 137·7 134·8 129·1 126·7	-14.8 + 8.9 + 10.2 + 9.0 -19.8 -18.4 -17.1 -18.6	13 6 0 3 75 (203) 55 4 6 9 0 20 0 +	134 22 10 11 312 (956) 260 11 12 84 1 6 108 17 12	509 p (1192) 98 244 n,j
Mar. 13		697 697 691 694 695 700 699 699	0.868 0.812 0.582 0.133 0.284 0.280 0.596 0.790 0.826 0.801	257.4 254.7 279.5 193.1 358.9 22.1 59.0 107.7 105.1 59.5	248·2 242·0 222·3 189·2 187·7 181·3 156·1 135·1 131·4	-14·5 -16·6 - 0·4 -14·6 + 9·2 + 7·8 +11·7 -18·4 -16·5	68 21 86 10 55 4 0 50 0	260 114 296 69 196 16 8 150 17 (1126)	231 sf 131 (1450)	Mar. 16 75'113 Mar. 17	J, M	701 701 702 702 695 699 702	0.547 0.607 0.953 0.975 0.831 0.224 0.846	42'1 46'9 111'8 110'8 287'1 187'5 112'9	127°2 122°0 76°1 71°0 187°3 135°5 76°0	-22'9 -21'8 +10'0 -19'8	0 89 0 (187) 10 26 66 (102)	4 5 305 20 (844) 22 186 282 (490)	897 p (1239)
71°901	Ј, М	697 697 691 694 695 699 699 701	0'900 0'952 0'909 0'730 0'260 0'343 0'664 0'715 0'761 0'841 0'950	289.6 257.2 255.3 276.2 239.3 325.3 109.3 106.3 107.9 63.9 108.3	249'1 242'2 222'4 189'4 187'5 135'0 130'5 126'7 124'0	-14·3 -16·3 - 0·4 -14·5 + 9·4 -18·1 -16·4 -18·2 +17·4	99 30 108 10 50 36 0	344 62 303 51 185 148 45 25 25 (1188)	250 450 e 259 e 478 e 121 e 275 (1833)	75-988 Mar. 18 77-017 Mar. 19	J, M	699 702 702 699 703 703 702 702	0.733 0.767 0.477 0.045 0.065 0.582	286.6 225.9 115.0 114.4 242.8 309.7 72.8 120.3 117.5	135·7 76·2 72·9 135·2 110·6 105·0 75·7 72·5	-23.2 -18.9 - 5.4 - 5.9 - 22.9	26 92 0 (118) 14 0 10 68 3 (95)	165 288 54 (507) 129 35 25 296 19 (504)	329 f (769)
73'071	J, M	697 691 694 695 695	0'944 0'985 0'886 0'494 0'542 0'523	294°4 255°0 273°3 252°6 298°8 302°5	242°1 222°7 189°3 187°2	-16.0 - 0.4 -14.7 + 8.9 + 9.9	0 75 10 0 21	42 317 29 10 69	205 182 c 296 n.f	77*900	J, M	704 704 699 703 703 702	0.886 0.627 0.278 0.138	286.6 294.3 298.5 248.9 275.1 275.3 130.0	158:5 153:4 134:9 113:1 104:9 75:9	+18.9 +21.2 -6.2 -6.4 -6.4	17 44 40 11 11 60	51 151 185 69 111 296	190

Group 691. A regular spot.

Group 693. A number of small spots in a straight line. The preceding spot increases in size.

Group 694. Two small spots. The preceding spot increases in size, and the following spot diminishes.

Group 695. A very small spot. It greatly increases in size, and other small spots appear behind it.

Group 697. A number of small spots arranged in two straight lines at right angles to the Sun's Equator on March 10. The group alters its shape, forming one straight line nearly parallel to the Sun's Equator on March 11. The first and last spots are then the largest. The intermediate spots disappear on March 12.

Group 699. A small regular spot, followed by several smaller spots. It becomes a large irregular cluster of many spots on March 17, quite unlike its appearance on March 16.

Group 700. A small spot.

Group 702. A large regular spot, with several small spots close behind it. One of foci sheef finally becomes nearly as large as the first spot.

Group 703. Two spots. These spots become much larger, and several smaller spots appear between and around them on March 21 and following days.

Group 704. Two spots, and two or three small markings near them.

			E.	Sun's	HELIO	GRAPHIC	SP	ors.	FACULÆ.	144			H H	Sun's	Helio	PRAPHIC	Spo	TS.	FACULÆ.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 77 ^d ·900 Mar. 20	J, M	702 702	o·463 o·508 o·965 o·969 o·988	° 124.4 122.5 63.6 108.5 75.5	72.9 69.6	-21.5 -22.0	18 8	78 46 (987)	403 198 273 (1064)	1882. 80 ^d ·995	J, M	708 702 702 702 709 707 705	0.635 0.411 0.375 0.349 0.353 0.348 0.806	253:6 227:9 227:7 223:6 17:1 134:9 98:2	95.3 75.4 73.4 71.1 50.1 41.0 2.2	0 -15.7 -22.5 -21.1 -21.3 +12.8 -20.9 -10.7	11 69 22 0 7 8	20 319 112 51 19 33 462	608 f
78·976 Mar, 21	J, M	704 699 699 703 703 703 702 702 702 705	0.966 0.822 0.770 0.769 0.524 0.452 0.368 0.361 0.363 0.364 0.987 0.885 0.911	294'9 251'6 253'5 250'8 271'9 274'8 269'3 156'5 148'0 141'7 99'3 108'4 58'8 71'5	153·3 138·2 133·1 132·8 114·4 109·7 105·6 104·4 75·4 72·9 70·0 1·2	+21'8 -19'0 -17'1 -19'1 -5'4 -6'2 -22'8 -21'7 -21'9 -10'3	35 7 10 5 26 7 6 33 68 40 6 6 6 6 0	174 33 27 53 155 30 33 191 303 158 149 361	426 c 97 777 434 (2738)	Mar. 23 81°851 I.	н, јр	703 708 708 702 702 702 709 709 709	0.734 0.923 0.932 0.855 0.785 0.722 0.547 0.504 0.349 0.330 0.245	267'4 266'8 255'6 253'1 239'2 237'5 339'4 350'2 166'4 97'7 71'2	113·9 103·9 96·9 91·9 91·0 52·2 48·3 41·5 2·6	- 4'9 - 6'3 - 15'5 - 16'9 - 22'2 - 20'9 + 12'3 + 12'1 - 20'5 - 10'2	(357) 29 17 7 4 40 21 9 1 6 0 46 (180)	(1673) 269 90 36 11 247 155 48 20 43 9 364 (1292)	304 161 (2189) 1063 c 289 p 260 c 126 c 76 (2064)
79'916 Mar. 22	J, M	699 703 703 703 703 706 702 702 707 705	0°278 0°251 0°532	293'9 296'9 253'7 270'2 270'7 268'9 271'7 268'5 220'9 195'4 175'6 117'4 98'4 110'0 62'0 63'2	133.6 114.3 110.6 106.0 106.0 104.8 76.7 75.0 69.2 40.3 0.6	-17'7 - 4'9 - 4'9 - 6'0 - 4'7 - 6'1 -14'0 -22'4 -21'3 -20'1 -10'3	5 72 21 5 1 48 0 112 6 3 103	45 317 53 29 25 188 9 456 17 12 615	792 f 146 902 286 (2878)	82:918 Mar. 25	J, М	703 708 702 702 702 709 709 707 710 705 705	0°959 0°912 0°718 0°687 0°662 0°482 0°430 0°298 0°490 0°471 0°515	265·8 266·1 257·1 245·7 246·8 244·0 310·7 316·3 216·1 20·6 99·0 102·0 98·7 102·9	112.6 104.6 97.3 75.5 73.1 70.6 69.5 52.6 48.4 41.6 20.2 2.7 7.359.9 354.0	- 5.7 -14.6 -22.0 -20.8 -22.1 -19.8 +12.0 +11.6 -20.6 +20.6 -10.3 -12.0	42 27 28 65 53 15 0 19 21 2 9 84 5 0	196 104 55 323 202 60 10 40 77 9 10 395 20 6	673 c 424 s
80.995	J, M	703 703 703 703	o.818	254.2 251.6 265.9 268.7 268.7 267.8	114.9 114.8 111.2	- 7'1 - 4'7 - 5'1 - 6'3	0 83 0 57	25 354 54 224	518 143 455 c	83.997	Ј, М	708 702 702 702 709 709	0.645	256:3 248:8 250:2 247:4 296:5 299:6	97.9 75.7 73.0 70.6 52.5 48.9	-22°2 +11°3	14 61 40 0 32 37	172 305 318 19 187 180	300 s

Group 699. A small regular spot, followed by several smaller spots. It becomes a large irregular cluster of many spots on March 17, quite unlike its appearance on March 16.

Group 702. A small spot.

Group 703. A large regular spot, with several small spots close behind it. One of these finally becomes nearly as large as the first spot.

Group 703. Two spots, and two or three small markings near them.

Group 704. Two spots, and two or three small markings near them.

Group 705. A large regular spot, with some small companions.

Group 706. A very small spot.

Group 707. A small spot.

Group 709. Two spots, which rapidly increase up to March 25.

Group 709. Two spots, which rapidly increase up to March 25.

Group 709. Two spots, which rapidly increase up to March 25.

Group 710. A small spot, not detected on March 26, 27, and 28.

		1	1				1		1					-			1		
			s.	Sun's	Herio	GRAPHIC	Sr	OTS.	FACULE.	8,73			s, in	Sun's	Helio	GRAPHIC	SP	ots.	FACULÆ
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude,	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 83 ^d ·997	J, M	707 705 705 711	o:468 o:238 o:286 o:853	237.6 104.7 108.1 100.6	o 41.5 3.1 o.6 317.7	° -20.6 -10.0 -11.6 -12.5	0 78 3 2 (267)	5 319 10 10 (1525)	744 <i>f</i> (2333)	1881, 87 ^d ·886	J, M	705 705 714 711 713	0.584 0.386 0.171 0.902	262.0 257.1 352.1 138.0 58.2	3·8 1·0 328·5 318·7 267·4	0 -10'0 -12'8 +15'9 -13'8 +25'1	60 0 5 0	319 11 43 34 91 38	970 ¢
84:898	Ј, М	702 702 702 709	0.944 0.926 0.921 0.786	249.7 251.1 246.6 289.5	76.4 73.2 72.4 53.5	-21.4 -20.0 -24.2 +10.8	47 33 1 29	258 174 13	1834 c	Mar. 30	J, M	715	0.746	304·5	251.8	-14.4	(94)	38 (742)	455 f 200 (2656) 228
		709 709 712 705 705 711	0.764 0.740 0.388 0.146 0.064 0.721 0.849 0.902 0.919	291.2 292.5 319.4 182.3 158.7 101.4 41.8 103.1 77.0 56.8	51°1 48°8 19°5 5°0 3°3 318°4	+11.4 +11.6 +10.6 -15.0 -10.1	5 36 3 0 78 2	24 199 10 5 319 5	480 c 51 c 78 505 104 188			710 705 705 714 714 714 711 713 715	0.846 0.788 0.481 0.468 0.441 0.206 0.804 0.858	293·9 260·1 262·4 317·7 322·7 326·8 237·2 52·2 102·9	22.7 9.7 3.8 331.0 328.6 325.9 321.7 267.2 252.0	+21.1 -11.9 -10.0 +14.7 +15.6 +15.3 -12.8 +24.9 -14.4	0 30 81 3 5 5 4 23	19 87 328 8 9 27 9 96 42	540 s. 1395 n. 1012 p 583 s.
Mar. 27			0.982	20.8			(234)	(1184)	(3240)	Mar. 31			0.901	69.7			(162)	(625)	(4198)
85·723 I. Mar. 28	н, јр	702 702 709 709 705 711	0.985 0.979 0.888 0.844 0.178 0.555 0.907 0.948	249'2 250'5 285'5 287'9 249'3 102'2 103'3 63'2	75.7 73.4 54.1 48.6 3.5 320.2	-21.7 -20.4 +10.5 +11.3 -10.1 -12.3	18 13 21 21 38 0	200 180 226 148 279 9	2177 c 497 c 222 c 590 492 (3978)	89.910	J, M	705 705 714 714 711 711 713 715	0.90£ 0.623 0.564 0.471 0.399 0.694 0.722	299.4 259.5 262.1 303.8 309.6 257.6 254.0 43.0 103.7	11'2 4'0 331'0 325'4 326'6 321'7 267'3 252'5	-12°0 - 9°9 +14°9 +15°3 -11°5 -12°2 +25°0 -14°3	16 76 0 4 0 18	119 318 11 12 10 6 83 16 21	140 876 c 124 f 520 f 848 c
86·664 I.	н, јр	709 709 710 705 705 711 713	0'989 0'964 0'939 0'746 0'378 0'341 0'380	244.5 282.6 283.6 305.0 259.2 248.3 105.9 62.1 106.8	54'1 49'3 21'0 2'6 359'4 319'6 267'7	+10·3 +10·3 +20·3 -10·2 -13·5 -12·1 +25·4	18 18 0 44 0 0	140 166 17 292 9 5	378 673 c 69 s 176 c 250 nf 463	Apr. 1	J, M	717 716 718 705 714 711 713	0.916 0.902 0.966 0.930 0.984 0.748 0.677 0.581	65.9 108.8 88.4 95.3 261.4 297.3 260.8 26.1	236·7 233·9 224·0 3·8 326·9 326·1 267·0	+ 19°0 - 19°7 - 0°1 - 9°6 + 15°5 - 10°8 + 25°3	0 4 30 (154) 60 0 0 26	21 18 140 (754) 234 21 40 64	87 c 173 c 209 (2977) 449 s 163 c
Mar. 29 87.886	J, М	709	0.894 0.904 0.871 0.998 0.891	254'7 338'6 281'9	50.1	+11.3	(80)	(706) 172	156 161 185 c 529 n f			715 716 717 717 717 718	0.524 0.791 0.800 0.865 0.865	106.9 110.6 59.9 63.2 86.5 72.9	252.4 231.6 236.4 228.6 223.9	-14.2 -20.1 +10.4 +10.4 - 0.5	0 0 0 0 0 28	20 40 10 18 191	448 6 435 s 200

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 702. A large regular spot, with several small spots close behind it. One of these finally becomes nearly as large as the first spot.

Group 705. A large regular spot, with some small companions.

Group 705. A large regular spot, with some small companions.

Group 707. Two spots, which rapidly increase up to March 25. Other small spots appear near them on March 25 and following days.

Group 710. A small spot, not detected on March 26, 27, and 28.

Group 711. A very small spot on March 26 and 27. It is not seen on March 28 and 29, but appears again on March 30. The spot shows a large proper motion on the following days, and several smaller spots appear near it.

Group 712. Two or three very small spots.

Group 713. A small regular spot.

Group 714. Several small spots close together.

Group 715. Two spots. The following and smaller spot disappears before April 8.

Group 717. Two small spots on April 1. Other spots appear on the following days, and the group increases in size and forms a long straight line of spots, of which the preceding spot is the largest.

	100		.8	Sum's	Heliog	RAPHIC	Spo	TS.	FACULÆ.				E,	Sun's	HELIOG	RAPHIC	Sro	TS.	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude,	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. g2 ^d ·071 Apr. 3 g2·986	J, M	714 714 711 713 715 716 717 717 717 718	0.895 0.872 0.829 0.530 0.329 0.621 0.662 0.750 0.725 0.791	289.5 290.4 261.6 5.7 116.5 114.2 51.8 56.9 83.8 67.4 297.1 255.3 288.8 320.9	330°4 327°4 326°4 266°8 252°5 233°2 236°9 232°8 222°5 224°2	0 +14'3 +14'3 -10'5 +25'4 -14'4 -19'8 +17'7 +18'9 +17'7 +19'5 + 0'1	19 0 3 12 2 19 0 6 10 25 (96)	44 13 13 54 10 74 11 12 25 139 (395)	473 e 172 f 272 180 f 106 (1203) 78 529 141 384	1882. 95d·o69 Apr. 6	J, M	717 717 717 717 716 718 720 721 722	0'957 0'929 0'888 0'734 0'732 0'433 0'431 0'440 0'449 0'231 0'154 0'470 0'546 0'758 0'953	279.8 257.8 257.8 309.4 290.5 253.4 343.4 348.0 358.3 7.4 193.3 38.8 99.1 102.0 61.7 66.5	238·1 236·0 231·4 227·1 233·8 225·1 202·6 197·7 186·9 162·3	+18.4 +18.7 +19.8 +20.3 -19.0 + 0.8 - 9.7 -11.6.6 +16.6 +20.1	16 0 7 12 6 34 5 0 0 27 (107)	1119 9 94 69 19 171 111 5 20 192 (709)	185 526 235 126 453 10748 413,/ (3012)
Apr. 4		714 711 713 715 716 717 717 717 717 718 719	o 968 o 926 o 549 o 172 o 468 o 536 o 553 o 588 o 628 o 570 o 774 o 908 o 940	286.6 261.2 346.0 145.9 121.0 38.9 40.8 43.3 48.4 79.9 76.9 109.6 75.9	331°0 326°3 266°5 252°3 232°9 237°3 235°6 232°7 228°3 224°0 208°9	+14·3 -10·5 +26·0 -14·3 -19·6 +18·8 +19·0 +19·7 +19·2 + 0·6 + 6·0	7 0 12 0 25 0 8 18 26 37 1	20 6 40 6 57 4 41 93 112 181 3	469 c 902 f 60 f 114 260 (3482)	Apr. 7	0, 31	717 717 717 717 716 718 723 720 721 721 721	0.815 0.499 0.477 0.474 0.454 0.311 0.150 0.334 0.300 0.346 0.619 0.680	302'1 326'1 335'4 343'7 348'6 223'1 327'1 122'3 102'0 100'4 55'5	233·3 225·1 203·4 200·3 188·6 184·0	+19.8 +21.1 +20.4 -18.9 + 1.3 -16.0 - 9.3 - 9.2 +15.4 +16.9	5 0 15 15	139 39 34 57 30 161 8 13 6 46 38 154 (725)	429 661 436 (1526)
94.062	Ј, М	713 717 717 717 717 716 716 718 720	0.443 0.455 0.489 0.509 0.272	283'2 258'3 311'0 326'6 14'9 18'7 22'4 29'5 144'1 139'3 69'9 98'5 105'2 68'9	199.6	+25'9 +19'1 +19'3 +20'8 +20'3 -18'8 -19'1 + 1'1 -10'4	5 19 2 10 13 9 0 41	17 116 24 53 80 26 10 152	157 480 278 134 c	96-897	Ј, М	717 717 717 718 718 720 723 723	0.596 0.551 0.493 0.350 0.070 0.176	15.6 297.6 253.0 308.9 322.5 321.8 241.5 290.8 143.4 170.1 156.1	237.9 229.5 227.6 233.5 225.4 204.0 201.8	+22.7 +20.0 -18.9 + 1.5 - 9.2 -16.0	0 18 7 26 5 3 5	134 4 53 17 156 15 14 23 53	326 987 68 174 255 7441 384

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 711. A very small spot on March 26 and 27. It is not seen on March 28 and 29, but appears again on March 30. The spot shows a large proper motion on the following days, and several smaller spots appear near it.

Group 713. A small regular spot.

Group 715. A small regular spot.

Group 715. A small regular spot.

Group 716. Two spots. The following and smaller spot disappears before April 8.

Group 717. Two small spots on April 1. Other spots appear on the following days, and the group increases in size and forms a long straight line of spots, of which the preceding spot is the largest.

Group 712. A very small spot.

Group 721. Several very small spots in a straight line, of which the preceding spot is the largest.

Group 722. A regular spot.

Group 723. A small spot on April 7. A second is seen near the first on April 8.

			H.	Sun's	HELIO	GRAPHIC	SP	OTS.	FACULÆ.				.п	Sun's	Helio	GRAPHIC	SP	OTS.	FACULA
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from Axis,	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 96 ^d ·897	J, M	721 724 724 724 722	0·520 0·499 0·531 0·787 0·737 0·940 0·979 0·983	42.5 109.8 108.6 57.8 91.9 105.9 82.4 92.3	184.9 177.4 175.1 161.2	+16·9 -15·0 -14·9 +20·6	12 0 2 55	22 1 7 191	428 f 145 768 192 290	1882. 100d·002	J, M	725 725 725 726 726 726 726	0.722 0.759 0.786 0.931 0.960 0.968	98.0 96.4 97.0 110.9 109.7 108.3	119.1 115.9 113.4 96.5 90.9 89.1	0 - 9.8 - 8.6 - 9.1 -21.5 -20.5 -19.1	14 0 25 32 0 16 (248)	88 15 86 198 85 134 (1307)	461 n. 1048 c (3068)
Apr. 8 97'974	у, м	717 716 718 720 721 721 721 722 725 725	0.819 0.780 0.673 0.561 0.232 0.371 0.379 0.405 0.649 0.944 0.967 0.860 0.898	253°2 299°0 248°1 281°8 254°4 2°9 12°6 17°2 48°1 95°0 98°8 65°0 80°0	237'9 233'3 225'4 205'2 191'1 187'3 185'0 161'2 121'2 116'4	+18:1 -19:0 + 1:7 - 9:3 +15:7 +15:7 +16:8 +20:6 - 6:7 -10:0	(174) 11 0 25 4 7 0 45 6	(697) 49 11 142 9 44 5 10 166 28 41	(4761) 225 1135 np 524 f 1122 c 122 278	I. Apr. 12	н, јр	718 720 722 728 728 728 725 725 725 726 726	0.950 0.933 0.758 0.453 0.286 0.356 0.567 0.608 0.685 0.874 0.923	252.0 274.6 264.5 352.6 144.0 134.9 129.6 92.3 98.7 97.5 111.8 108.9	225'4 206'5 160'7 146'9 144'2 140'4 122'5 111'9 96'4 89'3	+ 2'2 - 7'9 +20'9 -18'9 -17'8 -18'6 - 6'0 - 9'8 - 9'3 -21'8 -19'7 + 2'5	16 0 26 19 0 34 1 0 5 18 11 (130)	94 13 166 70 45 199 8 38 29 98 88 (848)	360 p 1510 e 4085)
Apr. 9 98.646 I.	н, јр	717 716 718 720 721 722 725 725 726	0.860 0.774 0.678 0.376 0.391 0.566 0.875 0.912 0.993	295'4 250'2 278'9 260'6 339'8 38'1 93'3 97'7 110'8	238.0 233.4 225.2 205.3 191.3 161.4 122.1 117.2 99.3	+18.3 -18.9 + 1.7 - 8.9 +16.1 +20.9 - 5.7 - 9.4 -21.3	(98) 9 3 16 0 6 23 0 3 0 (60)	31 9 110 6 20 161 12 46 89	(3406) 1060 n 992 n f 105 c 37 c 117 c 1458 c 393 p (4162)	I. Apr. 13		720 722 728 728 725 725 725 726 726 729	0.892 0.523 0.238 0.227 0.355 0.407 0.493 0.750 0.817 0.966	264.6 328.5 198.8 164.4 91.4 100.0 99.0 114.7 110.1 117.3	206·9 160·6 148·2 139·9 122·8 119·8 114·2 96·5 89·3 67·8	- 7·3 +21·0 -18·6 -18·2 - 5·8 - 9·2 - 9·3 -22·0 -19·7 -27·8	0 20 19 26 0 0 18 7 130 (226)	79 146 146 247 6 52 47 168 58 1138 (2208)	149 8 113 c 1324 f 1082 c (3071)
100'002	J, M	718 720 721 727 722 728 728 728 728 728 728	0.927 0.923 0.870 0.651 0.551 0.509 0.456 0.385 0.412 0.435 0.467	258.0 296.6 275.6 264.1 309.6 327.5 10.0 127.7 122.9 123.4 120.1 94.4	225·2 206·1 191·4 182·2 160·6 146·7 144·1 142·9 140·3	+ 2.0 - 8.2 + 15.4 + 19.8 + 20.9 - 19.0 - 18.3 - 19.1 - 18.7 - 7.2	25 9 4 5 38 1 31 0 39 8	148 31 11 14 179 5 126 23 140 24	466 842 251 f	102.962	J, M	730 722 728 728 728 725 725 725 725 731 726 726 726	0.849 0.680 0.434 0.398 0.314 0.055 0.115 0.179 0.225 0.416 0.557 0.566 0.629	298.7 309.6 237.4 233.9 225.6 88.0 121.6 116.1 107.5 133.7 122.6 119.2	178.9 160.3 148.9 146.1 139.9 123.1 120.6 117.0 113.8 107.5 96.0 94.6 88.9	+20.8 +21.1 -18.6 -18.7 -18.0 - 5.4 - 8.9 - 9.9 - 9.2 -21.9 -22.2 -20.7 -19.0	0 46 29 5 48 7 4 4 9 5 20 0 16	17 175 149 27 296 10 30 6 46 33 121 48 70	365 <i>f</i>

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facular relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Facular are expressed in millionths of the Sun's visible Hemisphere.

Group 716. Two spots. The following and smaller spot disappears before April 8.

Group 717. Two small spots on April 1. Other spots appear on the following days, and the group increases in size and forms a long straight line of spots, of which the preceding spot is the largest.

Group 721. Several very small spots in a straight line, of which the preceding spot is the largest. The following spots disappear before April 10.

Group 722. A regular spot.

Group 723. A regular spot.

Group 724. A small spots when first seen on E. limb. The group undergoes very great and violent changes, and increases in size very rapidly indeed. The most striking changes occur on April 16, 17, 18, and 19.

Group 728. A V-shaped group of spots on April 11 and 12. The group changes very rapidly, increasing in size between April 11 and 12. On April 13 it forms a straight line, the first and last spots being the largest.

Group 730. A very large spot, with three or four spots following it. The great spot undergoes constant change, especially after passing the central meridian.

Group 731. A disturbed area, in which small spots appear and disappear at irregular intervals. No spots are seen on April 17.

	1		ii .	Sum's	HELIO	PRAPHIC	Sec	ors.	FACULE.				E.	San,	Непос	HAPHIC	Sro	TS.	FACULAL.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 102 ^d ·962	J, M	726 726 732 729 729	0.661 0.667 0.814 0.875 0.921 0.828 0.925 0.963	0 118'8 115'9 112'4 118'8 119'8 77'1 102'0 75'0	87:5 86:4 72:6 66:4 59:8	-22.8 -21.2 -21.4 -27.8 -29.6	2 2 7 276 64 (544)	16 15 65 1823 300	275 nf 563 c 83 369 248 (1903)	1882. 106 ^d ·087	Ј, М	722 728 728 728 728 726 726 726 726	0.682 0.980 0.905 0.883 0.859 0.828 0.341 0.260 0.296	253.7 292.9 252.3 253.1 252.7 252.0 212.3 220.4 209.8 212.7	160·3 150·1 147·2 144·2 140·7 96·4 95·2 94·1 93·8	+21'1 -18'3 -17'4 -17'6 -17'8 -21'9 -16'6 -20'1 -18'3	0 63 29 0 98 18 62	285 198 156 61 525 111 271 25 33	274 245 n
103·783 I.	н, јр	722 728 728 728 731 731 726 726 726 727	0'946 0'892 0'781 0'583 0'524 0'451 0'291 0'325 0'423 0'485 0'530 0'700	289'2 257'5 302'0 245'4 241'9 162'1 150'0 132'4 119'2 124'1 115'3 121'7	160°4 149°4 144°6 139°4 110°0 105°5 95°8 89°1 87°4 72°9 66°1	+20°6 -18°6 -18°9 -18°4 -21°4 -21°6 -22°4 -18°5 -21°9 -21°4 -28°1	21 15 5 11 0 1 12 13 0 9	141 127 84 162 9 5 127 61 31 40 1757	762 159 1920 c 116 c 106 c	Apr. 17		726 726 726 726 732 729 733 733 734 735	0°232 0°254 0°303 0°356 0°492 0°581 0°408 0°483 0°916 0°985 0°832 0°887	212 7 200:3 194:1 187:0 144:3 137:4 111:3 110:6 75:7 100:8 57:5 67:0	95'8 89'9 88'8 87'4 72'2 66'1 58'2 62'2 57'4 20'6 4'4	-18-3 -17-8 -19-5 -22-7 -21-9 -28-5 -30-0 -13-4 -14-5 +10-9 -11-6	4 100 15 5 8 345 39 38 9 46 0	344 75 21 19 1764 199 112 65 200 203	482 s 244 p 133 350 (2860)
Apr. 15	J, M	733	o.828 o.888	102.7 71.3	59.5	+21.1	(284)	37 (2581) 178	189 c 312 (4284) 198 nf	107.042	J, M	728	0.946 0.860 0.799 0.972	293·2 279·9 263·0 253·0	149.6		39	402	211 156 664
	Mary Sant	728 728 728 731 726 726 726 726 727 729 733 733 734	0.787 0.754 0.725 0.690 0.283 0.295 0.208 0.261 0.289 0.511 0.706 0.615 0.677 0.983	250·9 250·6 250·0 249·6 219·0 171·7 156·0 148·7 146·0 125·6 130·9 127·0 104·1 103·8 78·0	150·2 147·1 144·5 141·5 109·8 96·3 93·9 90·7 89·1 72·4 66·8 58·8 61·4 56·6 21·0	-18·3 -18·1 -18·1 -17·8 -17·8 -17·8 -22·2 -16·2 -18·1 -19·1 -22·0 -28·4 -29·2 -12·8 -13·2 +10·7	28 0 61 0 15 0 0 218 21 16 11 27	162 135 53 419 5 64 26 37 29 25 1934 125 86 40 186	347 8	Apr. 18		728 731 726 726 726 726 732 729 733 733 736 734 735	0.927 0.638 0.438 0.436 0.355 0.288 0.412 0.470 0.214 0.663 0.810 0.917	253·1 243·3 232·1 241·2 232·8 231·0 175·7 164·5 152·2 132·3 125·5 60·1 72·9 100·0	140.6 109.8 96.4 96.0 94.0 89.2 71.9 65.2 57.9 63.1 58.6 36.0 20.6 5.6	-20°1 -17°9 -21°8 -28°5 -29°5 -13°4 -14°6 +15°1 +10°6	38 3 9 91 8 136 0 447 18 32 12 1 57 47 (938)	393 22 74 465 113 719 6 1882 149 117 66 11 323 187 (4929)	326 f 582 c 249 s (3637)
Apr. 16	Ј, М		0.874	320.7			(436)	(3504)		107.665 I.	н, јр	728 731	0.828 0.966 0.746	264°1 253°7 247°7	139.9	-17.1	20 2	223	767 677 c

Group 722. A regular spot.

Group 726. Three small spots when first seen on E. limb. The group undergoes very great and violent changes, and increases in size very rapidly indeed. The most striking changes occur on April 16, 17, 18, and 19.

Group 728. A V-shaped group of spots on April 11 and 12. The group changes very rapidly, increasing in size between April 11 and 12. On April 13 it forms a straight line, the first and last spots being the largest.

Group 729. A very large spot, with three or four small spots following it. The great spot undergoes constant change, especially after passing the central meridian.

Group 731. A disturbed area, in which small spots appear and disappear at irregular intervals. No spots are seen on April 17.

Group 732. A small spot.

Group 733. Two small spots. The group increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes, and increases in size very rapidly indeed. The most striking changes are very samil spot server rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The most striking changes in size very rapidly indeed. The striking changes in size very rapid

			ii.	Sun's	HELIO	GRAPHIC	Sr	ors.	FACULES.				.5	Sun's	Hatrog	RAPHIC	Spo	18.	FACULES.
Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 107 ^d ·665 I. Apr. 19	н, JР Ј, м	726 726 729 729 733 733 736 736 736 736 726 726 726 726 727 727 729 733 733 733 733 733	0.580 0.454 0.396 0.426 0.141 0.200 0.533 0.591 0.716 0.846 0.927 0.743 0.743 0.743 0.743 0.482 0.434 0.305 0.255	238-6 239-8 181-8 166-5 174-5 152-4 52-2 53-8 69-3 100-0 100-7 263-6 248-7 246-1 246-7 247-2 247-1 247-1 198-2 242-5 232-6 197-7	96:3 88:4 65:0 57:7 63:4 58:7 38:5 34:6 21:4 6:3 113:3 107:9 96:7 94:9 91:1 89:9 87:3 64:5 56:5 63:6 59:7 40:5	-21'9 -17'8 -28'4 -29'5 -13'1 -15'3 +14'4 +15'9 +10'9 -11'2 -18'8 -21'0 -21'5 -17'1 -20'3 -19'6 -18'8 -29'2 -12'9 -13'8 +14'4 +14'4 +15'9 -11'2	8 76 138 14 0 0 0 27 31 (392) 12 7 10 167 0 189 9319 20 22 5 0	75 521 1890 98 59 15 27 6 224 144 (3934) 71 15 59 1129 29 112 479 1835 73 70 57 8	241 c 242 c 310 c 246 (2483) 857 348 c	1882. 110 ^d ·664 I. Apr. 22	н, јр	726 729 729 733 737 734 735 738 729 729 729 729 733 737 737 737 734 739 739 738	0.856 0.781 0.847 0.803 0.634 0.527 0.402 0.318 0.313	254'5 252'6 233'3 225'4 253'8 324'5 4'7 108'4 80'1 104'7 289'8 252'3 239'4 236'0 257'8 254'9 300'9 308'7 313'8 324'1 331'5 181'2 75'9 105'5	96'4 89'9 64'2 55'3 62'1 39'6 23'7 7'3 322'1 87'9 63'5 54'4 64'7 59'9 40'9 31'9 24'0 17'7 15'5 6'9 322'1	-16·3 -17·8 -28·5 -29·4 -13·7 +15·2 +11·4 -10·4 +6·7 -18·2 -28·4 -29·0 -12·8 -14·9 +11·6 +10·3 +11·3 -10·4 +6·8	105 97 271 3 5 0 21 27 4 (533) 173 264 0 11 5 38 0 1 32 5	605 882 1346 26 49 12 157 157 59 (3293) 1094 1764 7 16 18 192 5 6 183 16	1504 e 420 e 110 c 107 e 576 e 644 (3361) 141 831 s 998 e 256 e
Apr. 20	J, M	730 734 735 731 726 726 726 727 729 733 733 733 734 734 735	0'403 0'502 0'657 0'831 0'887 0'980 0'890 0'885 0'840 0'796 0'602 0'505 0'479 0'435 0'345 0'345	31'2 58'2 101'2 103'1 66'6 251'9 247'8 253'7 251'7 250'3 226'4 216'9 252'8 248'5 247'9 35'6 41'7 102'4	40.3 35.2 22.0 6.7 113.9 97.0 96.9 91.4 86.7 64.3 55.8 64.1 61.9 59.0 22.8 19.4 6.21.3	+15·2 +10·7 -11·1 -18·7 -21·9 -16·7 -18·6 -28·7 -29·4 -13·8 +11·4 +11·0 -10·2	0 32 30 (741) 0 0 226 85 125 404 24 11 0 10 39 1 54	(4314) 70 28 773 946 511 2030 79 76 5 44 227 10 193	310 364 (3313) 1800 c	Apr. 23 113:046 Apr. 24 113:666 I.	J, М	729 729 737 737 734 739 739 735	0.987 0.945 0.943 0.886 0.790 0.703 0.703 0.4470 0.437 0.235 0.829 0.932	258:2 241:4 239:2 293:8 297:5 298:1 299:6 302:2 304:7 246:6 108:8 73:1 66:9	64.5 63.4 54.0 41.5 33.3 24.3 19.0 16.9 14.5 6.9	-28.6 -29.5 +15.3 +15.1 +11.4 + 9.6 + 9.9 + 9.7 -10.6	(541) 0 319 0 7 31 8 0 9 32 (406)	(3376) 4 1731 3 16 17 149 13 8 14 158 (2113)	256 (3015) 749 & 2345 e 441 s p

Group 726. Three small spots when first seen on E. limb. The group undergoes very great and violent changes, and increases in size very rapidly indeed. The most striking changes occur on April 16, 17, 18, and 19.

Group 729. A very large spot, with three or four small spots following it. The great spot undergoes constant change, especially after passing the central meridian.

Group 731. A disturbed area, in which small spots appear and disappear at irregular intervals. No spots are seen on April 17.

Group 733. Two small spots. The group increases in size on April 16, 17, and 18, and forms an irregular group of small spots. On the following days all but two of these spots disappear.

Group 736. A regular spot, with a small companion.

Group 737. Several very small spots, which disappear before April 21.

Group 737. Several very small spots, which break out in the same area of disturbance as Group 736.

Group 739. Several very small spots, which rapidly diminishes in size.

			.8	Sun's	HELIOG	RAPHIC	Spo	ots.	FACULÆ.				in	Sun's	HELIOG	RAPHIC	Spo	TS.	FACULE
ireenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882.	200			0	0	0	8		117.0	1882. 119 ^d ·081	J, M		0.870	0 104'9	0	0			217
13 ^d ·666	H, JP	734	0.289	293.8 254.5	18.0	+ 12.1	2 23	109 20 141	117 c	Apr. 30	J, M		0'905	70.8			(37)	(126)	247 (1209)
100		735	o-395 o-857 o-959	63.6	7.7	-103	20	***	458 315			F3	1200.12	286.0					194
Apr. 25			0.967	75.7			(123)	(997)	204 (4091)	120.030	J, M	742	0'992 0'901 0'545 0'622	281°1 315°5 59°4	284.5	+15.1	4 30	13	82
114'853	н, јр		0.926	110.8					602 466			743 743 744	0.644	62.8	224.8 175.6	+13.8	0 292	16	243
I.		737 737	o.889 o.936	287.5	36.3	+14.6	2 20	28 75	326 e			7.11	0.878	54.7					193 283
100		734 739	0.844	287.0	24.5	+11.7	20	74	124 C	May 1	113		0.972	118.4			(326)	(1312)	187
250		739 735	0.743	286.7	15.1	+ 9.2	1 20	163	103 c	121*049	J, M	7	0'956	280.5					263
Apr. 26		740	0.416	321'0	344.8	+14.5	(63)	5 (366)	(1621)	121 049	.,	742	0.881	301.0	288.9	+19.3	6	25	329 782
115.661	н, јр		0.016	296.3					295	100		743 743	0.428	44'4 50'4	225.1	+15.4	19	83 36	180
I.	0.00	737	o.876 o.988	254·5 285·6	38.0	+14.7	0	110	159		-33	745	0.647	64.4	177.9	+15.4	101	557	343
		737 734	0.966	287°1 285°4	31.6	+15.3	35 5	174 79	743 c	35		746	0.884	114.0	169.3	+22.0	(130)	(786)	377 175 (2449
	5	734	0.894	283.4	24.5	+10.2	0	55 24 182	709 c	May 2					Part I		(100)	(/20)	15
		735	0.216	260°4 308°5	6·8 343·2	+14.7	1 0	53	170 c	122,102	J, M	742		295.3	287.9	+19.2	0 3	4	310 534
		741	o.430	53·5 105·9	270.3	+12'0		9	407 480			747	0.382	358·5 15·7 58·1	234.0 227.9 218.6	+18.7 +15.6 + 5.5	5 4	38	
Apr. 27	10	13/4	o goo	100 9			(61)	(686)	(3130)			748 744 746	0.873	60.3	177.8	+23.5	182	543 53	596
117.050	J, M	735 740	0'920	260.6	7·3 344·3	-10·3 +14·8	59 24	225 104	177 f 206 c			749		68.6	155.3	+20.4	0	127	141
		742 741	0.22	36·8 62·7	281.6	+11.0	14	56 27		May 3			1.5	1			(205)	(787)	(1669
			0.782	63.2		7,5	-		159 393	122.814	H, JP	747	0.421	293.7	235.2	+18.6	0	4	607
Apr. 28			0.064	84.5		la a	(106)	(412)	(1029)	I.		743	PERSONAL PROPERTY.	345·9 56·8	229°0	+15.7	87	428	211
119.081	J, M	740	0.787	283.2	342.2	+15.4	0	26	119 174 <i>n</i> J	-	13	746	0.879	65.2	160.3	+23.8	0	29 19	218
	-	740 742 743	0.436	335.3	284.2	+19.3	11 26	42 58	298 11			749	0'944	67.4	156.3	-19·3 +19·8	0 (108)	83 36 (603)	300 868 (220

Group 734. A regular spot, with a small companion.
Group 735. A regular spot.
Group 736. Group 736. Group 739. Several very small spots, which break out in the same area of disturbance as Group 736.
Group 740. Several very small spots.
Group 740. Several very small spots.
Group 741. A small spot.
Group 742. A small spot.
Group 743. An irregular spot, with a small companion.
Group 745. A small spot.
Group 746. Two or three small spots close together.
Group 747. Two very small faint spots.
Group 749. A regular spot, with several small spots near it. The group undergoes several small changes.
Group 749. A regular spot, with several small spots near it.
Group 749. A regular spot, with several small spots near it.
Group 749. A regular spot, with several small spots near it.

				M	easures	of Posit	ions and	l Areas	of Spots a	nd Facula	upon	the S	Sun's D	isk—co	ntinued.				
			a a	Sun's	Непо	GRAPHIC	Sre	ors.	FACULÆ.				.8	Sun's	Негоо	ЭКАРИІ О	Sro	TS.	FACULÆ.
Greenwich Mean Solar Time.	Measurers,	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 124 ^d ·049 May 5	J, M	751 743 744 746 749 750 752	0.918 0.892 0.844 0.937 0.486 0.641 0.748 0.811 0.831 0.859 0.954	284°2 305°6 247°6 254°3 311°9 46°6 52°1 61°0 62°9 110°5 93°9	277'2 229'7 177'4 167'4 158'5 155'9 149'4 135'2	-16.0 +15.7 +23.6 +24.6 +20.8 +20.1 -19.4 -4.8	0 6 139 21 15 44 0 14 (239)	15 17 485 40 60 139 12 47 (815)	139 169 87 114 c 694 c 187 c 785 f 240 f (2415)	1882. 126 ^d ·901	<i>J</i> , м	753 753 744 746 749 752 752 755 754 754 756	0'518 0'463 0'455 0'478 0'433 0'478 0'518 0'642 0'541 0'885 0'929	264·3 260·0 347·4 8·2 17·1 30·1 93·6 94·1 111·4 72·9 73·3 103·4 99·2 45·9	201°1 197°3 176°2 165°7 162°2 138°9 130°2 138°9 100°4	0 - 5.7 - 7.5 + 23.1 + 24.9 + 21.2 + 21.2 - 4.6 - 5.1 - 14.1 + 13.5 + 14.2 - 13.7	0 0 113 8 7 43 42 22 9 25 62 32	3 2 468 25 12 204 194 82 20 186 239 73	492 c 1495 s 271 97 (3756)
May 6	T.M.	744 746 749 749 752 752	0.821	244.8 300.6 32.9 42.7 53.4 56.5 93.1 93.3 112.0	176·9 167·1 160·5 155·7 136·5 130·4	+23·3 +24·7 +20·6 +20·6 - 4·4 - 4·5	137 13 13 60 49 13 (285)	494 28 53 251 210 44 (1080)	221 351 275 f 608 c 681 (2463)	127·613	н, лр	757 744 746 749 749 752 752 755	0'419 0'424 0'422 0'351 0'498	292·2 276·2 287·5 330·1 348·3 354·7 3·3 11·8 94·6 94·8 118·1	155.3	+22.8 +24.5 +21.5 +21.2 - 4.6	2 73 0 0 9 14 19 3	9 456 15 14 24 128 176 39 35	538 176 171 c
125'951	J, M	753 753 744 746 749 749 752 752 754	0.924 0.820 0.306 0.257 0.456 0.528 0.573 0.587 0.705 0.792 0.966 0.799 0.857	249'4 298'3 260'0 254'2 12'6 27'9 40'3 42'3 47'3 93'3 94'2 75'1 62'6 112'8	200°1 196°9 176°3 166°8 161°2 158°0 155°2 137°7 130°2 108°9	+20.6 +22.0 +20.4 - 4.7 - 5.4	0 0 125 6 12 0 40 56 21	5 4 506 17 27 10 182 202 135 178	281 1180 723 s f 322 f 177 667	May 9	J, M	754 754 756 757 758 744 746 749	0'794 0'853 0'867 0'953 0'885 0'840 0'983 0'640 0'669	70°3 71°0 103°8 109°7	220'2 180'3 175'9 165'8	+ 13.6 + 14.4 - 13.5 + 16.6 - 16.5 + 23.2	22 8 2 (164) 43 0 147 5	170 121 45 (1232) 216 16 537 38 33	249 c 408 c 123 c 2181 (4034) 114 110 259 c
May 7	J, M		0.310 0.876 0.862 0.741 0.725	299.3			(304)	(1266)				749 749 752 752 755 754 754	0.478 0.467 0.033 0.190 0.218 0.588	327.8 334.2 141.7 105.2 160.3 62.6 64.3	158.2 155.0 141.2 131.8 138.1 110.1	+20.9 +21.9 - 4.5 - 2.8 -14.8 +13.1	16 28 45 0 10 39 21	50 158 154 15 27 167 140	512 c

Group 743. An irregular spot, with a small companion.

Group 744. A large regular spot.

Group 745. A regular spot, with several small spots near it. The group undergoes several small changes.

Group 751. A small spot.

Group 752. A regular spot, with some smaller spots following it.

Group 754. A regular spot, followed by a close cluster of small spots.

Group 755. Two very small spots close cluster of small spots.

Group 756. A small regular spot,

Group 757. A small spot on May 9, but much larger on May 10.

It is partly hidden by the wire on May 9.

Group 758. Three very small spots.

	1		Ħ	Sun's	HELIO	BRAPHIC	Sec	ors.	FACULE.				.5	Sun's	HELIOG	RAPHIC	Sro	TS.	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from St Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 128 ^d ·986 May 10	J, M	756 759	o:683 o:989	0 107'5 117'9	60.6	0 -14'0 -28'1	6 140 (511)	24 560 (2135)	2088 sf 700 p (3783)	1882. 131 ^d 939 May 13	Ј, М	760 760	o.321	78°1 77°3	31:5 28:4	+10.6	69 18 (726)	288 96 (3187)	632 e (3492)
129°956	Л, М	744 749 749 752 755 754 754 759 759	0'968 0'946 0'790 0'652 0'598 0'574 0'227 0'250 0'422 0'520 0'940 0'977	250'4 265'3 302'1 308'9 311'0 315'8 263'7 217'4 49'7 54'7 118'6 120'1	176.0 162.5 158.3 155.0 142.6 138.6 110.4 103.7 60.9 52.4	+22'8 +21'6 +20'4 +20'4 +21'5 - 4'2 -14'3 +13'0 +14'9 -27'9 -30'0	130 6 6 26 29 0 25 7 131 125 (485)	468 29 37 163 147 26 143 77 827 504 (2421)	84 176 305 c	133°028	J, M	749 752 752 754 759 760 760 760 762 762	0.854 0.901 0.942	250'1 294'1 267'2 264'9 306'4 134'4 131'0 74'8 75'7 76'5 76'5 107'5	153.6 147.5 140.1 111.1 59.5 50.7 40.9 37.1 31.6 25.9 18.9	+11.0	10 48 0 24 147 204 27 13 51 0 74 45 (643)	48 145 12 131 946 755 133 71 245 107 318 340 (3251)	449 290 n 311 e 1500 e 585 e (3135)
131'097 May 12	J, M	744 749 749 749 752 752 755 754 754 759 760 760	0.814 0.752 0.727 0.510 0.431 0.469 0.288 0.343 0.847 0.908		176·1 163·9 158·1 154·7 145·0 139·9 140·3 110·6 105·0 60·0 51·9 39·5 32·1	+15°0 -27°9 -29°8	125 0 5 28 23 0 0 25 0 144 222 17 0 (589)	462 17 30 160 98 50 16 120 46 829 894 143 261	68 434 c 489 n p 1700 c 222 c 243 (3156)	133 [,] 941	J, M	752 754 759 759 759 750 760 760 762 762 762	0.618 0.512 0.508 0.612 0.613 0.647 0.745 0.795 0.859	294°0 249°8 266°9 296°0 152°4 146°8 140°1 70°0 71°6 73°6 73°8 109°0 105°1 106°2	148:4 111:6 61:2 58:7 50:0 41:2 38:5 30:5 26:0 18:7 15:8	+13.7 -29.2 -27.3 -30.0 +10.2 + 9.9 +10.5 +11.3 -17.5 -14.4	27 20 23 96 187 27 12 64 16 98 38 53 (661)	101 96 107 557 776 118 54 278 101 415 204 248 (3055)	158 612 336 8 521 849 (3672)
131·939	J, M	744 749 749 752 752 754 761 759 760 760	0.855 0.822 0.684 0.592 0.304 0.304 0.311 0.751 0.832 0.898	298.0 266.1 266.1 335.2 348.8 169.2 125.0 124.1 77.0	154.2 146.4 139.6 110.9 106.9 99.9 59.7 51.3	+20°0 +20°9 - 4°7 - 4°5 +13°3 +14°6 -20°4 -27°4 -29°4 +10°4	0 6 24 30 5 26 0 135 332 46	498 26 93 112 25 114 4 13 747 873 134 164	373 c 817 n	135.025	J, M	754 763 759 759 760 760 760 760 760	0.366 0.453 0.425 0.509 0.424 0.559 0.626	263.4 244.2 289.5 2.7 176.4 171.3 156.8 59.9 67.1 68.7	112'1 61'5 60'6 58'4 49'2 40'7 31'0 26'2	+19°1 -29°1 -27°0 -30°1 +10°2 +10°6 +11°3	277 36 23 13	77 17 93 505 997 152 184 69 367	158 240 1138 2607

Group 744. A large regular spot,
Group 749. A regular spot, with several small spots near it. The group undergoes several small changes.
Group 752. A regular spot, with some smaller spots following it.
Group 755. Two very small spots.
Group 756. A small regular spot.
Group 750. Two very large spots of irregular outline.
Group 750. A number of fragments after passing the central meridian.
Group 750. A number of spots in a straight line.
The preceding spot breaks up into a number of fragments after passing the central meridian.
Group 760. A number of spots in a straight line.
The group gradually diminishes, and only the preceding spot is left on May 22.
Group 761. A small faint spot.
Group 762. Two large regular spots, with a number of small spots between and around them.
Group 763. Two very small faint spots.

				N	Ieasures	of Posit	ions an	d Areas	of Spots a	nd Facula	e upon	the S	Sun's D	isk—co	ntinued				
		(4)	ii.	Sun's	Непо	GRAPHIC	SP	ors.	FACULÆ.				ii.	Sun's	Helio	GRAPHIC	Spe	OTS.	FACULÆ.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude,	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 135d-025 May 16	J, M	762 762		0 107·1 110·3 59·2	0 13.0 4.4	-14.6 -18.6	114 10 (747)	462 61 (2984)	1278 c 148 (3222)	1882. 138 ^d ·902	J, M	759 759 760	0°951 0°796 0°699 0°562	247.7 236.4 227.2 291.6	59°2 47°3 43°2	-27·3 -29·8 +10·4	15 106 11	106 649 49	632 go2 c
136.069	Ј, М	754 763 759	0.444	242.5 286.1 327.4 201.5	112.6 63.4 60.2	+19.8 -28.6	o o 25	54 10 99	2860 380 n f	May 20		762 762 764	0.53 0.53 0.53 0.83	210·3 191·5 38·7 108·6	20°0 13°8 0°5	-13.0 -14.3 +11.4	74 65 0 (271)	399 609 6 (1818)	141 (1675)
		759 759 760 760 760 762 762	0.466 0.262 0.369 0.440 0.540 0.600	199.6 180.0 31.7 53.3 58.1 119.3 111.2	58·3 48·7 40·7 31·3 26·4 19·3 13·6	-26.8 -29.9 +10.7 +10.6 +11.3 -17.2 -14.3	43 188 35 29 14 83 144	281 1005 142 133 56 428 634		140°010	J, M	759 759 760 762 762	0.824 0.753 0.464	240.2 234.4 285.2 236.2 234.0 65.1	59.1 46.9 44.0 14.0	-16.5	17 189 0 108 87	75 536 16 438 537	1857 c 562 n 200 (2619)
May 17		762	0.419	113.5	4.9	-18.3	(561)	(2866)	1295 c (4535)	140.618	н, јр	759 759	0.951	241.2	58·8 51·0		4 0	45 19	(zoig)
136-928	Ј, М	763 763 759 759 760 760	0.526	287'2 248'4 311'4 314'5 217'0 199'6 340'1 22'1 38'9	63·4 59·4 58·7 48·5 41·9 31·6 26·7	+19°5 +18°5 -27°3 -30°0 +10°1 +12°0 +11°0	0 56 212 25 16 8	10 17 319 1114 116 58 25	271 1929	Ι.		759 760 762 762 762	o*880 o*838 o*576 o*536	236·4 285·2 242·9 242·6 243·2 118·1 66·4 106·4 290·2	46·2 44·1 20·8 18·1 14·3	-30°0 +11°8 -16°5 -15°7	43 0 34 11 49	291 9 333 50 405	3012 e 353 n 120 e 179 e 135 551 182 249
May 18		762 762 762 762	0.394	130·8 119·1 126·1 71·6 56·4 81·8	19·3 13·4 7·6	-16.9 -14.6 -21.5	79 93 0	414 747 57	131 74 56 (2461)	May 22 141.592 I.	н, јр	7 ⁵ 9 7 ⁶ 2 7 ⁶ 2	o.887 -o.925 o.731	284'4 239'0 249'1 250'7 59'0	45·6 20·8 14·3	-16.3	(141) 43 40 27	(1152) 211 353 339	900 1542 c 185 c 137 c 246
138:072	J, M		0'911	249'1	8		(4~3)	(20/1)	1339	May 23			0.933	283.4		-70-1	(110)	(903)	(4168)
		759 759 760 760	0.686	230°9 217°6 301°8 324°7 339°0	58·9 47·2 42·5 32·6 27·4	-30.0	16 127 16 0 3	172 744 71 13		142.600 I.	н, эр	759 762 762	0.861	239.8 252.1 253.9 54.2	44'9 20'7 13'9	-30°1 -16°1 -13°6	60 31 29 (120)	281 314 356 (951)	1391 8 81008 322 (2523)
May 19		762 762	0.256	171'4 146'5 105'2	20'0	-16.5	77 85 (324)	405 679 (2091)	155	May 24 143.598	H, JP	762	0.975	283·3 253·8	21'1	-15°9	16	206	1166 1828 s

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facular relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 754. A regular spot, followed by a close cluster of small spots. The latter disappear before May 13.

Group 750. Two very large spots of irregular outline. The preceding spot breaks up into a number of fragments after passing the central meridian. Group 760. A number of spots in a straight line. The group gradually diminishes, and only the preceding spot is left on May 22.

Group 762. Two large regular spots, with a number of small spots between and around them.

Group 763. Two very small faint spots.

Group 764. A small spot.

										1	-	-	- 1	w		- 1	F		Section 1
			in in	Sm.'s	Напос	RAPHIC	Sro	TS.	FACULE.		18-3		re in	Sun's	HELIOG	RAPHIC	Spor	rs.	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis,	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 143 ^d ·598 I. May 25	н, јр	765	o-985 o-892 o-958	75·8 102·0 63·4	230.0	+13.7	23	201	172 c 117 648 (3931)	1882. 150 ^d ·791 I.	н, лр		0°919 0°373 0°407 0°754 0°656	298.6 312.6 120.5 60.4 165.1	332.6 230.4 193.1 169.4	0 +25.7 +14.2 -12.3 +21.5	0 3 ₄ 3 4 ²	14 172 5 253	226 n p 374 n f
144.980	J, M	762 765 765	oʻ995 oʻ886 oʻ939 oʻ858	255·8 73·8 75·7 59·1	14.9 229.9 222.0	-14.3 +13.8 +13.0	41 73 0	252 213 29	1048 s f 573 f 292	June 1			0.889	93.0			(79)	(444)	271 294 (1235)
May 26 145.903 May 27	Ј, М	765 765	0.772	71'1 73'8 54'1	230.1	+13.8	57 0 (57)	(494) 224 6 (230)	(1913) 524 f 197 (721)	151'784 I.	M, JP	765 767	0.983 0.918 0.541 0.618 0.858 0.970 0.980	295.6 258.9 297.9 53.1 117.8 72.3 102.8	230·2 168·9	+14.4	29 47 (76)	159 285	120 504 97 c 202 307 202
146.612 I. May 28	н, јр	765 765	0.766 0.658 0.743 0.900 0.937 0.947	250·9 67·8 71·6 120·3 94·6 53·4	230·6 223·2	+13.7 +12.9	34 0	190 8	51 163 c 297 f 214 116 202 (1043)	June 2	J, M	765 769 767 770	0.913 0.828 0.730 0.291 0.466 0.849	245.4 303.7 290.9 192.5 37.6	230·5 189·6 168·1 129·6	-16.6 +21.4 +16.6	47 0 61 4	187 6 208 15 26	74 368 188 c
147'974	J, M	765 766 767	0'939 0'900 0'756 0'430 0'866 0'993	288.6 251.9 302.5 54.1 106.5 68.3 68.1	230·3 192·3 169·2	+13.8 -14.6 +21.4	45 o 70	212 10 356	74 108 207 102 f	June 3		771 772	o·925 o·939 o·693 o·762 o·863 o·915	72·3 74·1 42·0 120·9 98·7 104·9	116.9	+14.9	(112)	(452)	374 c 117 339 115 159 (1734)
May 29 148.897 May 30	Ј, М	765 766 767	0.835	297.9 30.7 297.9	230°3 193°3 169°5	+13.8 -14.4 +21.5	38 0 81 (119)	206 11 324 (541)	(1046) 156 80 f 131 c (367)	154.013		765 767 770 773 771	0.370	287'7 8'3 65'3 66'9 69'8 125'8	168.0 131.0 135.1 119.6	+16.6	30 47 5 0 2	165 218 10 2 7	393 c 309 524 (1689)
149'902 May 31		765 766 767	0.565	342.7 114.8 64.5	169.1	+14·1 -14·1 +21·5	49 0 83 (132)	210 9 290 (509)	334 s p 126 (702)	154*995	J, M	765 767		335·2 65·7	168.5		36 40 (76)	131 202 (333)	282 n _J 136 425 (843)

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 762. Two large regular spots, with a number of small spots between and around them.

Group 765. A regular spot, with a small companion.

Group 766. A very small spot.

Group 769. A very small faint spot.

Group 771. A very small spot.

Group 772. Two small spots.

Group 767. A regular spot. Group 770. A small spot. Group 773. A small faint spot.

				М	leasures	of Posit	ions and	l Areas	of Spots a	and Facula	e upon	the :	Sun's D	isk—co	ntinued				
	Ba.		e in	Sun's	1	GRAPHIC	1	ors.	FACULE.				ii	Sun's		GRAPHIC	Sr	OTS.	FAGULÆ.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measures.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from &	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 155d·622 I. June 6	M, JP	765 767		321.5	230°0 167°9	+15·3 +21·1	22 37 (59)	129 199 (328)	842 nf 765 (1607)	1882. 160 ^d -929 June 11	J, M		o*852 o*975	133.3	c	0	(88)	(529)	369 153 (2371)
156·951 June 7	J, M	767 774 775 776	0'952 0'878 0'646 0'375 0'265 0'665 0'898	286·7 252·5 303·4 245·5 150·1 115·5 118·5 69·8	167.5 152.5 124.6 93.9	+21°0 - 8°6 -13°0 -16°3	25 0 0 2 (27)	145 11 7 6	76 99 199 s 701 53 (1128)	161°911 June 12	J, M	778 777 777 779	0.815 0.766 0.735 0.496 0.523 0.598 0.781 0.763	291.8 245.9 279.0 326.7 115.3 114.7 108.0 129.5	84°3 38°0 32°9 17°2		0 86 10 39 (135)	5 436 5t 92 (584)	578 753 70 346 c 753 s _J 433 (2933)
157.630 I. June 8	M, JP	767 774	0.924 0.738 0.541 0.907 0.978	250.9 297.9 254.9 120.4 72.8	167*4 155*2	+20.4 - 7.7	24 0	102 9	181 128 c 411 203 (923)	162.794 I. June 13	н, јр	777 777 777 777 779	0.939 0.375 0.414 0.427 0.647	285.7 125.9 132.8 124.8 111.5	37·1 36·8 34·1 17·3	-11.7 -15.3 -13.1 -11.7	36 8 9 2 (55)	357 54 82 27 (520)	238 766 f (1004)
158.970 June 9	J, M	767 774 777 777	0.835 0.895 0.789 0.932 0.963 0.855 0.909	306·1 293·1 260·4 103·7 104·5 124·6 77·1	167.2 157.1 37.9 32.2	+20.8 - 7.2 -12.5 -13.8	16 1 71 21	45 6 322 117 (490)	273 181 c 347 f 466 e 1075 700 (3042)	164.012 June 14	Ј, М	777 777 777 780 780	0'927 0'856 0'277 0'229 0'268 0'897 0'956 0'706	289'9 245'5 181'5 175'0 165'7 66'7 66'9 125'5	39.4 37.8 35.1 337.0 327.2	-14'9 -12'0 -13'8 +21'3 +22'4	35 60 29 21 0	225 357 184 53 9	257 913 351 c 280 (1801)
159'700 I. June 10	м, јр	778 777 777	0.939 0.841 0.472 0.852 0.859 0.859	299'1 263'8 24'1 104'6 105'0 66'1 125'7	83°7 38°8 33°1	+26.0 -13.1	o 51 7 (58)	12 231 56 (299)	197 309 394 c 60 292 (1252)	165.038	J, M	777 777 777 780 780	0.923 0.870 0.838 0.368 0.311 0.316 0.789 0.881	253.6 301.5 238.7 225.2 223.3 210.5 63.8 63.9	40'9 37'9 34'9 336'2 326'0	-13·7 -11·7 -14·4 +21·2 +23·5	33 89 18 14	223 361 186 69	178 143 641
160.929	Ј, М	778 777 777 779	0'968 0'953 0'895 0'767 0'432 0'691 0'753 0'905	301'7 260'4 242'4 292'4 352'7 108'6 109'3 105'0	83·3 37·9 32·9 16·2	+26·1 -12·1 -13·8 -13·2	6 57 13 12	18 389 75 47	68 252 163 141 557 c 668 s	June 15 165:899	J, M	755	o·786 o·893 o·974 o·939 o·775 o·566	81·3 106·7 254·4 299·1 234·1 299·8			(154)	(856)	24 105 (1560) 84 136 1360 157

Group 765. A regular spot, with a small companion.

Group 775. A very small faint spot.

Group 777. A large spot, with several small spots following it. The group undergoes great and frequent changes.

Group 778. Two small spots.

Group 780. A number of spots arranged in a straight line. The group undergoes great and frequent changes.

Group 774. A small spot.

			.E	n's	HELIOGI	RAPHIC	Sro	TS.	FACULE.				.E	Sun's	Heliogr	APHIC	Spo	тв.	FACULE.
reenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Sun's Axis.	Longitude.		Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude,	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 65 ^d ·899	J, М	777 777 777 780	o·516 o·456 o·436 o·670 o·737 o·841	241.5 240.6 231.3 59.2 59.3 109.8	0 41.6 37.8 34.5 336.1 330.6	0 -13.0 -11.6 -14.4 +21.1 +23.1	66 68 33 23 2 (192)	277 423 201 103 11 (1015)	418 f 238 (2393)	1882. 172 ^d ·902	J, M	780 780 781 782 783	0.970 0.826 0.828 0.784 0.295 0.793 0.944 0.829	245.6 251.6 292.9 298.1 321.2 74.0 75.3 53.7	335.4 329.9 292.3 229.7 210.9	+20°1 +23°1 +15°4 +14°6	2 28 26 0 19 (75)	20 139 133 11 84	174 34 729 6 97 6 697 7 230 (1961)
66.989	Ј, М	777 777 777 777 780 780 780 780	0°780 0°757 0°710 0°673 0°645 0°611 0°502 0°541 0°585 0°634 0°953	229'1 291'3 250'7 246'5 250'2 243'9 47'6 49'9 51'5 52'5 70'4	42.7 38.9 37.6 33.8 336.2 333.2 329.9 326.3	+22.6	73 8 74 31 27 7 39 23	303 40 377 153 97 47 88 95	336	June 23 173.908 June 24		780 780 781 782 783 784	0.889 0.465 0.640 0.854	255·1 292·8 295·4 299·0 69·8 73·7 73·4	328'9 292'8 210'1 201'8	+23.5 +15.1 +15.1	0 0 19 0 23 0 (42)	7 10 90 8 91	65 1124 48 495
June 17	Ј, М	777 777 780 780 780 780 781	0.403	281'1 255'7 258'5 320'4 327'5 337'5 351'8 62'0 63'8	43·3 40·1 337·8 334·0 330·0 324·3 292·5	$-11^{\circ}0$ $+21^{\circ}4$ $+23^{\circ}1$ $+25^{\circ}4$	0 33 2 11 33 0 25	57 126 24 64 256 34 125	413 290 952 s f	June 25	J, M	781 786 787 787 783 785	0.806 0.658 0.385 0.372 0.393 0.683 0.935 0.935	255-0 290-9 6-7 170-5 162-7 71-2 79-5 113-2	292.7 250.4 5 249.5 7 246.1 2 211.5 3 192.2	+24'9 -18'9 -19'5 +14'6 +10'6	(31)	48	733 383 186 (21
June 20 170'791 I. June 21	н, лг	780 780 781	0.486	305.4 317.7 49.7	335.6	+22.0	0 14	92 214 49	1107 96 e	June 20	6	781 786 787 783 783 783	6 0.411 7 0.374 3 0.527 5 0.752	333°; 191°6 66°6 78°; 7 106°;	7 250'4 9 246'1 0 211'7 2 193'1 4 167'7	+24.1 -18.8 $+14.6$ $+10.6$	0 3 2 5 13 8	61 61 20 67	7 33
171.685 I.	н, л	780 780 781 781	0.614	5 299.4 4 306.2 7 17.8 3 27.2	334.8 2 329.8 8 293.1 2 290.0	$\begin{vmatrix} +12.1 \\ +12.1 \end{vmatrix}$	20	50 183 91	131 c 3 81 c	177.027	J, 1	78	0.800 0.800 0.517 6 0.527 7 0.500	301° 7 319° 7 313°	9 8 2 251.4				

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 777. A large spot, with several small spots following it. The group undergoes great and frequent changes.

Group 780. A number of spots arranged in a straight line. The group undergoes great and frequent changes.

Group 781. A small spot spots, of spots, followed by some smaller spots.

Group 782. A small spot.

Group 783. A small regular spot.

Group 784. A small spot spots, of which the first spot is the largest.

Group 785. A small spot when first seen on the E. limb. The group increases in size, and becomes a long line of spots, of which the first spot is the largest.

Group 786. A very small faint spot.

Group 787. Two very small close clusters of spots when first seen. The group developes into a line of spots, the middle spots of which soon disappear, whilst the first and Group 787. Two very small close clusters of spots when first seen.

Group 788. Two irregular spots, and two or three very small spots close to them.

				1	Measure	s of Posi	tions an	d Aren	s of Spots	and Facul	e upor	the	Sun's I	Disk—ce	ontinue	ł.			
			e ii.	Sun's	Helio	GRAPHIC	Spe	ots.	FACULE.				ii ii	Sun's	Helio	PRAPHIC	Spe	ots.	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 177 ^d ·027	<i>J</i> , м	787 783 785 785 788 788 788	0'481 0'325 0'527 0'576 0'835 0'874 0'909 0'915 0'952	217'4 49'1 74'5 73'4 110'6 109'0 109'7 66'6 118'7	244'7 212'0 195'7 192'5 172'7 168'0 163'7	0 -19.8 +14.9 +10.4 +11.7 -15.5 -15.1 -16.6	51 13 24 20 0 39 0	140 59 83 47 12 131 52 (603)	1670 c 127 181 (3077)	1882. 180 ^d ·943	J, M	787 787 783 785 785 788 788 789 792	0.604	257:3 300:0 250:9 248:0 288:8 287:2 297:0 181:7 161:0 104:1 103:4	252'7 242'1 212'7 199'1 193'1 175'4 168'4 144'8 138'9	-18·1 -19·4 +14·1 +10·0 -13·6 -15·4 - 4·6 - 5·5	62 6 48 19 8 48	224 329 61 183 106 32 190 37	90 1589 511 e 182 e
I. June 28	н, ле	786 789 787 783 785 785 788 788 788	0.659 0.636 0.584 0.214 0.335 0.430 0.723 0.771 0.837	303·0 236·2 229·6 14·9 66·5 67·6 114·0 112·2 111·6	252·2 249·1 243·5 212·2 197·3 191·5 172·4 167·9 161·4	+23·2 -18·3 -19·7 +14·7 +10·3 +12·0 -15·0 -16·3	0 24 26 15 21 8 0 14 0 (108)	12 133 333 45 188 74 19 176 17 (997)	143 c- 46 c 278 c 223 s (690)	July 1	J, M	790 793 791 787 783 785 785 788 788	0.628	70.0 68.5 118.1 260.6 249.5 284.9 281.5 286.9 221.3	137.0 127.8 116.3 244.5 213.3 199.8 192.7 176.8 168.6	-20°1 +13°7 +9°8 +11°7 -20°1	2 8 12 (225) 0 0 45 18 4 39	14 40 46 (1269) 207 23 202 53 18 145	1114 c 523 n (4250) 206 1416 n 532 c
I. June 29	н, лр	787 787 783 785 785 788 788 788 789 790	0'774 0'701 0'246 0'156 0'263 0'591 0'643 0'721 0'901 0'928	243.6 238.0 326.1 37.2 53.2 120.8 118.2 115.5 96.6 74.9	250·6 242·9 212·0 198·4 191·5 172·3 168·1 161·5 140·2 136·1	-18·1 -19·5 +14·6 +10·0 +11·9 -15·1 -15·8 - 4·7 +15·0	13 45 6 14 12 2 12 0 3 0 (107)	143 339 48 105 31 32 183 4 42 13 (940)	115 c 128 c 110 c 237 f 676 f (1266)	July 2 182°957	Ј, М	789 792 790 791 785 785 788	0.303 0.402 0.457 0.780 0.581 0.870 0.781 0.711 0.560	116·3 111·7 65·2 123·5 63·1 289·2 279·3 283·3 236·2 232·0	145.6 139.4 136.1 116.4 199.4 193.0 176.9	- 4.6 - 5.6 + 14.0 - 23.2 + 9.3 + 11.8	7 0 0 9 (122) 46 0	25 8 1 40 (722) 208 14 15 40	955 n _J 265 (3374) 704 347 c
I. June 30	н, јр	787 787 783 785 785 785 788 788 789 790 791	o.159 o.385 o.469 o.748	294.7 248.3 244.1 300.1 304.7 335.9 348.6 139.0 131.7 98.9 73.4 114.4	252·3 242·5 211·8 199·6 193·8 191·4 174·6 168·4 141·9 137·0 116·8	-19.6 +15.0 + 9.8 +12.2 +12.0 -14.0 -15.3 - 4.6	14 23 8 19 0 8 3 13 4 0 (92)	161 356 35 145 18 29 44 168 41 15 35 (1047)	454 348 c 151 c 275 f 770 f 201 c (2199)	July 3	J, M	788 788 789 792 790 793 791 785 788 788	0.200 0.286 0.438 0.665 0.803	232'0 226'8 161'9 132'9 43'4 55'0 131'0 118'3 293'9 278'9 251'8 250'3	171°2 168°2 145°6 139°8 136°5 126°2 115°3	-15.0 - 4.6 - 4.6 +15.2 +17.6 -23.0 + 9.4 -13.1	9 49 4 15 0 2 (125)	40 122 12 86 8 8 9 (522)	1009 (2060) 237 422 c

Group 783. A small regular spot.
Group 785. A small spot when first seen on the E. limb. The group increases in size, and becomes a long line of spots, of which the first spot is the largest.
Group 786. A very small spot spots when first seen.
Last increase in size.
Group 789. A small spot.
Group 789. A small spot.
Group 792. A very small faint spot.
Group 793. A very small spot.
Group 793. A very small spot.
Group 794. A very small spot.
Group 795. A small spot, ot seen on July 2.

			ï	Sun's	Непос	TRAPHIC	Spo	ors.	FACULE.	1			S. II.	Sun's	HELIO	BRAPHIC	Sro	TS.	FACULA
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Green wich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 184 ^d *974	J, M	788 789 789	o'772 o'447 o'393	° 247'4 253'3 251'9	o 168·8 146·8 143·4	0 -14'9 - 4'2 - 3'7 - 5'1	22 1 4 34	102 8 26	760 c	1882. 189 ^d ·938 July 10	Ј, М		0.907	84.4 68.2	0	U	(13)	(47)	66 102 (2623)
July 5		792	0.345 0.815 0.923 0.943 0.970	245°0 127°6 118°1 72°4 105°0	139,7		(93)	(376)	411 400 448 479 (3157)	190°794 I.	н, јр	794 794 794	0'942 0'888 0'267 0'246 0'244	287'3 244'9 319'9 323'0 339'0	54.8 53.3 49.7	+15.8 +15.3 +17.2	6 4 10	33 316 48	195 1010
186·916	н, јр	789 792	0.323 0.301 0.200 0.200	250.8 292.5 260.7 258.6	145.3	- 4.8 - 5.3	10 16	19	898 223 101 c 177 c	July 11	J, M		0.310	143·2 68·9			(20)	(397)	799 (2663) 319
July 7			o.845 o.898 o.947 o.948	80°0 110°2 122°1 132°4			(26)	(101)	459 952 178 516 (3504)			794 794 794 795	0.769 0.460 0.453 0.404 0.803	234.4 296.0 302.2 303.0 79.1 156.6	54.2 52.5 49.5 335.6	+15.4 +17.8 +16.6 +11.3	39 13 10	222 28 31 14	74
187.606 I.	н, јр		0.978 0.921 0.822	252°1 292°4 233°2					388 284 59	July 12			0.867	64.7			(62)	(295)	482 (1240
		789 792	0.776 0.869 0.848 0.848	287.6 262.5 260.3 110.2 134.5	146·3 139·3	- 4.6 - 5.5	6	12 49	199 484 c 618 531	192'749 I.	н, јр	794 794	o.953 o.600 o.558 o.830 o.974	247.0 290.2 60.4 70.4	54.3 50.4	+15.4	24 10	253 25	601
July 8			0.991	125.5			(16)	(61)	990 (3553)	July 13	J, M	1 6	0.824	242'4			(34)	(278)	(1380
189.076	J, M		0'976 0'972 0'900 0'760 0'806 0'842 0'895	238.6 264.6 288.4 237.0 118.0 142.5 132.0					68 459 501 311 417 175 403			794 794 796 796 797	0.767 0.746 0.795 0.740 0.142 0.094 0.948	216.8 202.4 286.2 288.1 305.7 314.9 76.6	54.5 49.2 9.0 6.1 290.6	+ 15.6 + 16.3 + 9.1 + 8.2	45 12 14 8 77	231 34 26 18 446	121 226 357
July 9	J, M		0.957	288 6			(0)	(0)	(2334)			797 797	0.968 0.974 0.756	79°2 75°0 54°6	284.9	+11.6	7 6	49 73	735 164
		794 794 794	0.821 0.210 0.208 0.236 0.743 0.837 0.859	241°1 0°0 9°0 14°7 152°3 139°1 120°4	55·8 53·9 52·2		11 0 2	34 6 7	752 337 432 423	July 14	J, M	794 794 796	o.859 o.835 o.920 o.870 o.384	249'8 217'1 285'3 287'1 283'8	55·1 48·3 10·2	+ 15·9° + 17·1 + 9·5	31 0 5	(877) 496 7 37	390 281 425

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 788. Two irregular spots, and two or three very small spots close to them.

Group 792. A very small faint spot. The group increases as it approaches the central meridian, and forms three or four spots.

Group 794. A number of small spots. Before disappearing at the W. limb they have almost all coalesced to form one large spot.

Group 795. Two very small spots, not seen on July 13 and 14.

Group 797. A large regular spot, with several small spots following it. These smaller spots disappear before July 22.

			.E.	1		GRAPHIC		ors.	FACULE.	nd Faculæ	- Post		.a						1 1 2
			tre us,	Sun's	TELIO	GRAPHIC	510	OTS.	- 3 2 2 3			1 30		Sum's	HELIOO	PRAPHIC	Spo	TS,	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from Axis,	Longitude.	Latitude,	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude,	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882.				0	0	0				1882.			-	0	0	0			7
195 ^d ·057	J, M	796 795 797 797 797 798	0:320 0:254 0:834 0:871 0:884 0:943	282.5 62.5 76.3 79.4 74.6 71.8	6·4 334·9 291·7 287·5 286·0 277·4	+ 8.2 +11.1 +13.9 +11.4 +15.7 +18.6	7 0 109 17 12 6 (187)	26 24 462 44 102 50 (1248)	1130 e (2226)	197 ^d ·952	J, M	798 798 800 800 800 802 802 803	0.528 0.577 0.765 0.796 0.865 0.865 0.892 0.983	60'9 62'4 109'9 107'8 108'4 115'4 113'9 108'9	280.6 277.0 262.6 259.3 257.3 254.1 250.5 232.7	+19'0 +19'5 -11'9 -12'1 -19'1 -18'7 -17'5	0 0 0 0 0 0	5 32 19 21 9 17 12 41	189 c 731 c 172 f
196.018	J, M		0.885	248.9	- 440				751 440	100			0.946	75°2					138
		794 796	0.524	285.8	56.1	+ 16.3	34	117	870 f	July 18							(128)	(694)	(3859)
July 16		796 795 795 797 797 797 798	0°483 0°119 0°124 0°696 0°744 0°755 0°836 0°968 0°982	280·6 338·2 14·5 74·5 78·7 73·2 69·7 84·9 106·7	4°0 338°0 333°6 291°8 287°5 287°0 279°4	+ 9'1 +11'5 +14'1 +15'7 +19'}	0 2 0 60 0 6 2	2 5 20 475 26 144 10 (805)	2347 f 68 379 (4855)	199:006	Ј, М	797 797 798 800 800 802 802	0'937 0'927 0'645 0'181 0'256 0'403 0'601 0'642 0'674 0'737 0'780	278·2 237·1 225·8 12·5 37·3 52·5 117·3 113·7 114·2 122·7 119·3	293.5 286.5 276.2 262.9 259.2 257.1 254.7 250.0	+15.0 +16.6 +18.7 -11.9 -12.2 -19.7 -19.0	105 9 8 4 0 2 6	403 49 42 11 6 12 32	122 376 62 65 f 814 f
196.940	J, M	796	0.933 0.931 0.859 0.697	292.2 281.4 248.5 223.2 276.8	7'4	+ 8.1	0	7	183 222 380 511 159 c	July 19		803	0.830 0.830 0.94	73.9 62.6 113.0	231.3	-18:3	(134)	33 (595)	442 f 103 252 (2236)
July 17		795 795 797 797 797 798 799 800	0.296 0.216 0.530 0.601 0.611 0.701 0.685	294.2 304.2 69.9 73.8 70.3 67.1 111.7 105.6 86.0	339.1 333.7 292.4 286.9 286.7 280.2 282.9 261.3	+11.4 +11.6 +14.6 +13.5 +15.7 +19.3 -11.1	0 0 68 0 13 0 0	7 5 6 419 2 88 8 6 20 (561)	1272 f 55 f 426 s f 44 (3252)	200'032	J, M	797 797 797 798 802 802 803 804	0'941 0'807 0'263 0'224 0'197 0'259 0'582 0'633 0'827 0'914	239.6 288.9 310.9 321.8 334.7 16.4 134.3 129.5 115.6 72.1 56.9	294°0 290°4 287°2 277°8 256°1 251°1 230°8 216°0	+14.8 +15.1 +14.9 +19.3 -19.4 -17.8 +18.4	71 4 6 4 17 0 15	327 19 61 35 59 21 33 18	195 382 426 f 342 f 539 s; 318
197'952	л, м		0.987	283'9			1	1	144	July 20			0 878	30.9		2016	(117)	(573)	(2202)
		801 797 797 797 797	0.863 0.773 0.949 0.332 0.330 0.369 0.428	278.0 232.7 246.7 57.0 65.6 62.4 63.4	17.8 293.0 291.9 290.1 286.4	-20'3 +15'0 +12'4 +14'4 +15'4	0 84 10 5	11 393 29 6 99	1074 208 424 664 n	201:033	J, M	797 797 797	0.931 0.895 0.843 0.790 0.447 0.380 0.314	279'9 293'6 254'9 303'2 292'7 300'6 308'0	294'1 288'8 283'9	+16.1 +17.0 +17.0	74	359 33 7	152 422 227 298

Group 794. A number of small spots. Before disappearing at the W. limb they have almost all coalesced to form one large spot.

Group 795. Two very small spots, not seen on July 13 and 14.

Group 797. A large regular spot, with several small spots following it. These smaller spots disappear before July 22.

Group 798. A close cluster of very small faint spots.

Group 803. A small spot.

Group 804. Two small spots.

Group 805. Other small spots.

Group 805. Other small spots.

Group 806. Two small spots.

Group 806. There or four small spots.

Group 806. Three or four small spots.

			ii	San's	Helio	GRAPHIC	Spe	ors.	FACULÆ.	1 1			ii .	Sun's	Herro	GRAPHIC	Spo	TS.	FACULÆ,
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 201 ^d ·033	J, M	798 805 802 802	0°284 0°126 0°425 0°463	327.5 69.2 153.1 154.4	o 278·2 262·2 257·4 256·8	0 +18.9 + 7.6 -17.2 -19.6	2 0 0	22 9 13 75 63		1882. 203 ^d ·897	Ј, М		o.844 o.940 o.943	67°2	0	0	(154)	(682)	388 106 384 (4305)
July 21		802 803 804 806 806	0.515 0.704 0.811 0.942 0.974 0.792	146.6 122.3 69.8 81.4 79.6 53.8	251'4 230'4 215'5 198'3 191'6	-20.6 -18.1 +19.3 + 9.8 +11.3	12 8 7 0 0	63 21 41 23 36 (702)	238 f 153 s 1740 c 239 (3469)	204·689	н, јр	797 802 802 802 807 807	0°958 0°724 0°706 0°654 0°281 0°366	283°1 236°2 232°9 227°1 49°1 58°7	294.6 260.2 257.6 251.6 208.0 201.8	+14'1 -19'6 -20'9 -21'8 +15'8 +16'1	60 5 6 0	309 49 22 3 10 6	1199 nj 42 c
201.606 I.	н, јр	797 805 802 802	0'924 0'554 0'052 0'428	293·1 288·6 330·1 171·4 165·0	294°1 262°9 257°5 254°3	+14.4 + 7.7 -19.9 -20.4	52 0 9	343 19 66 43	968 127 c 92 c	July 25		806	o·364 o·891 o·952 o·979	75.0 67.2 97.2 75.3	199*9	+10.4	(76)	(417)	416 177 200 (2434)
July 22		802 803 804 806	0.465 0.623 0.731 0.882	158°0 128°2 68°0 81°6	250·7 230·5 215·6 199·3	-20.4 -18.2 +19.5 + 9.8	14 2 0 3 (82)	41 13 19 34 (578)	144 s f 97 c 1676 n f (3104)	205-906	J, M	802 802 807	o'948 o'849 o'738 o'869 o'855 o'195	290'3 276'4 192'0 244'5 241'6 341'7	260.3 257.9 208.1	-18.9 -20.8 +16.1	19 7 9	52 12 14	1184 106 45 705 f
203'079	J, M	797 802 802 802 807 807	0.923 0.795 0.504 0.482 0.469 0.590 0.622 0.667	303·5 283·5 212·6 205·7 200·5 69·6 70·8 70·9	294.5 258.6 254.7 252.0 206.9 204.4 200.9	+13.9 -20.0 -20.5 -20.8 +16.2 +16.0 +16.6	94 15 7 0 3 0	443 79 37 16 20 7	211 308 c	* 1		807 807 806 806	0°176 0°188 0°163 0°225 0°684 0°731 0°849 0°924	359.7 14.3 41.6 73.7 121.4 63.6 100.0 72.7	204.6 201.7 198.2 191.9	+15.6 +16.0 +12.5 + 9.0	3 0	26 57 16 8	221 268 240 233 (3002)
July 23		806 806 806	0.674 0.711 0.765 0.909 0.984	80.7 80.2 79.8 111.6 69.6	191.9 196.6 193.7	+10°7 +11°3	18 0 0	64 7 25 (715)	1249 f 376 118 (2468)	July 26 206.906	Ј, М	802	0.962 0.942 0.730 0.956	277'9 233'2 248'3	260.9	-18.8	(54)	20	398 152 160
203.897	J, M	797 802 802 807 807 807 806 806	0.432 0.483 0.523 0.527	302.7 282.9 227.1 223.1 217.1 63.8 67.5 67.7 79.1	294'7 259'3 256'7 251'7 207'4 203'7 201'0 199'5	+15.3	110 17 9 0 6 0 8 4	466 75 49 9 12 10 25 26	195 1762 sf 246 c	July 27		802 807 807 807 806 806 808	0'941 0'340 0'293 0'258 0'161 0'066 0'965 0'868 0'887	246·3 303·5 306·2 316·4 310·5 345·5 103·4 71·3 177·9 128·0	257.6 208.4 205.4 201.9 198.4 192.3 118.3	-20°1 +16°2 +15°3 +16°2 +11°6 + 9°2 -11°3	3 4 9 4 0 32 (55)	6 15 11 49 16 23 113	196 p 315 121 80 (2083)

Group 797. A large regular spot, with several small spots following it. These smaller spots disappear before July 22.

Group 798. A close cluster of very small faint spots.

Group 802. Two small spots. Other small spots appear and form a V-shaped group, the preceding spot, which is also the largest, forming the angle of the V.

Group 803. A small spot.

Group 804. A small spot.

Group 805. A close cluster of small spots.

Group 806. A small spot, with two or three small faint spots near it.

Group 806. A small spot, with two or three small faint spots near it.

Group 806. A close cluster of small faint spots near it.

Group 806. A close cluster of small faint spots near it.

100	160		l.s	Sun's	HELIC	OGRAPHIC	SP	ors.	FACULÆ.				ü	Sun's	Hillio	GRAPHIC	Sm	ots.	FACULÆ
Greenwich Mean Solar Time.	Mensurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S. Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from Su Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 207 ^d ·670 I. July 28	н, јр	857 807 808	o-966 o-776 o-481 o-390 o-907	249:3 236:4 291:3 296:1 104:9	208.7	+15.0	0 0 0 (0)	5 23 140 (168)	1282 116 471 c (1869)	1882. 214 ^d ·076	J, M	808 809	0.464 0.634 0.808 0.833 0.859	230.7 71.0 82.8 117.8 64.4	117.9 57.9	-11.4 +16.6	o 2 (69)	15 10 (453)	432 e 328 438 54 (1973)
208·927 July 29	J, M	807 807 808	o'923 o'907 o'823 o'693 o'663 o'748 o'882	244'9 299'5 225'8 277'1 286'3 109'4 117'7	208·6 205·7 118·9	+ 9.1 + 15.1 - 10.4	0 0 25 (25)	49 12 233 (294)	411 326 76 642 sp 444 c 382 (2281)	215'047 Aug. 4	Ј, М	808 808 808	0'945 0'888 0'786 0'740 0'714 0'623 0'730 0'857	294'4 258'2 287'2 247'2 244'7 243'0 82'1 117'6	127·8 125·1 118·0	-12·3 -13·1 -11·4	51 11 0	331 151 7 (489)	148 124 254 368 c 81 177 (1152)
211'049 July 31	J, M	808 808	0.930 0.881 0.758 0.733 0.363 0.417 0.802 0.970	301·3 281·8 242·8 258·0 144·3 135·7 127·9 74·0	124'2	-11·3 -11·7	18 8	173 164 (337)	64 960 297 114 324 270 (2029)	217.038	J, M	808	0.923 0.831 0.739 0.952 0.700 0.899 0.919 0.952 0.988	290'0 240'1 219'9 255'0 130'3 100'9 128'0 73'9 83'4	127.2	-12'2	62	436	121 237 142 630 f 131 77 647 69 54
212:895	Ј, М	808 808 808	0.934 0.932 0.929 0.808 0.714 0.400 0.380 0.333 0.723 0.797	291°1 249°1 280°8 293°0 301°4 219°8 211°5 199°7 141°2 73°4	127:2 123:8 118:7	-12.5 -13.0 -15.0	80 19	314 139 42	143 466 259 54 135	Aug. 6 219·104 Aug. 8	J, M	810	0.861 0.852 0.814 0.969 0.746 0.782 0.853	303·7 237·7 291·3 69·2 31·5 85·7 66·6	313.2	+21.7	0 (0)	29	354 722 132 304 s 367 61 256 (2196)
Aug. 2	J, M	808 808	0.910 0.926 0.867 0.842 0.812 0.752	295.0 256.2 273.2 221.1 239.5 235.2	128.0	-12·3 -13·3	(109)	(495) 281 147	350 164 (2059) 310 263 44 104	220°125	J, M	811 811 810 812	0'968 0'823 0'720 0'262 0'285 0'885 0'979 0'835	297'1 231'1 290'5 19'3 28'6 68'7 75'9 60'2 110'6	11.2 8.1 314.1 297.2	+20.4 +51.8 +12.1 +12.1	10 6 6 6 37	40 22 16 154	84 318 123 281 8, 81 175 (1062)

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facula relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 807. Two or three small spots.

Group 808. A close cluster of small faint spots.

of the V.

Group 811. Two spots, which rapidly increase in size on August 10 and 11.

Group 812. A regular spot.

Group 812. A regular spot.

			ii .	Sun's	Heliog	RAPHIC	Src	ors.	FACULÆ.				e in	Sun's	HELIOG	RAPHIC	Sro	rs.	FACILÆ.
Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Aren of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centro terms of Sun's Radius,	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 220 ^d ·878 I. Aug. 10	н, јр	811 811 810 813 812	0'954 0'831 0'252 0'234 0'798 0'908 0'932	233°4 288°3 337°7 357°1 66°8 112°7 75°8	12·3 7·2 314·2 305·3 297·1	+20°0 +20°0 +22°4 -17°4 +15°6	27 10 2 0 18 (57)	198 60 21 8 155 (442)	54 286 118 c 87 c 318 f 524 n f 864 n f (2251) 223 304	1882. 226 ^d ·037 Aug. 15 227·070	J, M	811	0'904 0'941 0'751 0'980 0'251 0'763 0'814 0'825	290'7 289'4 307'6 69'2 105'7 59'7 74'2	4.6 296.6	+ 20·3 + 15·4	(121) O 22	(512) 69 125	232 88 f 82 66 135 73
Aug. 11	J, M	811 811 811 810 812	0.774 0.671 0.430 0.381 0.358 0.613 0.800 0.829	276.6 180.6 302.0 305.4 313.0 61.6 76.0 118.3	12.8 9.3 6.3 314.7 296.9	+19.2 +18.9 +20.4 +22.4 +15.1	61 0 51 0 48 (160)	262 18 253 22 202 (757)	235 345 107 f 1117 nf 323 (2654)	Aug. 16 227:660 I.	н, јр	812 814		290.7 233.3 275.1 295.6 106.1 122.0 71.1 99.3	296:4 241'7	+15.4	9 0	104 3	(676) 252 655 174 160 6 58 142 212 747 128
Aug. 12	J, M	811 811 811 812	0.868 0.771 0.702 0.566 0.524 0.483 0.683 0.755	278·9 236·7 198·0 294·0 297·0 301·6 76·2 122·6	12.9 9.5 5.9 296.9	+18.9 +19.5 +20.6 +14.2	52 0 50 . 43 (145)	221 10 265 183 (679)	321 c 1236 nf 432 (2837)	Aug. 17 228'636 I.	н, јр	812 814 814 815 816 816	o·544 o·585 o·886 o·940	222:3 293:5 287:7 146:9 141:8 101:2 77:0 78:3 113:4	296.4 245.6 241.3 203.2 193.1 185.3	+15.4 -20.5 -20.9 -6.6 +14.6 +12.9	(9) - 15 - 4 - 9 - 0 - 38	99 166 24 4 15 183	(2475) 251 137 95 (155) 1059 n 161
Aug. 14	<i>3</i> , м	811 812 812 812 811 811 812 812	0.834 0.805 0.871 0.807 0.298 0.351 0.845 0.863 0.957 0.911 0.156	218.76 290.5 57.8 58.3 116.4 222.2 287.8 289.4 97. 19.8	12.8 5.4 296.8 293.8 12.5 4.6 296.8 294.5	+18.6 +20.4 +15.6 +16.9 +18.9 +20.4 +15.5 +17.2	33 28 38 0 (99) 41 45 35 0	186 116 166 4 (472) 193 171 142 6	200 93 306 e 484 (1267) 344 274 e	Aug. 18	Ј, М	812 817 814 818 815 819 820 816 816	0.931 0.905 0.905 0.610 0.518 0.459 0.475 0.533 0.622 0.657	248'0 322'5 303'5 283'9 221'6 206'8 206'9 119'2 79'9 78'5 77'5 75'1 77'8	296·5 258·0 246·8 244·9 207·1 204·1 200·3 191·5 190·1	+15.5 -20.9 -20.8 -17.4 - 7.5 +10.9 +12.0 +13.1 +15.0 *+13.3	(66) 12 31 5 0 8 2 0 77 0 21	78 128 13 4 24 6 6 4 446 11 84	191 35 210 1381 n

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters u, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 810. A small spot.

Group 811. Two spots, which rapidly increase in size on August 10 and 11.

Group 812. A regular spot.

Group 813. A very small faint spot.

Group 813. A very small spots in a straight line.

Group 815. A small spot.

Group 816. Two regular spots, with several small spots between them.

Group 817. A close cluster of three or four spots.

Group 818. A small spot.

Group 819. A very small spot.

Group 810. Two regular spots, with several small spots between them.

Group 810. A very small spot.

Group 810. A very small spot.

Group 811. Two spots, which rapidly increase in size on August 10 and 11. Group 813. A very small faint spot.

	1		H	Sun's	Helie	GRAPHIC	Sı	ors.	FACULÆ.				H	Sun's	Helio	PRAPHIC	SP	ors.	FACULÆ
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day),	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers,	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 231 ^d ·029 Aug. 20 232'041	J, M	816 816 816	0°728 0°773 0°825 0°839 0°852 0°907 0°972	78'9 79'4 75'6 61'3 116'6 99'3 65'9	185·5 181·5 176·5	0 +12.8 +12.6 +15.7	71 0 0	322 5 4	1329 n 307 n 86 304 131 214 (4188)	1832. 233 ^d ·954	J, M.	816 816 816 822 822 821	0.172	38·9 51·4 61·2 81·2 81·3 104·9 107·7 142·3 67·7	0 188:4 185:8 180:8 142:4 138:8 128:0	0 +13.6 +13.7 +11.3 +11.1 -11.0	2 60 1 7 14 35	7 212 13 12 43 139	120 c 260 s 124 72 231 (2027)
Aug. 21		817 814 815 819 820 816 816 816 816	0.842 0.733 0.626 0.312 0.250 0.347 0.488 0.552 0.615 0.655 0.696 0.697	291'4 232'4 223'5 143'7 71'7 74'6 72'5 74'9 76'9 76'9 56'6 73'5 125'1 65'1	257'4 246'3 208'3 208'3 199'1 199'1 185'6 181'1	-21'1 -20'8 - 7'6 +11'3 +11'9 +13'8 +13'5 +13'1 +13'6	80 7 4 0 0 79 18 77 0	411 19 18 5 10 355 72 250 3	367 145 154 224 (3101)	235.079	J, M	817 817 815 816 816 816 816 816 816 822 822 821	0.939 0.997 0.977 0.572 0.283 0.227 0.197 0.200 0.153 0.583 0.641 0.806 0.899 0.949	245·5 247·3 244·4 246·7 292·5 304·0 301·9 297·7 318·1 313·5 80·8 80·3 108·9 127·9 112·9	261°0 251°9 210°7 194°4 192°2 190°3 189°1 186°8 185°4 143°1 138°9 128°2	+12.3	0 27 2 62 0 3 0 3 63 0 4	198 131 8 392 19 11 17 17 325 9 11	228 306 c
232.891 Ang. 22	J, M	817 817 814 815 816 816 816 816 821	0.922 0.903 0.855 0.805 0.732 0.249 0.303 0.317 0.385 0.992 0.860	289.6 249.7 240.6 234.7 232.5 185.7 64.9 62.4 67.8 72.5 102.2 60.5	260·3 253·1 246·1 209·2 193·4 190·3 185·8 126·8	-20.6 -22.8 -21.0 - 7.3 +13.3 +14.8 +13.6 +13.1 -11.1	131 44 7 5 72 3 14 59 0	581 233 14 16 485 12 47 265 131 (1784)	654 133 517 c 169 n 154*s p 216 (1843)	Aug. 24 236·100	J, M	816 816 816 816 816 822 822 821	0.992 0.841 0.805 0.502 0.464 0.442 0.377 0.358 0.424 0.446 0.660 0.814	75·9 301·3 287·2 284·0 284·4 288·7 295·8 288·7 76·3 78·6 115·6 134·4	195'2 192'6 190'8 185'9 185'6 140'5 138'9 128'1	+14.6	70 10 0 2 76 0 9 28	261 69 30 7 316 4 30 109	213 (1244) 137 158
233.954	J, M	817 817 814 815 816 816 816	0.951 0.952 0.905 0.852 0.368 0.116 0.140 0.133	292.8 245.6 240.7 240.3 230.1 358.3 14.1 25.3	261.5 252.5 246.0 210.3 194.0 191.8 190.5	-20.6 -22.8 -20.8 -6.9 +13.7 +14.8 +13.9	138 27 0 6 71 5	531 188 17 9 511 27	347 690 e 183 f	Aug. 25 236.926	J, M	816 816		75.7 281.0 253.3 292.5 281.5 283.0	196·3 193·1	+13.0	(195) 63 4	(826) 232 17	245 (803) 280 110 139

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 814. Three or four small spots in a straight line.
Group 815. A small spot.
Group 817. A close cluster of three or four spots.
Group 819. A very small spot.
Group 821. A regular spot.
Group 821. Several small spots between them.
Group 822. Several small spot.
Group 822. Several small spots irregularly arranged.

			.H	Sun's	HELIO	GRAPHIC	Src	ots.	FACULE.				ii .	Sun's	Пиглод	RAPHIC	Sro	TS.	FACULE.
Greenwich Mean Solar Time.	Measurers,	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Su Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers,	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
				0	0	0				1882.				0	0	0			
1882. 236 ^d ·926	J, M	816 816 822 822 821	0.618 0.536 0.216 0.268 0.520 0.787	285.6 283.4 70.9 72.3 125.5 121.7	192'4 186'7 142'6 139'5 129'0	+15.1 +11.0 +11.6 -11.1	1 68 2 7 31	7 269 12 30 124	881 c	241 ^d *050 Aug. 30			o·835 o·942 o·965	118°9 71°7 109°9			(25)	(198)	205 63 136 (1135)
Aug. 26			0.865	75.5			(176)	(691)	161 (1788)	1.	н, лр	821	o·867 o·805 o·693	298.7 278.8 245.4	128.9	-11'2	7 3	34	243 449 46 c
237 [.] 893	н, јр	816 816 822	0.901 0.843 0.804 0.693 0.067	257.7 325.7 280.7 281.6 337.1	195.6 185.7 143.2	+12.8	30 33 2	219 245 15	251 131 563 p 109 c			824 824 826 827	0°274 0°270 0°956 0°992 0°717 0°868	313·2 321·4 104·5 70·1 125·9 14·3	97:3 18:5 4:3	+17.8 +17.0 +10.6 +20.6	3 0 0	18 10 14 273	627 s 391 c 209
Aug. 27		822	0.881	29.6 143.9 24.0	139.3	-11.0 +11.3	20 (85)	37 119 (635)	79 c 95 (1228)	Aug. 31	н, јр	100	0.008	279'0			(13)	(349)	(2310)
239'894	J, M	816 816 816 822 822 822	o'939 o'868 o'983 o'958 o'940 o'476 o'427 o'417	245.9 293.9 281.8 281.3 281.7 278.3 277.2 283.4 216.5	195.7 189.5 186.1 143.7 140.5 139.6	+12'9 +12'9 +12'9 +12'1 -11'9	43 9 86 7 0 6	200 53 242 16 14 15	197 239 850 c	242'791 I. Sept. 1	H, Jr	821 828 828 824 826 827	0'904 0'853 0'821 0'724 0'680 0'368	298·2 228·4 250·6 245·7 243·5 298·8 106·2 70·7	129'0 119'3 115'3 96'6 14'9 3'4	-11'4 -12'0 -12'0 +17'0 -11'3 +20'6	8 4 17 4 0 17 (50)	69 ° 26 20 7 11 160 (293)	438 213 94P 142 c 595 s 607 c
Aug. 29		821 823 824 824	0'403 0'615 0'295 0'352 0'786 0'852 0'932	188·7 53·2 63·1 71·9 121·8 112·0 79·8	129.3 121.4 100.9 96.2	-30°1 +17°2 +15°9	7 0 0	25 11 10 (686)	131 41 99 88 (1645)	243'928	Ј, М	821 828 828 830	0.878 0.835 0.239	251.7 250.2 348.8	128·8 120·3 115·3 64·8	+20.8 -12.3 +20.8	11 60 95 3	64 247 335 16	90 137 48 164
241'050	Ј, М	822 822 821 825 824 824 824	0.964 0.710 0.649 0.567 0.208 0.174 0.181	285.5 278.9 280.2 237.7 327.1 353.2 19.8 35.3 71.5	145.5 140.6 129.1 106.8 101.2 96.3 93.0	+11.4 +12.1 -11.3 +17.2 +17.1 +16.9 +16.7	0 3 19 0 3 0 0	7 28 99 9 27 26 2	245 239 c			829 831 831 834 832 826 827 833 833	0.498 0.520 0.383 0.631 0.764 0.855	236.4 183.9 179.2 152.4 147.2 112.5 70.8 84.3 85.2 131.0		-22.2 -24.0 -12.7 -25.2 -12.0 +20.1	1 15 3 4 0 0 80 11 8	9 31 17 10 3 13 350 24 65	230 ¢ 197 ¢ 384 ¢

	18		ii.	San's	HELIO	GRAPHIC	Sr	ors.	FACULE.					Sun's	Ницио	RAPHIC	Src	ors.	FACULA
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day),	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from \$	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 24 ^{5d} ·100	J, M	828 828 830 830 829 831 831 827 833	0'981 0'929 0'816 0'976 0'944 0'414 0'370 0'326 0'567 0'586	237:2 245:7 286:5 255:0 254:4 304:5 309:6 268:1 212:8 203:9 68:7 85:8	0 121.5 114.7 67.7 64.1 65.5 65.7 61.7 2.1 354.6	-12'1 +20'3 +20'5 + 6'2 -21'6 -25'4 +20'1	48 47 28 25 2 16 2 63 18	219 230 131 71 9 26 11 262 68	65 46 265 500 e	1882. 248 ^d ·012	Ј, М	827 827 833 833 833 833	0°252 0°257 0°195 0°261 0°324 0°360 0°787 0°886 0°935	21.6 29.1 86.8 86.9 91.6 84.4 62.7 142.7 74.4 111.8	2*4 0*5 356*8 352*9 349*2 346*9	+ 20·8 + 20·2 + 7·8 + 7·9 + 6·4 + 8·9	28 10 12 25 39 0	181 39 45 95 182 9	368 81 372 242 (2441)
Sept. 3			o.837 o.893 o.961	87°0 124°4 68°6	349.5	+ 7.8 + 6.5	(288)	99	288 p 179 220 (1883)	248*898	J, M	830 830 827	0.310	242'9 230'5 289'7 290'6 340'2	72:8 62:6 2:9	+20.0	94 155 0	267 574 9	428 206 378 c
246.041	J, M	830 830 831 827 827 833 833	0.534 0.685 0.498 0.557 0.633 0.708 0.825	286.0 294.8 298.9 227.4 66.9 64.1 87.1 88.2 128.2	69'4 63'9 66'7 5'4 1'9 354'6 348'8	+20'4 +21'2 -21'5 +17'6 +20'2 + 7'4 + 6'4	79 66 7 0 53 15 30	267 254 20 10 257 94 127	247 138 c 552 c 212	Sept. 7		827 827 833 833 833	0°235 0°025 0°047	337·1 352·0 306·7 70·9 96·7 71·9 109·7	2°4 358°2 357°5 353°7 348°9	+20.7 +20.6 + 8.1 + 8.1 + 6.3	38 0 10 29 37 (363)	147 4 47 101 95	331 122 (1465)
Sept. 4	100		0:896	65.0			(250)	(1029)	104 (1253)	249'900	J, M		0.908	237.5				2	95 348
246.836	Ј, М	830 830 831 827 833 833 833	0.664 0.784 0.417 0.460 0.507 0.554 0.865	286·7 291·7 294·0 234·7 55·6 88·0 86·7 89·0 132·6	69.6 63.9 66.9 2.1 356.0 352.9 349.8	+21.2 +20.3 + 7.3 + 7.9	109 197 10 67 45 0	516 626 27 289 149 19 300	159 391 c 153 s f	Carri		830 830 827 827 833 833 833	0°377 0°394 0°256 0°209	239'7 289'5 291'5 303'3 308'3 275'6 276'7 264'4 51'7 69'5	65·9 62·2 2·4 2·3 358·0 355·2 349·3	+22.5 +18.7 +20.9 + 8.4 + 8.5	61 55 0 26 11 11 18	160 150 12 128 52 46 65	84 229 e
Sept. 5			0.949	172'2			(500)	(1926)	74 57 (885)	Sept. 8 251°030	J, M	200	0.967	240.3			(102)	(013)	148
248:012	J, M	83o 83o	100000000000000000000000000000000000000	240'0 263'0 277'0 289'9 291'1	71.9	+21.1	88 88	408 598	204 180 203 791 c			827 827 833 835 836	0.588 0.443 0.963	247.5 292.8 296.3 273.5 80.8 71.9	3·1 2·4 354·6 253·0 245·5	+18.0 +10.8 +51.1 +51.1 +10.1	9 33 31 17 0	27 113 138 56 27	200 n. 213 c

Group 827. A regular spot, with some smaller spots close to it.

Group 828. Two regular spots, with a number of very small spots between them.

Group 830. Two small spots on September 2. These develop before September 4 into two large regular spots, with several very small spots near them.

Group 831. Two small spots. The smaller of the two disappears before September 4.

Group 833. A number of spots arranged in a straight line.

Group 835. A small spot.

Group 836. A small spot.

			B.	Sun's	HELI	OGRAPHIC	SP	ors.	FACULÆ.	FIRM			i. ii.	Sun's	HELIO	GRAPHIC	SP	ors.	FACULA
Greenwich Mean Solar Time.	Measurers,	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMRRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre term's of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 251 ^d ·030 Sept. 9 252·856 I.		827 833	0.488	69.0 114.5 255.0 223.9 290.0 274.8	2°1 356°3	+20.8 + 8.2	(90) 6 16	(361) 24 174	1026 852 (2825) 334 44 666 n 196 c	1882. 257 ^d ·729 I. Sept. 16	н, јр	840 840 838 838 838	0.963	289.6 286.9 80.0 79.1 80.0 66.5 66.5	315.4 315.2 201.3 193.8 190.1	0 +18.1 +11.3 +12.8 +12.8	0 97 5 17 (119)	13 34 330 120 131 (890)	354 6 93 155 (2105)
Sept. 11		835	0.848	81.4 123.0 68.7	253.3	+11'2	(22)	(204)	77 c 1154 575 (3046)	259.906	J, M		o·892 o·870 o·789 o·689	248·9 292·7 235·7 279·4					176 256 370 58
254.044	J, M	833 833 837	0.962 0.954 0.953 0.866 0.944 0.897 0.607 0.731 0.740 0.940	238·8 253·0 292·6 226·9 276·6 276·4 297·5 129·3 67·2 76·0	359·6 352·6 323·8	+ 8.6 + 8.9 + 22.2	25 9 11	152 97 31	946 c 192 c 833 250 214	Sept. 18		841 842 838 838 838	0.493 0.510 0.173 0.278 0.356 0.877 0.929	197·3 187·7 63·1 71·5 74·3 100·3 63·3	220.0 215.2 202.0 195.4 190.6	-20.9 -23.2 +11.5 +11.9 +12.2	4 9 92 37 36 (178)	12 52 373 194 136 (767)	411 68 (1339)
Sept. 12 255.040 Sept. 13	J, M	837 837 838 838	0'967 0'913 0'757 0'717 0'960 0'995 0'838	276·4 228·0 293·8 296·3 80·6 79·1 128·6 74·9	323.7 319.7 200.8 189.9	+22.6 +23.7 +11.0 +11.6	(45) 14 15 79 0 (108)	(280) 61 46 471 344 (922)	(3508) 623 206 319 c 564 c 69 86 (1867)	260·638	н, је	841 842 838 838 838 838	0°907 0°906 0°866 0°820 0°552 0°546 0°072 0°109 0°153 0°201	307'2 292'2 240'5 280'5 214'8 202'5 348'7 37'4 54'3 65'2 80'0	220.9 214.5 200.6 197.5 194.1	-20.2 -23.3 +11.1 +12.1 +12.1 +11.8	0 8 48 13 0	6 49 303 105 27 86	104 518 1133 77 77 6 131 6 59 6
256·896	J, M	837 839 838 838 838	0.821 0.958 0.808 0.756 0.834 0.868 0.681	292.0 290.7 247.4 81.3 81.1 81.1 13.8	325.7 300.7 201.3 193.8 190.1	+22.0 -13.5 +11.3 +11.4 +11.3	33 6 69 30 44	123 11 473 114 222	162 475 n f 127 f	Sept. 19 261'911	Ј, М	842	0.805 0.902 0.890 0.872 0.662	23g·8 290·0 221·9	213'1	-23.2	(83)	(576)	620 595 396 (3864) 304 206
Sept. 15 257:729 I.	н, јр	837	o'999 o'880 o'822 o'997	204.6 249.4 291.4 290.6	327.1	+21'0	(182)	262	130 136 383 566 n	Sept. 20		838 838 838	o.307 o.356 o.138 o.956	284.0 291.3 306.2 108.9 127.7	181.0 188.9 505.1	+11.2	74 20 16 (115)	310 82 90 (505)	350 36 (896)

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column, it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated, are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 827. A regular spot, with some smaller spots close to it.

Group 833. A number of spots arranged in a straight line.

Group 837. A small spot on September 12. Three or four small spots, arranged in a straight line on September 13.

Group 838. A large regular spot, followed by a number of smaller spots arranged in a straight line.

Group 840. Two small faint spots.

Group 841. Two very small spots.

Group 842. A small regular spot.

MY E				1	Ieasure	s of Posit	tions an	d Areas	of Spots	and Facula	e upon	the	Sun's I	isk—co	ntinued				
			ii.	Sun's	HELI	OGRAPHIC	Sr	ors.	FACULE.				.5	Sun's	Никто	GRAPHIC	Sr	ors.	FACULE
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centro terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude,	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 262 ^d ·785 I. Sept. 21 264·085	н, јр	838 838 838 843 843 838 838	0°923 0°889 0°488 0°413 0°320 0°349 0°386 0°818	0 291:5 239:3 279:9 283:3 282:9 285:7 75:1 78:0 112:5 242:2 278:1 280:0	202'2 199'4 197'2 191'3 152'9 150'5	+11'0 +12'2 +11'7 +11'7 +11'7 +11'1 +10'7 +12'0	46 7 0 7 0 0 (60)	307 46 49 68 13 5 (488)	296 257 170 e 37 e 35 e 264 (1059)	1882. 267 ⁴ ·067 Sept. 25 267 ⁴ 947	J, K	845 846 847 848 843 845 846 847 848	0'943 0'967 0'993 0'962 0'753 0'721 0'634 0'866 0'890	0 68.0 115.7 72.7 114.5 282.0 259.0 279.0 64.7 118.9 72.5 116.2	67.6 50.9 40.1 37.2 151.3 67.2 50.9 41.5 37.1	+11'2 +21'1 -21'4 +18'4 -23'2 +11'2 +21'1 -20'8 +18'6 -22'5	0 177 49 164 (434) 25 0 208 62 209	24 1029 365 1057 (2650) 111 17 936 226 591	568 f 291 c 867 c (2456) 166 396 316 c 377 f 572 f 1238 c
Sept. 22 264·700 I.	н, јр	838 844 843 843 843 838 838 838 844 844	0.592 0.433 0.094 0.129 0.869 0.980 0.980 0.985 0.855 0.855 0.698 0.579	279'9 283'2 25'8 51'0 73'2 87'2 242'0 286'2 278'1 279'7 279'3 281'1 282'3	192·3 181·3 153·5 150·1 202·2 199·5 192·3 183·2 179·3	+11°5 +11°5 +11°6 +11°6 +11°6 +11°5 +11°5 +12°1 +12°1 +12°1	19 18 3 8 (120)	60 56 9 30 (519) 313 47 24 18	873 c 134 556 (1940) 219 308 216 c	Sept. 26 268 910 Sept. 27	J, К	843 845 845 846 847 848 849 849	0'947 0'905 0'898 0'749 0'844 0'482 0'472 0'777 0'882 0'867 0'902	291'2 305'7 258'8 245'8 279'3 53'4 57'0 126'2 71'4 120'3 86'2 85'1	150°1 67°4 67°1 51°2 41°3 36°7 31°8 27°4	+11.5 +22.8 +21.1 -21.4 +18.7 -22.7 + 6.7 + 7.4	14 0 2 198 33 159 38 0 (444)	66 4 7 923 176 595 190 13 (1974)	(3065) 115 254 543 85 581 p 326 sj 1074 c 329 e (3307)
Sept. 23 265:714 I. Sept. 24	н, је	843 843 845 838 838 843 843 843	0°130 0°089 0°979 0°943 0°843 0°820 0°346 0°268 0°913 0°844 0°924	288·5 279·2 288·5 279·2 278·7 283·6 288·8 70·2 87·9 69·4	202°0 153'6 68'1 202°0 191'9 154'4 149'3 67'9	+11'2 +11'2 +21'2 +11'1 +11'1 +11'1 +11'6 +20'8	2 10 0 (70)	33 32 60 (537) 281 9 43 47 19 (399)	517 c 522 (1782) 139 582 c 56 c 305 707 (1789)	269·910	J, M	845 845 846 847 848 848 849	0.759	261°1 279°8 293°1 249°9 29°3 36°6 136°6 68°2 129°4 124°9 87°4 85°6 54°1 111°5	70°0 67°1 50°9 41°1 38°2 34°8 31°8 28°2	+21'7 +21'7 -21'7 +18'9 -24'3 -22'0 + 6'6 + 7'8	8 16 233 37 45 78 89 31	20 39 949 121 138 369 291 81	423 587 113 156 272 c 162 s, 737 c 216 c 288 182
267.067	Ј, К	838 843 843	o-989 o-553	280°0 279°1 279°7	156.3 120.1	+11.1 +11.1 +10.0	14 14 16	80 38 57	730 f	Sept. 28			0.841	85.0 69.8			(537)	(2008)	335 (3642)

Group 838. A large regular spot, followed by a number of smaller spots arranged in a straight line.

Group 843. Several small spots, in a straight line.

Group 844. Three or four small spots, in the same straight line as 838.

Group 846. A very fine large regular spot.

Group 846. A very fine large regular spot.

Group 848. A fine group of very irregular shape. The preceding spot is regular, but the following spots undergo constant change.

Group 849. An irregular spot, with several small spots close to it.

			in in	Sun's	HELIO	FRAPHIC	Spe	ors.	FACULE.				in is	Sun's	Непос	GRAPHIC	Sro	TS.	FACULA:
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 270 ^d ·668	н, эр	845	0'992 0'893 0'881	281'1 252'3 302'1 350'5	71.6	+21'4	3	9	798 261 101	1882. 274 ^d ·060 Oct. 2	J, M	850	o:585 o:887	87·8 67·6	348.3	+ 6.6	10 (508)	28 (2101)	274 f 356 (1937)
Sept. 29		845 846 847 848 848 849 849	0°262 0°555 0°501 0°690 0°705 0°599 0°652 0°897 0°915	8.7 148.0 62.8 136.7 130.6 87.7 86.0 68.4 84.1	66.6 50.6 41.0 37.8 33.9 32.1 28.2	+21.7 -21.7 +19.2 -24.3 -21.8 + 6.8 + 7.7	10 165 18 30 38 47 15	38 928 115 166 308 326 72 (1962)	169 c 56 c 75 c 142 c 200 c 48 c 243 525 (2618)	274.899	Ј, М	846 847 848 848 849 850 851	0'925 0'778 0'716 0'495 0'622 0'573 0'331 0'404 0'779 0'869 0'940	271.5 292.2 230.7 300.2 216.8 214.1 274.7 88.2 65.9 76.8	49'7 40'2 37'1 33'4 32'6 349'3 323'0	-21.7 +20.2 -23.8 -22.2 + 7.7 + 6.7 + 22.7	290 16 48 110 88 11	972 40 160 377 384 39 23	245 398 549 e 232 e 139 575
271'905 Sept. 30	J, M	845 845 846 847 848 849 849 850	0°962 0°339 0°352 0°479 0°298 0°566 0°564 0°345 0°413 0°931	255.1 318.6 322.1 175.6 41.3 155.4 147.5 88.0 86.4 85.6 65.0	66·5 66·2 50·5 40·7 37·8 33·7 32·5 28·2 343·8	+21'2 +22'6 -21'7 +19'4 -24'3 -22'0 + 7'6 + 6'6	6 0 198 19 40 93 75 10 6 (447)	29 10 1002 101 159 395 355 31 44 (2126)	748 P 84 (1074)	Oct. 3 275.645 I.	н, јр	846 846 847 848 848 849	0.955 0.969 0.874 0.822 0.807 0.801 0.619 0.704 0.658 0.483	64.8 272.3 290.7 252.2 240.8 236.3 294.3 225.7 224.2 274.0	51°2 49°0 40°0 36°6 32°9 32°2	-18'9 -21'9 +20'0 -24'0 -22'4 + 7'6	(566) 5 200 5 24 39 48	56 967 18 149 340 318	626
272°991	J, M	845 846 847 848 848 849 850	0.844 0.517 0.513 0.233 0.515 0.489 0.099 0.770 0.962	286.7 300.3 202.4 350.4 178.9 171.4 81.2 86.8 67.6	66·8 50·5 40·8 37·8 33·9 32·7 347·9	+20'9 -21'7 +19'8 -24'2 -22'2 + 7'4 + 6'7	14 239 15 37 103 109 3	43 993 93 163 434 472 16	634 c 317	Oct. 4		852 852 850 853 851	0.422 0.419 0.234 0.408 0.670 0.875 0.924 0.931 0.982	198.4 191.0 88.6 86.5 63.0 115.3 66.9 147.1 81.5	349.7 339.2 323.2	-17·1 + 6·7 + 7·4 + 22·7	(332)	10 8 15 14 8	82 203 87 146 (1868)
Oct. 1 274°060	J, M	845 846 847 848 848 849	0.812 0.687 0.617 0.356 0.551 0.508 0.149	269.8 293.8 221.1 312.5 202.0 197.1 279.9	66·3 50·0 40·4 37·2 33·5 32·7	+21'0 -21'7 +20'3 -24'2 -22'4 + 8'0	(520) 2 273 17 42 75 89	11 1046 64 163 371 418	293 431 c 583 c	276·785 I.	н, јр	846 847 848 848 849 852 852	0'942 0'915 0'789 0'831 0'794 0'693 0'561 0'523 0'033	292.7 242.3 290.2 235.2 235.4 273.5 224.1 218.4 270.0	49.0 39.9 36.4 33.0 32.2 12.3 8.1 350.1	-22:2 +19:8 -24:1 -22:3 + 7:1 -17:9 -18:1 + 6:4	201 4 27 28 29 1 0 5	1015 16 168 230 222 17 9	583 492 c } 433 c

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Facula relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Facula are expressed in millionths of the Sun's visible Hemisphere.

Group 845. A small spot.

Group 846. A very fine large regular spot.

Group 847. Two small spots.

Group 849. An irregular spot, with several small spots close to it.

Group 849. A small spot, with several small spots close to it.

Group 851. A very small faint spot.

Group 852. Two small spots.

Group 852. Two small spots.

			e in	Sun's	HELIC	GRAPHIC	Sr	ors.	FACULE.					Sun's	Нице	GRAPHIC	Sre	OTS.	FACULAL
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude,	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day),	Area for each Group (and for Day).
1882. 27 ^{6d} ·785 I.	н, јр	853 853 851 854	0.108 0.168 0.491 0.885 0.868 0.903	86.0 83.9 56.8 83.9 65.8 106.3	342.0 338.5 322.1 285.6	+ 7.4 + 21.3	o 7 0	15 31 6 10	182 <i>f</i> 112 111	1882. 280 ^d ·898 Oct. 9	Ј, м	853	0'824 0'685 0'807 0'880 0'949	299:3 275:2 68:0 121:9 76:6	337'4	+ 8.1	5 (5)	26	120 88 e 171 346 163 (2072)
Oct. 5 277.646 I.	н, јр	846 848 849 850 853	0.891 0.826 0.238 0.099	294'1 287'0 245'3 240'2 274'0 270'8 276'0	48·9 33·7 32·8 35o·7 342·6	-22.8 + 6.9 + 6.4 + 7.0	(302) 307 50 10 7	990 312 103 23 27	(1913) 411 245 718 c 687 c 275 c	281.671 I. Oct. 10	п, јр	855 856		276·2 295·8 291·0 78·4 76·7 134·9 121·4	318:4	+17.1	o 45 (45)	11 261 (272)	590 257 434 c 411 91 73 (1856)
Oct. 6		853 851 854	0°037 0°349 0°770 0°783 0°924	312°1 41°8 84°5 65°0 109°8	338·5 322·5 286·7	+ 7.8 +21.2 + 5.7	(394)	54 5 8 (1522)	71 f 64 135 (2606)	282.657 I. Oct. 11	н, јр	855 856	0.966 0.939 0.762 0.916 0.874	243·4 275·7 286·2 79·1 59·3	320.3	+16.5	0 27 (27)	7 169 (176)	63 239 185 n 725 n f 45 (1257)
279*037	J, К	848 849 850 853 853	0'990 0'981 0'965 0'538 0'429 0'335 0'833 0'872	244'3 246'8 274'9 272'1 273'3 276'3 242'7 119'0	36·5 33·7 33·7 351·2 344·1 338·2	-24.3 -21.2 + 6.4 + 6.5 + 7.1 + 8.0	0 0 27 4 0	166 61 118 14 4 55	495 f 399 f	283:652 I. Oct. 12	н, јр	855 855 856	0'986 0'895 0'860 0'807 0'874 0'977	276·5 284·5 286·6 78·9 76·9 62·5	321°4 317°1 203°6	+15.6 +17.3 +12.4	0 3 26 (29)	9 9 204 (222)	710 n 251 c 488 220 (1831)
Oct. 7 279'964 Oct. 8	Ј, К	853	0.973 0.922 0.867 0.834 0.527 0.765 0.846 0.893	287.6 247.4 292.5 276.8 275.7 61.8 122.5 69.2	338.2	+ 8.3	(43) 16	50 (50)	196 (1518) 230 221 445 129 c 162 898 157 (2242)	284°924 Oct. 13	к, м	856 857 857 857	0'978 0'833 0'789 0'609 0'960 0'983 0'986 0'757 0'887	285.7 242.2 292.8 77.0 75.0 71.6 76.1 61.6	203·6 166·4 160·5 159·3	+12.6 +15.8 +19.1	60 0 56 (116)	201 123 122 242 (688)	186 149 319 110 c 627 c
280.898	J, M		o 976 o 940 o 893 o 828					(32)	243 210 639 92	285·785 I.	н, јр		0'946 0'929 0'881 0'831	244'4 256'5 295'7 278'8 74'0	202'6	+12.5	26	189	109 85 509 64 117 c

Group 846. A very fine large regular spot.
Group 848. A fine group of very irregular shape. The preceding spot is regular, but the following spots undergo constant change.
Group 849. An irregular spot, with several small spots close to it.
Group 850. A small spot.
Group 853. A small spot.
Group 853. A small spot.
Group 853. A small spot.
Group 854. A very small spot.
Group 855. One or two small faint spots.
Group 856. A regular spot.
Group 857. A very fine extensive group, composed of a great number of small spots. The group undergoes great and frequent changes.

			j.g	Sun's	Helio	энагніс	Sre	ors.	FACULÆ.	-			.g	Sun's	Неглос	RAPHIC	Spo	TS.	FACULÆ.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Su Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 285 ^d ·785 I. Oct. 14 286·717 I.	н, ле	857 857 857 857 857 857 857 857	0.898 0.933 0.939 0.814 0.942 0.913 0.907 0.887	258·2 297·4 239·9 63·1 75·0 70·7 73·6 70·6	203'4 166'3 166'3 164'8 161'5 158'0	+15.7 +16.3 +19.3 +12.4 +15.3 +18.8 +16.8 +19.6	9 13 41 (89) 31 21 27 0 11 (90)	64 84 471 (808) 173 69 112 81 195 (630)	1263 e 211 240 (2598) 135 300 231	1882. 289 ^d ·836 I. Oct. 18		860 856 861 858 859 857 857 857	0'458 0'439 0'318 0'339 0'267 0'317 0'267 0'371	° 214'9 292'8 246'3 236'2 231'3 287'1 294'2 291'9 299'9 29'4 35'8 47'2 50'0 54'8	212'0 202'6 200'5 193'6 194'3 168'2 164'8 164'4 158'7	-21.5 +15.3 +15.3 +12.1 +15.9 +18.9 +20.3 +15.8 +19.0	0 29 14 0 18 24 16 15 30 (146)	13 160 77 3 37 173 91 95 314 (963)	63 110 268 112 39 c
287.691 I. Oct. 16	F, JP	856 858 859 857 857 857 857 857	0.976 0.937 0.867 0.852 0.119 0.203 0.218 0.259 0.627 0.655 0.678 0.720 0.718 0.762 0.934	259.6 250.8 296.9 235.8 10.5 56.1 43.4 48.6 72.7 67.3 71.5 68.2 70.7 68.3 85.6	203.0 194.4 195.4 192.7 166.1 164.7 162.3 159.3 159.1 155.6	+12'4 +12'1 +14'1 +15'3 +15'3 +19'0 +16'6 +17'7 +20'1	27 0 0 10 23 2 5 0 2	180 55 16 34 37 89 86 143 40 47 (727)	197 283 254 257 1096 <i>c</i> 220 (2307)	I, Oct. 19		860 856 861 859 859 862 857 857 857 863	0.967 0.883 0.843 0.640 0.624 0.577 0.521 0.119 0.246 0.262 0.184 0.246	238·6 285·1 239·6 283·1 288·0 291·0 290·8 324·2 337·1 351·5 352·8 18·4 155·7 63·2 84·6	214.7 202.8 201.1 197.3 193.5 167.3 165.7 164.7 158.6 147.1	-21'9 +12'6 +15'+ +16'4 +15'3 +10'9 +18'4 +20'4 +15'9 +18'8 -27'9	0 24 20 4 4 8 8 24 18 12 31 2	6 168 138 15 31 30 154 175 41 266 7	154 109 230 f 83 c 102 c
288 ⁸ 23 I. Oct. 17	F, JP	856 858 858 859 859 857 857 857	0'928 0'257 0'157 0'135 0'200 0'166 0'423 0'449 0'475 0'543 0'887	241.6 297.6 311.0 328.8 327.1 343.8 65.1 57.3 65.8 63.0 57.4 71.8	202'9 196'4 193'6 195'9 192'2 166'0 162'8 158'9	+12·3 +11·4 +12·2 +15·2 +16·2 +19·1 +16·2 +19·0	31 1 8 8 0 7 29 20 35	169 5 14 56 11 30 98 78 203	307 82 c 31 c 53 c	291'991	к, м	856 861 859 862 862 862 857 857 857	0.921 0.919 0.826 0.821 0.748 0.420 0.375 0.316 0.434 0.395 0.354 0.370 0.317	245·5 227·6 281·2 284·6 286·1 286·3 286·4 303·1 300·4 302·0 313·7 310·6	202'4 201'7 194'7 170'9 168'0 164'5 169'1 167'3 164'7 163'1 161'1	+12'3 +15'0 +15'6 +11'1 +11'2 +10'2 +18'7 +16'6 +15'9 +20'0 +17'1	49 62 6 27 9 40 36 0 21 15	183 243 56 83 54 184 169 10 43 48	159 114 806 e

Group 856. A regular spot.
Group 857. A very fine extensive group, composed of a great number of small spots. The group undergoes great and frequent changes.
Group 858. Two small spots, arranged in a straight line.
Group 860. A very small spot.
Group 862. An irregular group, undergoing several changes.
Group 863. Two very small spots and a number of small spots arranged in a straight line.
Group 863. Two very small spots.
Group 863. Two very small spots.

		1	e ii.	Sun's	Непло	GRAPHIC	Spe	ors.	FACULÆ.				ii ii	Sun's	Herro	GRAPHIC	Src	ors.	FACULAS
Greenwich Mean Solar Time.	Measurers,	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 291 ^d ·991	к, м	857 857 857 863 864	0:330 0:340 0:267 0:550 0:493 0:845 0:879	322.6 330.5 321.6 175.3 56.9 62.8 87.6	158'9 157'0 156'6 144'9 120'6	0 +20'4 +22'5 +17'4 -27'7 +20'4	43 0 15 0 3	181 20 30 8 20	123	1882. 294 ^d ·135 Oct. 22	к, м	866 864 867 868	0°281 0°265 0°742 0°982 0°880	300°9 343°1 69°0 114°0 62°7	133.7 124.1 72.5 43.6	+13·2 +19·7 +18·9 -22·4	0 65 0 389 (528)	8 402 6 1318 (2679)	925 p 307 (3121)
Oct. 20 292.696 I.	м, јн	861 861 859 859 859 862 862 862 857 857 857 857 857 857 857 857 857 857	0'960 0'967 0'913 0'904 0'883 0'902 0'850 0'850 0'551 0'553 0'553 0'553 0'553 0'553 0'482 0'482 0'442 0'428 0'431 0'377 0'386 0'364 0'738 0'950	73.7 245.4 252.7 284.1 283.3 283.6 286.0 281.2 284.7 281.5 298.1 292.8 306.5 293.8 299.0 303.3 31.7 303.3 45.4 59.1 68.2	203:3 200:6 203:1 197:9 196:7 195:2 171:6 170:2 165:7 162:9 170:1 169:2 167:3 165:6 164:6 162:5 159:3 157:5 157:5 157:5	+150 +148 +123 +1111 +143 +1615 +122 + 199 +126 +186 +165 +237 +151 +163 +201 +221 +163 +216 +197	(326) 38 0 36 0 0 20 2 47 0 15 2 3 0 32 (231)	(1344) 183 5 145 10 8 7 99 5 214 4 151 12 8 19 10 5 101 21 18 9 137	117 (1431) 439 66 786 c	Oct. 23 295.657 I.	н, лн	862 862 857 866 865 864 864 862 862 862 867 866 864 864 864 864 864 864 868	0.860 0.850 0.453 0.414 0.352 0.929 0.802 0.937 0.872 0.954 0.920 0.941 0.915 0.523 0.465 0.437 0.427 0.871	257'9 280'1 279'3 288'5 288'5 285'9 288'0 243'4 318'2 116'7 60'0 84'4 259'9 279'8 279'2 287'8 289'7 285'5 282'6 286'4 301'6 302'1 308'3 313'9 118'9 58'3	173.5 167.2 170.5 165.8 134.8 134.2 132.4 127.2 122.1 44.0 172.3 166.6 169.9 165.7 165.4 133.1 127.6 123.9 120.8 118.7 44.3	+10.6 +18.7 +16.1 +12.8 - 8.3 - 5.5 +20.2 +20.0 -22.5 +10.9	18 15 77 7 19 0 125 84 319 (664) 8 0 30 12 9 11 8 48 27 17 3 156	50 69 210 16 70 4 5 490 396 1204 (2514) 43 30 153 57 15 18 362 193 210 27 1012	962 c 266 89 (3209) 274 } 2006
294:135	К, М	861 856 859 862 862 857 857 857 857	0.994 0.961 0.804 0.732 0.784 0.731	255°1 284°3 282°2 278°6 280°2 279°7 290°2 287°3 293°0 229°8	205.7 203.9 193.8 173.0 166.4 170.3 165.8 162.4 134.4	+14.6 +12.7 +9.7 +11.2 +16.1 +18.9 +16.1 +19.7 -7.6	0 0 4 13 15 29 7 6 0	303 214 43 60 95 164 15 46 5	36 900 f	Oct. 24 296.991	к, м	866 865 864 864	0.792 0.881 0.885 0.973 0.967 0.841 0.830 0.829 0.739 0.620	290.6 267.7 278.6 255.9 292.3 294.1	137'9 135'9 128'1 118'2	+ 9.8 - 8.9 +19.7 +18.5	(329) 5 0 80 113	(2138) 27 40 327 667	119 263 744 (5448) 568 21 173 (233)

Group 856. A regular spot.
Group 857. A very fine extensive group, composed of a great number of small spots. The group undergoes great and frequent changes.
Group 861. An irregular spot, with two or three small spots close to it.
Group 862. An irregular group, undergoing several changes.
The small spots disappear before October 21.
Group 864. A rectangular group of small spots on October 22.
Group 864. A rectangular group of small spots on October 22.
Group 865. A small spots disappear before October 22.
Group 866. Two very small spots.
Group 865. A small spot.
Group 868. A very fine large regular spot.
Group 866. Two very small spots.
Group 868. A very fine large regular spot.

			ii	Sun's	Helio	опарию	Spo	ors.	FACULÆ.		1		II.	Sun's	Непос	GRAPHIC	Spo	TS.	FACULÆ.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 96·991 Oct. 25 298·035 Oct. 26 298·807	к, м	868 868 865 864 869 868 864 864 869 869 869 863 870	0.725 0.939 0.982 0.926 0.728 0.948 0.948 0.840 0.676 0.593 0.836 0.920 0.923	0 127.5 82.6 104.5 251.7 338.7 279.0 259.2 290.3 286.4 139.4 82.6 67.2 108.8 281.9 260.2 289.3 289.4 283.6 67.2 128.3 289.4 283.6 153.4 74.2 143.4 112.2	139.7 138.2 124.5 109.9 43.4 131.9 128.0 121.9 113.3 107.7 43.7 334.2	- 8·2 +10·0 - 8·7 +19·6 +14·6 -22·4 - 8·2 +19·7 +19·5 +13·9 +14·4 -22·2 +16·3	216 (414) 0 0 269 9 218 (496) 2 62 86 12 6 173 39	1071 (2132) 13 25 1101 46 1013 (2198) 29 426 414 24 10 999 403	845 f 131 167 (2138) 71 75 109 nf 294 f 680 c 53 c 552 f 150 100 225 (2309) 388 710 s p 1305 c 97 c 367 c 482 c 342 d 492 d 494 d 494 d 494 d 495 d 496 d 497 d 49	1882. 301 ^d ·654 I. Oct. 30 302·902 Oct. 31 304·123	к, м	868 871 872 870 870 870 870 870 870 870 870 870 870	0.931 0.568 0.364 0.480 0.716 0.777 0.827 0.869 0.731 0.411 0.642 0.509 0.582 0.648 0.901	272.6 218.5 150.5 149.3 72.1 73.8 72.8 296.3 233.0 65.5 70.4 69.0 114.8 240.7 219.5 213.7 310.8 324.4 153.8 47.1	42.6 9.6 5.1 335.3 329.7 324.9 42.9 5.1 333.0 335.1 329.4 3.8 5.0 359.7 334.6	-22'2 -14'1 -20'1 +15'9 +15'4 +16'6 -22'7 -19'9 -21'6 +16'0 +14'8 +16'8 -22'8 -22'8 -22'8 -22'8 -21'6 +15'6 +15'6	186 3 1 57 27 26 (300) 237 5 15 78 34 39 (408) 244 9 10 12 19 0 68	1112 18 48 309 199 142 (1828) 954 25 63 76 101 111 259	167 c 207 c 683 f (1121) 239 1050 n 758 J 131 (2187)
Oct. 27 299'671 I. Oct. 28 301'058	к, м	864 864 869 868 870 870 870 868 871 870 870 870	0.963 0.989 0.968 0.874 0.456 0.970 0.990 0.896 0.897 0.856 0.508 0.454 0.891 0.849	289'3 288'6 283'6 172'7 74'6 76'1 73'3 123'1 108'1 271'9 207'6 132'5 73'3 75'7 73'7	128.8 122.3 107.3 42.8 335.1 330.0 323.8 42.8 8.0 335.3 330.1 324.5	+19.8 +19.1 +14.1 -22.2 +14.6 +17.2 -22.3 -13.6 +16.0 +14.6 +16.6	(380) 70 65 0 155 46 22 0 (358) 247 6 126 89 69 (537)	(2305) 477 551 14 948 311 277 211 (2789) 1131 33 372 400 308 (2244)	1577 c 311 c 1343 c 75 93	Nov. 1 304'947	k, M	868 870 870 868 871 872 874 874 873 870 870		279'4 244'3 239'9 232'18 299'3 309'2 175'2 12'6 37'6 42'0 60'9 101'7	43.0 7.2 9.6 3.9 5.1 358.5 334.7 334.2 328.9 324.5	+14.7 +17.1 -22.4 -13.0 -19.8 -19.8 +18.2 +20.2 -21.4 +15.9 +14.1 +17.2	(387) 189 0 11 13 23 22 0 59 3 16	61 55	200 536 363 (2366) 270 1424 8

Group 864. A rectangular group of small spots on October 22. The group greatly increases in size on the following days, and on October 25 and 26 consists almost entirely of two large spots.

Group 865. One or two small spots.

Group 866. Two very small spots.

Group 870. A large regular spot, followed by two clusters of small spots. The small spots disappear before November 4.

Group 871. Three very small spots in a straight line.

Group 872. Several small spots in a straight line.

Group 874. A number of spots in a straight line. The middle spots disappear, and the spots at the beginning and end of the line coalesce to form two spots before November 3.

	11.7		e in	Sun's	Непо	GRAPHIC	Sre	OTS.	FACULÆ.			-0	.5	Sun's	HELIO	GRAPHIC	Spo	TS.	FACULE.
Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis,	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 305 ^d ·902	к, м	868 872 874 874 870 870 870	0.818 0.986 0.736 0.684 0.597 0.272 0.197 0.235	279'99'246'5'238'8'292'7'299'0'321'5'333'2'358'8	41'9 5'9 5'7 357'8 334'3 329'4 324'5	0 -22'4 -19'5 +18'2 +20'1 +16'1 +14'0 +17'4	0 30 49 15 43 2 0 (139)	741 153 200 152 230 8 5 (1489)	135 1234 8f 408 c	1882. 308 ^d ·912	к, м	876 876 877 877 878	0'780 0'838 0'951 0'964 0'969 0'894 0'922 0'935	0 119°2 116°1 116°4 112°8 75°3 60°3 70°2 104°3	238:3 231:8 216:2 212:8 208:6	0 -19'8 -19'4 -23'7 -20'8 +15'1	98 21 18 0 7	569 293 120 41 26	348 c 161 c 414 P 177 68 120
306.913 Nov. 4	к, м	872 872 874 874 875 870 870 876 876	0'975 0'908 0'889 0'830 0'830 0'828 0'742 0'589 0'436 0'295 0'963 0'991 0'838 0'993	239'7 279'6 245'5 243'7 290'2 294'1 247'3 299'8 3111'7 110'2 122'1 62'4	9'9 2'7 5'9 356'9 344'2 334'0 324'3 239'2 230'7	-19'7 -19'2 +18'8 +20'3 - 9'9 +16'0 +14'7 -19'7 -19'4	21 12 43 16 8 39 0 120 0	124 116 174 117 37 225 5 630 533	482 107 399 ¢ 451 ¢ 459 n p 116 110 (2124)	309.674 I. Nov. 7	н, јн	875 875 876 876 876 876 877 877 878	0'981 0'965 0'933 0'860 0'677 0'712 0'771 0'889 0'916 0'818 0'913	293.7 258.5 258.1 286.9 124.7 120.5 119.6 115.6 75.1 57.2 66.3	348·2 342·2 333·3 238·4 234·4 229·3 210·5 211·5 208·3	-10°2 -9°8 +16°3 -19°8 -18°5 -20°1 -23°3 -21°9 +15°1	12 0 43 96 6 11 46 44 11	99 102 209 473 119 61 250 153 37	338 819 c 1453 e 856 c 761 c 1754 f 272 153 (6406)
307.680 I.	м, н	872 872 874 874 875 875 875 876 876	0.906 0.909 0.839 0.738 0.711 0.689 0.566 0.911	279'3 248'3 246'0 288'1 291'3 252'2 253'4 251'8 292'8 113'8 111'7 126'5 78'6 61'4	10°1 2°2 5°9 356°8 346°2 344°2 342°2 333°5 238°6 232°8	-19'3 -19'8 +18'0 +19'8 -10'3 - 8'9 - 9'6 +15'9 -19'8 -19'0	24 14 42 24 23 0 17 45 106 49	83 125 190 71 136 15 40 231 499 315	187 826 c 468 c 256 p 263 c 243 c 702 c 139 274 277	311'063 Nov. 8	K, M	870 876 876 876 876 879 879 877 878	0'492 0'472 0'540 0'581 0'455 0'523 0'723	247'4 285'8 142'9 139'0 135'2 132'5 50'3 52'8 126'9 121'1 72'5 103'1 136'9	333.6 237.9 237.3 232.5 229.2 234.4 229.7 217.4 211.1 208.7	+16.2 -19.8 -17.6 -19.3 -20.0 +21.4 -23.0 -21.1 +15.3	21 121 47 17 6 1 0 50 19 18	200 485 179 66 41 9 4 212 149 43	3 94 878 J 70 97 (2742)
Nov. 5 308'912	к, м	874 874 872 875 870	o.899 o.990 o.955 9.978 o.881	299.3 288.2 289.9 248.7 257.0 288.4	6·7 357·2 0·1 344·8 333·4	+18.5 +20.1 -20.0 - 9.6 +16.3	0 0 4 71 49	102 23 48 336 228		311*898	К, М	876 876 876 876 877 877	0'412	288·7 254·4 168·8 163·9 158·7 149·1 136·8 127·9	241.2 238.2 236.7 230.6 217.7 211.5	-16.9 -20.0 -17.8 -20.1 -23.8 -21.1	16 96 54 12 43 21	81 475 274 28 276 109	540 60

Group 868. A very fine large regular spot.
Group 872. Several small spots in a straight line.
Group 874. A number of spots in a straight line.
Group 874. A number of spots in a straight line.
Group 875. Several small spots on November 4.
Group 875. Several small spots on November 4.
Group 876. A very fine large regular spot on November 5.
Group 876. Several small spots on November 4.
Group 876. A very fine spot, and a number of spots arranged in a straight line above it.
Group 876. A very fine spot, and a number of spots arranged in a straight line above it.
Group 877. A regular spot, followed by several smaller spots, one of them very large, and another large.
Group 877. A regular spot, followed by several smaller spots.
Group 878. Several small spots.

Group 879. Two very small faint spots.

			.8	Sum's	Helio	GRAPHIC	SP	ots.	FACULÆ.				.E	Sun's	Нило	GRAPHIC	Spe	ots.	FACULE
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 311 ^d ·898 Nov. 9		878 880		69.6 103.5 75.6 36.6 72.7 97.4	208.6 184.7	-10.3 -10.3	13 3	31 9 (1283)	216 f 476 36 604 620 (2552)	1882. 314 ^d ·681 I. Nov. 12	н, г	878 882 884 885	0.612	22:1 61:6 99:1 69:8 96:8 62:2 78:5 99:7	0 205*9 174*0 148*2 122*6	+ 9.5 + 19.3 - 6.5 + 20.4	0 0 8 0	4 12 37 500	76 s, 1256 c 270 217 271 91 (2949)
Nov. 10		876 876 877 877 878 880	0.747 0.407 0.403 0.494 0.406 0.707 0.904 0.911 0.938	240.7 210.5 198.4 158.9 144.9 58.7 108.1 113.1 72.3 97.3	242°1 237°4 218°5 212°3 208°7 186°8	-17'4 -19'2 -24'2 -20'4 +15'1 -10'3	44 181 54 4 11 0	112 419 270 41 26 8	55 55 55 55 55 55 55 562 (1568)	315·657	н, ғ	876 876 876 877 877 877 878 878 878 878	0.735	243'0 244'4 239'9 240'1 219'2 215'9 221'5 315'0 316'9 298'9 308'2	243·3 237·9 235·2 218·3 212·5 213·2 208·5 205·5 206·6 204·3	-17.7 -19.5 -18.1 -23.0 -19.4 -16.3 +15.2 +13.0 + 8.8 + 9.6	14 74 28 38 0 0 3 0	105 393 209 229 9 3 11 6	111 98 c 192 c 97 c
314'049	к, м	881 876 876 883 877 877 878 880 882 884	0.908 0.553 0.545 0.505 0.454 0.455 0.403 0.251 0.525 0.715 0.938	257'4 306'9 229'9 221'5 205'3 183'4 169'6 34'1 114'5 67'2 98'6	245·3 242·8 237·6 228·9 218·6 212·5 207·8 188·0 173·1 148·0	+22.0 -17.8 -19.3 -21.2 -23.9 -20.3 +15.0 - 9.9 +18.3 - 7.0	0 22 212 6 62 5 12 8 5	4 102 867 22 269 26 31 20 20 89	63	Nov. 13 316:663 I.	н, ғ	884 885	0.745 0.961 0.762 0.869 0.945 0.947 0.944 0.892 0.792	102'1 70'5 76'7 103'2 105'0 298'3 249'6 293'4 234'3	148.7	- 7°0 + 19°5	(590)	59 1433 (2467)	62 e 1318 e 136 70 42 (2126) 49 106 68 84
Nov. 11 314'681 I.	н, г	876 876 876 876 883 877 877 877	0.940 0.957 0.951 0.949 0.642 0.593 0.601 0.514 0.476 0.415 0.396	297'9 304'7 258'7 236'7 234'1 230'3 229'4 218'0 199'2 192'0 188'9	242'8 238'8 237'9 235'2 228'3 218'4 213'9 212'3	-18·1 -17·7 -19·9 -18·7 -21·0 -23·7 -20·9 -20·0	22 0 71 29 0 45	109 31 415 205 6 270 5	137 99 140 59 c 198 c	Nov. 14 317:655 I.	м, г	876 876 876 877 878 886 884 885	0'901 0'859 0'831 0'698 0'480 0'239 0'576 0'880 0'901	24843 24448 2455 2306 2965 3053 1066 697 1452 2920 2367 2476	243°9 238°0 235°1 218°4 208°7 193°8 148°7 121°8	-18·1 -20·0 -18·5 -24·0 +14·7 +10·6 - 7·2 +19·1	12 54 11 43 2 0 9 468 (599)	75 431 204 232 8 2 66 1761 (2779)	543 c 84 c 41 c 673 e 24 (1672)

Group 876. A very fine spot, and a number of spots arranged in a straight line above it. These spots undergo several changes, and by November 14 only two regular spots remain. The whole group, therefore, then consists of three regular spots, one of them very large, and another large.

Group 877. A regular spot, followed by several smaller spots. Of these latter, all but one disappears before November 9, and that one disappears before November 14.

Group 878. Several small spots.

Group 880. A small spot.

Group 882. Two small spots. The group is not seen on November 10.

Group 883. A small spot.

Group 884. A small spot.

Group 885. A very fine large spot. On November 18 a large portion becomes detached from the principal spot. Smaller portions become detached on the following days.

Group 886. A small faint spot.

		-	se in	Sun's	Ницо	GRAPHIC	SP	отв.	FACULÆ.	1 19.44			.8.	Sun's	Ницо	BRAPHIC	Spo	ors.	FACULE
Greenwich Mean Solar Time.	Mensurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Atea for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 317 ^d ·655 I.	М, Б	877 887 887 884 885 885	0.815 0.297 0.278 0.387 0.696 0.761 0.832 0.923 0.983	237.8 342.3 346.2 116.4 77.6 66.8 60.7 52.7 97.3	0 218·2 174·8 173·3 148·9 125·7 121·7	0 -24'0 +18'9 +18'3 - 7'4 +10'5 +19'2	27 4 0 10 0 515	188 23 5 57 57 2003	390 c 330 50 62	1882. 320 ^d ·985 Nov. 18	к, м	889	0.684 0.842 0.863 0.888 0.912 0.913	63.4 110.3 28.5	83.0	+ 10-8	50 (895)	146	312 f 34 100 438 559 35 (2686)
Nov. 15 318·647 I.	м, н	876 876 877 887 884 885 888 889	0'932 0'861 0'993 0'984 0'912 0'419 0'212 0'613 0'927 0'959	299°3 243°0 249°5 250°9 242°1 313°4 145°4 61°2 97°6 79°1	237.9 234.3 218.1 175.0 149.4 121.8 89.0 82.8	-20°0 -18°3 -24°1 +19°0 - 7°5 +19°2 - 6°0 +11°2	(663) 41 11 28 4 10 497 10 27	238 93 146 18 45 2249 49 150	190 403 576 sf 199 c	322*090 Nov. 19	к, м	887 884 885 885 885 888 888 889 890	0.648 0.306 0.332 0.347 0.325 0.410 0.487	260°2 290°0 256°0 292°2 329°4 343°7 120°9 111°5 73°2 114°3 60°2	177'1 150'0 127'4 121'0 116'8 94'5 88'3 82'7 38'8	+21.4	0 20 0 492 96 14 19 31 135 (807)	124 38 16 2008 377 32 40 123 649	456 p 140 (1359)
I. Nov. 17	м, н	877 887 884 885 888 889	0.891 0.780 0.979 0.583 0.213 0.450 0.806 0.867 0.986	284·2 294·0 244·4 300·6 213·6 49·6 99·7 78·8 109·3	216'9 173'3 148'1 120'1 88'5 81'5	-24'4 +19'2 - 7'8 +19'1 - 6'3 +10'9	(628) 17 3 10 404 11 18 (463)	100 35 44 2352 104 136 (2771)	145 (2271) 1118 289 525 f 39 c 175 c 504 f 255 (2905)	322.939	к, м	887 885 885 885 885 888 888 888 889	0.450 0.486 0.440 0.405 0.186 0.251 0.321	248·3 262·3 289·4 303·1 310·4 317·9 320·9 319·7 154·8 127·3 62·8 116·2 121·4 171·6	176.9 127.3 120.8 120.3 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0	+18.4	24 3 309 0 33 0 6 23 80	99 7 1673 47 188 19 11 27 96 517	79 276 472 n 619 c 162 173
320-985	к, м	887 887 884 885 885 888 888	0.930 0.691 0.688 0.676 0.798 0.753 0.437 0.150 0.295 0.549 0.617	286·3 242·5 276·7 256·0 292·5 292·8 247·8 347·4 14·0 105·5 102·3	176.5 172.2 149.4 127.3 121.1 93.4 88.3	+19°1 +18°4 - 7°4 +10°6 +18°8 - 6°6 - 5°8	39 15 19 0 733 19 20	122 50 57 8 2417 61 76	38 168 181 338 483 c	Nov. 20 324.025 Nov. 21	к, м	885 885 888 888 889 890	0.842	298.6 306.0 228.0 199.2 15.6 120.6 110.0	120.8 116.3 95.9 88.4 82.9 37.9	+19'0 +21'9 - 7'5 - 6'6 +10'6 -22'5	(478) 229 33 0 14 73 (349)	(2684) 1583 136 11 27 55 308 (2120)	83

Group 876. A very fine spot, and a number of spots arranged in a straight line above it. These spots undergo several changes, and by November 14 only two regular spots remain. The whole group, therefore, then consists of three regular spots, one of them very large, and another large.

Group 877. A regular spot, followed by several smaller spots. Of these latter, all but one disappear before November 9, and that one disappears before November 14.

Group 884. A small regular spot.

Group 885. A very fine large spot. On November 18 a large portion becomes detached from the principal spot.

Group 887. Several small faint spots. The preceding spot becomes larger and darker by November 19, and the other spots disappear.

Group 888. Two small spots.

Group 889. A regular spot spot solve the following days.

Group 890. Two regular spots close together. The preceding spot shows a tendency to break up, and several small spots form round the group on November 25 and following days. The smaller spots disappear before December 1, leaving only the second of the two original spots.

			.9	Sun's	Нецю	GRAPHIC	Src	OTS.	FACULÆ.				II.	Sun's	HELIOG	RAPHIC	Spo	TS.	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
I. Nov. 23	м, н	885 888 889 890 891 892 885 885 888 889 893 890 891 892	0.340 0.267 0.2167 0.2167 0.680 0.723 0.961 0.879 0.923 0.872 0.839 0.554 0.551 0.534 0.597 0.571 0.8673 0.972 0.972 0.967 0.972	298'1 258'8 283'7 293'5 299'4 231'9 237'3 317'0 125'8 128'8 110'9 76'2 126'1 67'3 291'6 295'5 248'4 245'2 293'4 293'4 29	120'7 116'2 90'4 87'7 83'0 38'4 36'3 35'5 5'1 1'0 120'0 115'5 92'3 89'4 83'0 64'5 38'4 4'0 0'8 349'3	+ 18.5 + 21.7 - 10.3 - 6.6 + 10.6 - 21.9 - 25.4 - 22.5 - 19.2 + 13.8 + 19.5 + 22.0 - 10.4 - 11.1 + 12.3 - 21.9 - 25.4 - 22.7 - 20.3 + 13.7 - 9.7 + 19.3 + 18.3 - 10.2 - 11.0 + 10.9 + 24.1 - 22.3 - 22.3 - 22.3 - 22.3 - 22.3 - 22.3	169 14 0 13 34 0 27 0 10 (267) 182 12 0 0 23 7 41 0 (299) 267 0 1 3 19 0 33 31	1766 133 18 19 85 229 5 161 27 99 (2542) 1594 129 4 1 150 70 279 5 (2545) 1130 96 12 12 89 5 128 153	145 233 118 695 c 207 c 207 c 114 c 1278 s 169 c 42 150 (3151) 1247 c 757 c 137 n 844 nf 71 133 267 (3456) 511 c	1882. 327 ^d ·023 Nov. 24 327'931 Nov. 25 328'978	K, M	894 895 888 888 889 890 890 891 892 892 894 895 896 890 890 890 891 891 891 891 891 892 894 895	0.772 0.627 0.416 0.412 0.561 0.633 0.527 0.563 0.754 0.899 0.959 0.780 0.780 0.748 0.475	288·8 257·1 255·7 283·0 308·3 100·2 186·2 186·2 186·2 186·2 182·5 129·1 127·6 67·8 68·9 104·0 100·5 73·1 259·8 281·6 300·4 283·8 219·6 214·3 209·4 150·8 143·7 52·8 109·3 103·3 74·4 70·6 107·4	0 344.5 330.9 117.6 94.2 88.7 83.7 66.4 358.7 35.0 65.5 1.4 4.1 1.6 358.8 345.	-10.6 -11.0 +10.9 +24.0 -22.1 -22.7 -23.7 -23.1 -19.4 +12.9 +13.4 +13.7 -9.1 -7.0 +15.8 +11.0 +24.0 +10.9 -20.9 -20.9 -20.1 -22.4 +12.8 -8.9 +10.8 +15.7	0 0 (503) 0 0 0 22 17 24 7 38 8 14 19 0 10 87 66 9 (321) 16 5 7 3 14 22 0 5 8 8 65 39 20 15 6 6 (225)	16 68 (2343) 320 12 10 69 35 97 26 132 23 41 84 9 72 285 305 72 (1592) 48 12 26 21 75 110 46 12 47 292 189 60 51 21 (1010)	615 s (2275) 460 f 225 c 215 n 132 c 483 c 484 c (1999) 378 291 n 120 c 102 c
		891 891 892 892 894		120'4 121'2 72'5 73'2 101'9	5.9 1.9 4.0 358.7 349.0	-19'7 -21'9 +13'5 - 9'2	17 15 34 22	59 39 110 122 127	521 f 153 c 375 c			893 896 890 890	0.883	295.8 282.0 228.5 224.1 227.7	67.7 67.4 35.6 35.0 26.2	+23.5 +11.1 -22.8 -25.8 -16.5	6 2 36 9 14	11 21 178 39 52	177 n. 82 c

Group 885. A very fine large spot. On November 18 a large portion becomes detached from the principal spot. Smaller portions become detached on the following days.

Group 886. Two small spots.

Group 890. Two regular spots close together. The preceding spot shows a tendency to break up, and several small spots form round the group on November 25 and following days. The smaller spots disappear before December 1, leaving only the second of the two original spots.

Group 891. Three or four small spots. On November 24 two regular spots, of which the following one disappears before November 29.

Group 892. Three or four small faint spots.

Group 893. Three or four small spots. On November 26 only one spot remains.

Group 894. A fine group, composed of a great number of spots very irregularly arranged. The group undergoes constant changes, the preceding portion tending to increase, the following to diminish.

Group 895. A small regular spot.

Group 897. Four or five small spots on November 26. The group rapidly increases in size on the following days, and on November 29 forms a long straight line of spots, of which the last is the largest. On December 3 only the last spot remains.

Group 898. Two considerable spots, with several small spots between them

			e in	Sun's	HELIO	DRAPHIC	Spe	ors.	FACULE.				il.	Sun's	Неглос	PRAPHIC	Sro	TS.	FACULE.
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time,	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 330 ^d ·047 Nov. 27 331·039	к, м	892 894 894 894 894 897 897 895 899 899	0°206 0°407 0°298 0°335 0°352 0°452 0°441 0°611 0°894 0°949 0°783 0°933	7.2 169.3 124.9 118.0 111.3 118.7 67.5 66.0 71.3 65.1 109.3 109.3 109.3 109.3 281.2 295.8	345.7 348.7 345.0 345.0 345.9 341.8 341.1 331.0 304.0 296.0		10 2 48 35 16 1 13 20 3 3 3 0 0	29 8 208 212 64 14 95 116 10 11 30 19	265 c 306 56 (1480)	1882. 331 ^d ·659 I.	м, ғ	898 900 891 892 894 894 897 897 897 893 899 899		241'7 233'0 222'8 302'4 216'1 206'3 187'6 343'9 21'9 17'9 42'4 115'6 113'8 103'6 114'1 81'8 58'4	22'9 26'1 5'3 4'5 351'6 349'1 345'8 347'2 341'5 341'2 330'6 303'9 297'5	0 -17'8 -26'0 -26'0 - 20'1 +12'9 - 8'5 - 8'0 - 7'1 + 9'3 + 8'9 +11'5'8 -16'8 -16'8	22 2 5 7 19 6 6 13 0 11 7 2 5	138 10 26 27 141 122 66 44 5 97 9 12 40	760 e 380 160 185 186
Nov. 28		899 898 898 898 891 891 894 897 897 897 897 897 899 899	0.933 0.743 0.638 0.617 0.576 0.285 0.409 0.109 0.177 0.184 0.197 0.268 0.444 0.779 0.854 0.645 0.839 0.975	247.7 235.8 241.8 238.2 235.6 314.8 211.6 207.5 194.1 173.2 149.7 36.2 48.1 55.0 248.1 55.0 112.7 111.9 51.0 98.5 112.4 84.5	34'9 28'7 26'7 26'2 22'8 4'8 6'0 4'5 359'7 351'7 347'8 346'6 344'1 341'2 330'7 304'4 296'7	-23.8 -16.7 -18.1 -18.1 +12.6 -19.3 -20.4 -24.3 -8.6 -7.8 +9.5 +8.2 +11.3 +15.4 -18.0	50 78 6 29 12 0 9 0 34 32 27 4 16 10 18 2	166 166 30 77 58 8 16 7 176 286 65 9 143 18 52 37	389 c 212 85 101 127 188 (2910)	332·781	H, F	890 898 898 898 900 900 892 891 891 897 897 901 897 901 899 899 899	0.953 0.838 0.907 0.882 0.813 0.838 0.859 0.631 0.629 0.373 0.273	256·1 225·8 244·0 250·4 246·8 242·2 239·4 239·9 291·5 235·2 229·9 245·5 242·8 297·1 306·6 318·3 349·2 124·0 121·2 1·1	32'1' 30'0' 21'6' 21'1' 24'8' 21'9' 3-5 3-4 1'4' 350'0' 345'0' 345'0' 342'8' 34	-181 -183 -254 -241 +129 -204 -232 -81 -69 +922 +101 +118 +115 -164	13 23 11 5 0 6 0 0 15 4 5 0 3 3 3	115 172 87 78 33 36 9 4 8 30 58 16 21 92 28 10 13 7	357 298 1066 p 738 c
331.659 I.	M, F	890 890 898	0.992 0.982 0.926 0.823 0.802 0.743	281°1 236°2 239°8 246°0	35°0 33°5 29°7	-25°0 -23°2 -16°9	5 25	28 113	86 213 378	Nov. 30 333·675 I.	м, н	890	o.889 o.840 o.972		32.8	-22·8 -16·3	(98) 17 34	82 196	(3271) 402 141 431 c 206 e

Group 890. Two regular spots close together. The preceding spot shows a tendency to break up, and several small spots form round the group on November 25 and following days. The smaller spots disappear before December 1, leaving only the second of the two original spots.

Group 891. Three or four small spots. On November 24 two regular spots, of which the following one disappears before November 29.

Group 894. A fine group, composed of a great number of spots very irregularly arranged. The group undergoes constant changes, the preceding portion tending to increase, the following to diminish.

Group 897. Four or five small spots on November 26. The group rapidly increases in size on the following days, and on November 29 forms a long straight line of spots, of which the last is the largest. On December 3 only the last spot remains. Group 898. Two considerable spots, with several small spots between them.

Group 899. Several very small spots in a straight line. Only the first and last remain on November 29, and of these the first disappears before December 1.

Group 900. Six spots in two clusters on November 30. Three spots on December 1.

			.8	Sun's	Непо	GRAPHIC	Sre	ots.	FACULE.				E E	Sun's	Helioo	GRAPHIC	Src	TS.	FACULÆ.
Greenwich Mean Solar Time.	Measurers.	No of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius,	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 333 ^d -675 I.	м, н	898 900 900 900 894 894 897 895 895	0.916 0.945 0.932 0.921 0.575 0.484 0.524 0.432 0.340 0.473 0.943 0.996	249°1 242°1 246°3 244°3 254°8 254°8 285°5 296°4 320°7 132°3 107°7 70°4	22.6 26.3 24.7 22.6 352.1 346.1 348.8 341.4 331.1 296.7	0 -18·8 -26·1 -21·7 -23·3 - 8·2 - 6·7 + 8·5 +11·6 +15·8 -18·0	0 0 0 19 40 0 3 5 5 2	14 31 14 66 369 33 14 115 7	755 c 29np 202 91	1882. 337 ^d ·660 I. Dec. 5 338·668 I.	м, н	903 903 903 904	0.826 0.898 0.938 0.939 0.959 0.351 0.299 0.272 0.959 0.964	280.6 291.4 216.6 201.2 196.2 70.4 107.1	264.9 261.1 256.9	-16·3 -15·1 -15·1 +18·7	(o) 0 0 0	(23) 5 3 22 54	89 107 415 (1883) 109 422 383 n 172 56
Dec. 1 334:752 I. Dec. 2	м, н	894 894 897 897 895 899 902	0'947 0'944 0'882 0'749 0'678 0'660 0'619 0'504 0'353 0'949 0'936	247.5 233.0 287.4 258.3 258.9 284.3 289.2 301.7 158.4 69.1 1112.7	351.6 345.8 344.2 340.5 330.2 296.1 233.6	- 8'4 - 7'1 + 9'8 + 12'1 + 15'8 - 18'6 + 20'0	21 0 0 10 0 0	(953) 164 21 2 46 4 8 8 (253)	78 c 425 (2549)	Dec. 6 339.660 I. Dec. 7	м, н	903 903 903 905 904	0'963 0'895 0'507 0'459 0'402 0'435 0'878 0'883 0'936 0'958	293·3 250·1 238·5 235·7 232·8 72·3 68·7 109·0 97·5 71·3	265·8 262·3 258·5 214·7 181·9	-15·1 -14·1 + 7·5	3 5 4 0 8 8 (20)	(84) 10 21 9 3 40 (83)	56 (1142) 310 552 149 c 101 161 203 (1476)
335·680 I, Dec. 3 336·937 Dec. 4	н, ғ	894 897	0.773 0.858 0.933 0.960 0.911 0.864 0.907	287·9 245·2 259·9 285·4 66·9 114·5 261·3 277·3 119·0 70·9	352·9 341·2	- 8.7 +12.1	(3)	82 11 (93)	434 1201 531 c 463 c 53 630 (3312) 601 449 364 478 (1892)	340.679 I.	м, јр	903 903 903 903 906 904 907	0.960 0.942 0.664 0.633 0.592 0.597 0.750 0.892 0.874 0.889 0.917 0.960	251°0 231°0 247°9 243°9 243°7 245°3 131°7 64°8 78°4 99°4 89°7 67°0 101°7	265-2 262-1 260-0 259-5 258-7 218-2 180-4 163-5	-14'7 -16'3 -13'2 -15'6 -14'2 -7'1 +18'4 +10'2	2 3 0 0 8 7 4	16 8 4 1 5 31 31 17	436 34 126 e 117 e 99 62 84 47 (1005)
337.660 I.	m, H	903	o'994 o'968 o'303 o'303	262.5 282.7 293.7 147.6 115.8	256'1	-14.7	0	23	600 418 170 84	342'002	к, м	903 903 906	o.840 o.253	254·3 252·0 242·8	264°4 257°7 221°4	- 13.4 - 14.1 - 2.0	17 0 18	233 24 27	402 e

Group 894. A fine group, composed of a great number of spots very irregularly arranged. The group undergoes constant changes, the preceding portion tending to increase, the following to diminish.

Group 897. Four or five small spots on November 26. The group rapidly increases in size on the following days, and on November 29 forms a long straight line of spots, of which the last is the largest. On December 3 only the last spot remains.

Group 898. Two considerable spots, with several small spots between them.

Group 990. Six spots in two clusters on November 30. Three spots on December 1.

Group 990. Six spots in two clusters on November 30. Three spots on December 1.

Group 992. Several small spots. The group undergoes constant changes.

Group 992. A very small spots.

Group 993. Two very small spots close together.

Group 995. Two spots. The following spot disappears before December 11.

Group 997. A regular spot, followed by several smaller spots. These latter have all disappeared before December 14.

				M	easures	of Positi	ons and	Areas	of Spots a	nd Faculæ	upon	the S	Sun's Di	sk—con	tinued.				
15 -1			re in	Sun's	Helio	GRAPHIC	SP	OTS.	FACULÆ.				ii ii	Sun's	HELIO	RAPHIC	Spo	TS.	FACULE
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from SAxis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group and for Day).
1882. 342 ^d ·002 Dec. 9	к, м	906 904 907 907	0.543 0.679 0.731 0.871 0.966	230·5 54·7 74·2 76·8 60·0 76·9	0 217.1 180.8 167.0 162.4	- 7.5 +17.9 +10.3 + 9.3	0 5 31 10 (81)	19 11 73 44 (431)	184 <i>c</i> 275 246 (1107)	1882. 34 ^{5d} ·933	к, м	909 911 910 907 908 908	0.810 0.917 0.830 0.358 0.269 0.201 0.637 0.666	294'2 298'0 241'7 300'3 321'2 333'3 58'7 61'2	219.8 209.3 174.8 166.5 161.8 121.7	+25·1 -23·7 + 9·5 +11·2 + 9·5 +18·6 +18·0	0 0 3 8 0 0 58	10 14 24 51 23 20	107 307 p 152 np
342·675	M, JP	903 903 906 906 904 907 907 908	0.955 0.933 0.890 0.390 0.330 0.443 0.567 0.621	303·4 254·6 255·2 253·4 246·9 43·9 69·5 73·5	267.8 261.7 221.8 217.5 180.9 167.1 162.7	-14.5 -13.4 - 6.9 - 7.9 +18.1 +11.0 + 9.8	28 16 4 0 16 10	174 110 20 5 3 104 52	84 228 c 832 sp	Dec. 13 346.789 I.	н, јр	908 908 911 910 910		55.5 58.6 100.6 244.0 290.0 292.2	210°2 176°8 172°0	+22.4 +21.1 -24.2 + 9.9 + 9.9	0 28 (97) 0 0 5	25 130 (488) 23 25 29	273 c 151 (990) 84 f
Dec. 10 343.669 I.	н, је	903 903 906 907	0.989 0.903 0.992 0.964 0.583 0.396	70°9 56°7 255°6 256°4 259°3 58°0	268·8 260·4 221·5 166·5	+18.8 -14.4 -13.3 -6.7 +11.5	42 (116) 23 0 3 16	417 (885) 287 93 13	632 sp 254 (1398) 620 c	Dec. 14		907 908 908 908 908 908		300.4 52.5 50.0 52.6 47.5 51.4	166.6 124.8 123.2 118.4 116.7 115.7	+11.1 +14.3 +16.8 +20.0 +23.0 +20.6	0 0 13 0 6 (24)	24 5 44 104 5 115 (374)	(84)
Dec. 11		907 908 908 908 908	0'442 0'872 0'930 0'944 0'950 0'807	67.0 74.9 70.0 67.9 64.9	162·2 126·3 119·7 117·5 116·3	+ 9.4 + 12.8 + 18.3 + 20.6 + 23.5	0 0 39 13 0	28 3 301 127 6 (985)	1450 s 59 (2704)	347.773 I.	н, јр	912 910 910 910 907	0.718 0.664 0.643 0.586	248·3 294·1 274·6 286·3 287·6 285·0 291·9	180°2 176°7 172°3 171°1 166°0	+ 11.6 + 8.6 + 10.4 + 5.4	0 4 5 0 5	3 27 25 4 24	509 806
344·762 I.	M, JP	909 909 906 910	0.947 0.918 0.913 0.828 0.807 0.770 0.170	251'0 282'7 293'0 299'7 303'1 261'5 348'9	223.6 220.4 221.9 173.9	+23.7 +25.6 - 7.0 + 8.8	0 4 0 0	17 21 5	155 48 41 64 c			908 908 908 908	0.253 0.306 0.357 0.412 0.467 0.944 0.946	18.9 25.4 27.6 35.0 37.4 78.7 63.8 109.2	127.6 124.6 122.5 118.0 114.8	+12.6 +14.8 +17.2 +18.5 +20.5	7 0 0 8 2	31 27 50 190 35	81 c 66 97 182
Dec. 12		910 907 907 907 908 908 908	0°163 0°232 0°247 0°247 0°819 0°847	356.6 24.2 34.0 42.4 67.5 62.4 64.5 101.8	172'6 166:5 163:9 162:3 119:6 117:8 117:0	+ 8.5 +11.4 +11.0 + 9.7 +17.8 +22.7 +21.0	0 17 0 4 41 5 20 (91)	1 105 2 37 267 34 127 (618)	751 s.f	Dec. 15 348.658 I.	н, јр	912 910 910 907 908	0.907 0.857 0.850	293'9 251'8 273'3 282'6 284'0 286'5 331'4	178.8 178.0 172.9 166.9 129.7	+ 2'1 +10'0 +10'3 +11'2 +14'6	(31) 0 10 0 3	(416) 13 22 8 10 8	(1767) 355 286 } 150 c 209 c 111 c

Group 903. Several small spots. The group undergoes constant changes.

Group 906. Two spots. The following spot disappears before December 11.

Group 907. A regular spot, followed by several smaller spots. These latter have all disappeared before December 14.

Group 908. A large spot, with two companions slightly smaller. Other spots appear both preceding and following the large spots on December 13 and following days, and the group forms a very long straight line of spots. The spots in the middle of the line disappear before December 16. The preceding cluster disappears before December 20.

Group 910. Several small spots.

Group 911. A small spots.

Group 912. Two very small faint spots.

			ii .	Sum's	Ницион	RAPHIC	Src)T8.	FACULE.				H.	Sun's	Нилос	RAPHIC	Sro	T8.	FACULE
Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from S Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Menn Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude,	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 348 ^d ·658	н, эр	908 908 908 908	0°270 0°277 0°261 0°325	327'8 334'2 340'4 352'3	0 129'2 125'9 125'4	0 +11.9 +13.1 +12.9 +17.5	8 0 0	56 24 16 3	46 c	1882. 351 ^d ·952 Dec. 19	к, м	913 914	o.382 o.362	40°5 105°4	66.6	+ 10.6 - 15.3	17 0 (62)	65 113 (359)	217 e (654)
		908 908 908 913 913	0'316 0'344 0'385 0'752 0'791 0'859	3·1 5·7 11·2 76·0 74·7 5g·2	121.8 118.7 116.2 73.3 69.9	+17.0 +18.7 +20.8 + 9.6 +11.2	0 21 2 4 0	28 192 8 14 7	149 c } 94 c	352'922 Dec. 20	к, м	908 913 913 914	0°832 0°256 0°226 0°885 0°744	293°2 318°8 350°9 106°6 65°9	74'4 66'7 3'2	-12.2 +11.0 + 3.3 +18.0	0 12 8 20 (40)	35 68 37 157 (297)	930 p 618 s 87 (1635)
Dec. 16	н, јр		0.012	136.9			(48)	(409)	77 319 (1995)	354.006	к, м	913 915 916	0°923 0°437 0°537 0°689	293°9 295°1 74°0	73·8 19·1 8·3	+ 8.9 + 6.9 -14.7	8 5 0	25 10 21	1196
I.		912	0.892 0.871 0.971 0.960	283.7 248.9 271.9 273.8	182'9	+ 1.5 + 3.3	0	24 8	916 39 } 209 c	Dec. 21		914	0.757	76.9	2'4	-15'1	(36)	103	1041 <i>f</i> 311 (2548)
		908 908 908 908 908 908 913 913 913	0'441 0'434 0'386 0'417 0'395 0'389 0'585 0'607 0'631	300°1 305°1 328°3 333°8 308°7 332°8 70°6 74°0 69°8 71°8	129'9 128'4 119'3 118'4 125'4 117'9 73'2 71'1 70'1 67'1	+11'4 +13'1 +17'7 +20'5 +12'8 +18'7 +10'0 + 8'5 +11'4 +10'9	6 0 0 4 8 5 0 3	53 14 51 6 26 50 59 15 19 62	45 c 46 c 36 c	355.008 Dec. 22	к, м	913 913 916 914 917 917	0.938 0.622 0.588 0.471 0.596 0.622 0.646 0.790 0.903	301°0 287°9 292°1 117°2 113°0 66°1 68°9 73°5 133°7	73.8 70.7 11.6 3.5 1.6 359.2	+11.0 -14.3 -15.2 +12.8	5 0 9 29 1 4	32 13 22 81 12 28	587 93 (1169)
Dec. 17	н, јр	gio	0.955	111.2	0/1	+109	(36)	(387)	77 e 637 (2171) 259	356.030 Dec. 23	к, м	916 914	0'279	138'4	12.6		4 17 (21)	14 52 (66)	(0)
L		908 908 908 908 913 913 913	0.958 0.627 0.574 0.530 0.519 0.383 0.436 0.493	228.7 290.2 295.3 307.5 311.0 60.1 61.2 64.9	130°5 125°8 119°8 118°1 74°2 71°0 66°9	+11.3 +12.9 +17.4 +18.5 + 9.6 +10.6 +10.7	4 6 2 8 10 0	50 45 29 78 75 30	51 40 c 91 c 86 c 37 c 76 c	I.	н, јр	916 914 918	0.846 0.203 0.308 0.417 0.722 0.900 0.928	282.8 170.8 137.6 68.7 110.1 61.8 109.0	13·1 2·6 352·1	-13·8 -15·3 + 6·6	0 12 0	18 35 77	516 57 c 107 177 229
Dec. 18	к, м	908 908 908 913	0.815 0.766 0.702 0.206	285.7 289.4 298.7 22.8	130:4 125:1 117:6 72:7	+11.7 +13.6 +13.4 + 9.2	(45) 8 0 14 23	(407) 44 16 45 76	533 (1173) 365 n p 72 c		н, јр	914	0'924 0'904 0'884 0'226	282·5 298·1 248·4 183·6 40·6	3°0 353°7	-15'4 + 7'4	12	(130) 43	742 154 406 80 c

The Groups of Spots are numbered in the order of their appearance at the E. limb of the Sun. When there is no number in the third column it is to be understood that there is a Facula unaccompanied by a Spot. The positions of Faculæ relative to the Spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively north, south, preceding, following, concentric.

The Areas of Spots and Faculæ are expressed in millionths of the Sun's visible Hemisphere.

Group 908. A large spot, with two companions slightly smaller.

and the group forms a very long straight line of spots.

before December 20.

Group 913. A group of four or five spots irregularly disposed.

Group 914. A small regular spot.

Group 915. Two small faint spots.

Group 915. A very small faint spots.

Group 915. A very small spot.

Group 916. Two small spots remain on December 21.

Group 917. Two small faint spots.

Group 918. A close cluster of very faint small spots.

			Distance from Centre in terms of San's Radius,	Sun's	Herio	GRAPHIC	SPOTS.		FACULE.			-	ii.	Sun's	HELIOGRAPHIC		Srots.		FACULAL
Greenwich Mean Solar Time.	Measurers,	No. of Group.		Son's ngle	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).	Greenwich Mean Solar Time.	Measurers.	No. of Group.	Distance from Centre terms of Sun's Radius.	Position Angle from Axis.	Longitude.	Latitude.	Area of UMBRA for each Spot (and for Day).	Area of WHOLE for each Spot (and for Day).	Area for each Group (and for Day).
1882. 357 ^d ·658 I. Dec. 25	н, јр	918	o:258 o:800 o:849	6 47.3 57.8 111.1	351.3	+ 7'7	5 (19)	18 (73)	32 c 239 235 (1888)	1882. 362 ^d ·738 I.	н, јр	914	0.000	240.2 285.0 259.0 280.0	3°0 358°4	-11·3 + 7·7	61	152	840 504 946 e
358·814 I.	н, јр	914 919	0.988 0.948 0.360 0.360	282.4 245.9 239.3 230.1 235.8	3.5	-11.5	2 0	34	292 378 101			924 924 924 925 925 920	0.482	246·8 241·2 244·4 163·2 156·3 116·1	330.6 327.1 327.6 286.6 282.6	-16·3 -18·5 -16·8 -29·0 -29·0 -14·3	5 4 0 6 6	9 15 10 5 16 28 265	57 e 40 e 130 e
Dec. 26	н, јр	919	0.240 0.338 0.333	231.6 103.6 118.3	357°9 268°9	-13.8	0 89 (91)	3 ₄₉ (3 ₉₉)	80 f 148 (999)			921 926 927	0.511 0.899 0.986 0.872 0.973	64.3 99.1 108.2 115.1	267.5 231.4 214.8	- 18.4 - 6.2 + 10.1	4 0 57	6 9 167	482 s _J
I.	11, 01	914 920 921	0.510 0.919 0.856 0.872	242.5 103.9 78.3 119.6 100.4	3·7 269·4 266·3	-15.9 -13.8 +10.3	5 42 10	16 230 24	799 770 s p 306 n f 73 67	Dec. 30 363.698 I.	н, јр		0.954	282'2			(192)	(682	(3743) 381 820
Dec. 27 360·678	н, јр	914	0.907 0.867 0.643	241.6 278.1 254.6				(270)	(2015) 909 140	1.		914 928 928 924 924	0.973 0.883 0.856 0.773 0.736	258·9 287·0 288·5 251·8 249·6	359°4 342°6 339°2 332°2 328°6	-11.6 +14.1 -12.6	8 0 9 24	16 25 49 101	253 e 211 e
Dec. 28		922 920 921	0.202	210.6 105.7 75.8	1.6 328.4 270.0 267.1	-12.6 -14.2 +10.3	0 4 40 7 (51)	6 9 285 18 (318)	509 f 251 f (1809)			924 925 925 920	0.717 0.442 0.432 0.285	247'9 187'8 178'4 132'6	326·7 286·5 281·8	-17.0 -17.9 -29.0 -28.6 -14.1	0 17 24 30 48	14 30 151 58 262	133 c 56 c 64 c
I.	н, јр	914 923 920 921	0°925 0°885 0°828 0°770 0°628 0°674	298·9 241·6 257·5 281·5 109·2 71·0	3·1 356·9 270·0 267·5	-12'0 + 7'0 -14'2 +10'4	8 5 39 8	23 15 237	187 836 691 c 368 n 149 c	Dec. 31		921 926 927 929	0.339 0.496 0.929 0.913 0.913	47'4 100'0 108'3 110'7 116'3 60'1	268.0 230.1 214.7 204.8	+10.5 +10.5	6 35 25	1 54 227 159	388 c 257 c 212 c 122 776

Group 914. A small regular spot.
Group 919. Three small faint spots.
Group 920. A small regular spot.
Group 921. A small regular spot.
Group 922. A small spot son December 29.
Group 924. Several very small spots on December 29.
Group 924. Several very small spots.
Group 925. Two regular spots.
Group 926. A very small spot on December 30.
Group 927. A regular spot.
Group 928. Two small spots.
Group 929. A small regular spot.
Group 929. A small regular spot.

MEAN AREAS of UMBR.E., WHOLE SPOTS, and FACULE upon the SUN'S DISK, as measured on Photographs taken at the ROYAL OBSERVATORY, GREENWICH, and at DEHRA DUN, INDIA, for each ROTATION of the Sun, from 1881 December 8 to 1883 January 18.

The Mean Areas have been formed by taking the Means of the Areas for each day of observation throughout each Rotation of the Sun, and are expressed in millionths of the Sun's visible Hemisphere.

		No. of Days on which		Mean of Daily Areas.	
No. of Rotation.	Date of commencement of each Rotation.	Photographs were taken.	Umbræ.	Whole Spots.	- Faculæ.
122	1881 December 7'76	18	79	398	1403
123	1882 January 2'14	22	63	371	1420
124	January 27'52	21	134	810	1893
125	February 21'90	26	125	618	1844
126	March 19'28	25	183	1002	2755
127	April 13:66	25	368	2122	2652
128	May 9'04	25	307	1562	2420
129	June 3:42	24	97	548	1883
130	June 28.80	23	97 -	572	2885
131	July 24'18	20	64	372	1971
132	August 18:56	22	202	921	2011
133	September 12'94	24	270	1296	2111
134	October 8.32	25	264	1377	2153
135	November 2.70	26	398	2022	2457
136	November 28:08	25	54	400	1702
137	December 23'46	26	148	897	2300

MEAN AREAS of UMBRÆ, WHOLE SPOTS, and FACULÆ upon the Sun's DISK, as measured on Photographs taken at the ROYAL OBSERVATORY, GREENWICH, and at DEHRA DUN, INDIA, for the Year 1882.

The Mean Areas are expressed in millionths of the Sun's visible Hemisphere.

	No. of Days on which	Mean of Daily Areas.							
Year.	Photographs were taken.	Umbræ.	Whole Spots.	Faculæ.					
1882	343	189	1002	2154					

MEAN HELIOGRAPHIC LATITUDE of the Spots upon the Sun's Disk, as measured on the Photographs taken at the Royal Observatory, Greenwich, and at Dehra Dun, India, for each Rotation of the Sun, from 1881 December 8 to 1883 January 18.

The numbers given in the accompanying table have been formed as follows:-

The Heliographic Latitude of each spot for each day has been multiplied by its area for the day, and the sum of the products for Spots North of the Sun's Equator has been divided by the sum of the corresponding Areas to form Mean Heliographic Latitude of Spotted Area North of Equator. Similarly for Spots South of the Equator. In forming the Mean Heliographic Latitude of entire Spotted Area the algebraic sum of the products for Spots North and South of the Equator has been divided by the sum of the Areas; and for the Mean Distance from the Equator for all spots, the numerical sum of the products, without regard to the sign of the latitude, has been similarly divided.

The Mean Areas have been formed by dividing the Sum of the Daily Areas by the number of days of observation for each Rotation of the Sun, and are expressed in millionths of the Sun's visible hemisphere.

No.		No. of Days	Spots Nort	rn of the Equator.	Spots Sour	n of the Equator.	Mean	Mean
of Rotation.	Date of Commencement.	on which Photographs were taken.	Mean of Daily Areas.	Mean Heliographic Latitude.	Mean of Daily Areas.	Mean Heliographic Latitude.	Heliographic Latitude of entire Spotted Area.	Distance from Equator of all Spots,
	1881.			0		0	0	0
122	Dec. 7.76	17	291	+ 24.08	63	- 25·58	+ 15:31	24.35
123	Jan. 2'14	2.2	276	16.13	95	19.91	+ 6.89	17'10
124	Jan. 27.52	21	457	11.39	352	16.33	- 0.66	13.54
125	Feb. 21'90	26	69	13.23	549	12.59	- 9'71	12.66
126	Mar. 19'28	25	307	14.10	695	14'74	- 5.89	14.57
127	Apr. 13.66	25	489	18.74	1633	22.65	- 13.11	21.75
128	May 9'04	25	455	16.58	1108	22.80	- 11:43	20'91
129	June 3.42	24	200	18.42	325	13.83	- 1.26	15.57
130	June 28.80	23	- 403	14.55	169	16.51	+ 5.24	14.81
131	July 24'18	20	210	17.22	153	12.96	+ 4.83	15.47
132	Aug. 18:56	22	696	15.55	225	16.82	+ 7.65	15.86
133	Sept. 12'94	24	509	11.67	786	22.08	- 8.81	17'99
134	Oct. 8:32	25	852	16.92	527	22.18	+ 2.01	18.93
135	Nov. 2'70	26	1155	18.39	867	18.38	+ 2.57	18.33
136	Nov. 28.08	25	223	15.11	177	14.54	+ 1.97	14'86
137	Dec. 23.46	26.	253	7'61	640	14.28	- 8.10	12

MEAN HELIOGRAPHIC LATITUDE of Spots upon the Sun's Disk, as measured on the Photographs taken at the Royal Observatory, Greenwich, and at Dehra Dun, India, for the Year 1882.

	No. of Days on which	Spots Nona	rn of the Equator.	Spots Sour	n of the Equator.	Mean Heliographic	Mean Distance from
Year.	Photographs were taken.	Mean of Daily Areas.	Mean Heliographic Latitude.	Mean of Daily Areas.	Mean Heliographic Latitude.	Latitude of entire Spotted Area.	Equator of all Spots.
1882	343	443	+ 15.98	558	- 19·26	- 3·66	17:81