GREENWICH

PHOTO-HELIOGRAPHIC RESULTS

I 954

LONDON
HER MAJESTY'S STATIONERY OFFICE

Price 175. $6 d$. net

RESULTS OF MEASURES

MADE AT THE ROYAL GREENWICH OBSERVATORY OF

 PHOTOGRAPHS OF THE SUN

 PHOTOGRAPHS OF THE SUN}TAKEN AT HERSTMONCEUX, THE CAPE AND KODAIKANAL IN THE YEAR
I 954

UNDER THE DIRECTION OF
Sir harold spencer Jones, Sc.D., F.r.S. ASTRONOMER ROYAL

Published by Order of the Board of Admiralty in Obedience to Her Majesty's Command

LONDON
HER MAJESTY'S STATIONERY OFFICE ${ }^{1} 958$

GREENWICH PHOTO-HELIOGRAPHIC RESULTS
 1954

INTRODUCTION

The photographs from which these measures were made were taken at the Royal Greenwich Observatory, the Royal Observatory, Cape of Good Hope, and the Kodaikanal Observatory, Southern India.

The photographs of the Sun obtained at Greenwich were taken with the 4 -inch Photoheliograph, of which the original object-glass had been replaced in 1910 by a Grubb photographic objective. The equivalent focal length of the photoheliograph with its present enlarging system (supplied in 1926 by Ross, Ltd.) is $67 \frac{1}{2}$ feet, the diameter of the Sun's image at the secondary focus being approximately $7 \frac{1}{2}$ inches. On 1949 May 2 this photoheliograph was moved from Greenwich to Herstmonceux Castle, Sussex. Subsequent photographs continue to be designated "Greenwich" photographs.

The photographs of the Sun obtained at the Cape Observatory were taken under the superintendence of Her Majesty's Astronomer at the Cape, Dr. R. H. Stoy, and those from Kodaikanal under the superintendence of the Director, Dr. A. K. Das. At the Cape Observatory the instrument employed was a 4-inch photoheliograph giving an image of the Sun about $7 \frac{1}{2}$ inches in diameter; at Kodaikanal a Cooke photo-visual objective of 6 inches aperture was used, the image of the Sun which was obtained being of about the same size.

Photographs of the Sun were available for measurement on 365 days in 1954, those finally selected for measurement being supplied by the different observatories as under:

The names of the measurers of the photographs for the year 1954 were as follows:
H. Barton
A. S. Milsom
P. S. Laurie
N. Rhodes

At the primary focus of the photoheliographs at Greenwich and the Cape two -spider-wires are fixed by which the zero of position-angles on the photographs can be determined. These wires are inclined at an angle of 45° to the celestial equator. In the Kodaikanal instrument there is one wire fixed parallel to the equator.

Introduction to Greenwich Photo-heliographic Results, 1954.

The precise zero of position-angles for the photoheliographs has been determined by three different methods.
(i) Zero Photographs. Plates were exposed twice, with an interval of about 100 seconds between the two exposures, the instrument being firmly clamped. Two images of the Sun, overlapping each other by about a fifth part of the Sun's diameter, were thus produced upon the plates. The exposures were so made that the line joining the cusps passed approximately through the centre of the plates and the inclinations of the two spider-wires to this line were measured. A small correction for the inclination of the Sun's path has been applied. Two or three zero photographs were usually taken each month at Greenwich, the Cape, and Kodaikanal.
(ii) Transits. At Greenwich and the Cape, transits of the Sun were taken visually, the times of contact of the first and second limbs of the Sun with the two wires being noted by an eye-and-ear method. The ratio of the time taken by the Sun to pass over the NE - SW wire to the time taken to pass over the SE - NW wire was used in order to find the angle made by the Sun's path with the bisectors of the wires. From this, again incorporating a correction to allow for the inclination of the Sun's path, the orientation of the wires with respect to the $N-S$ line could be inferred. Transits were usually taken at Greenwich and the Cape on four or more days during each month.
(iii) Supplementary Zero Photographs. At Greenwich supplementary partial images of the Sun were occasionally recorded on otherwise normal photographs, a second exposure being made after clamping the instrument firmly for 130 seconds. The small portion of the Sun's limb visible at the western edge of the plate could be used, together with the main image which it does not intersect, to deduce the orientation of the wires in a way similar to that used for the zero photographs. Six to ten supplementary zero photographs were taken at Greenwich each month. The values for the zero of position-angles deduced from them were given half weight in the adoption of zero-corrections to be used in the reduction of photographs.

The following table gives the zero-corrections determined by the various methods at Greenwich and the Cape during 1954, together with the adopted values.

Greenwich	(i)	(ii)	(iii)	Adopted Value
1954	$\bigcirc 1$	$\bigcirc 1$	-	-
January	-0 33	-0 33	-0 26	-0 30
February	-0 26	-0 27	-	-0 30
March	-0 28	-0 26	-0 22	-0 27
April	-0 19	-0 21	-0 22	-0 21
May	-0 23	-0 23	-0 28	-0 21
June	-0 19	-0 20	-0 26	-0 21
July	-0 16	-0 20	-0 23	-0 21
August	-0 25	-0 19	-0 26	-0 21
September 1-21	-0 21	-0 23	-0 32	-0 21
September 22 - October 25	-0 07	-0 04	-0 01	-0 03
October 26-31	-0 01	000	+0 06	000
November	000	000	-0 11	000
December	+005	-0 01	+0 07	000

Introduction to Greenwich Photo-Heliographic Results, 1954.

Cape	(i)	(ii)	Adopted Value
1954		-	
January	+0 24	+0 33	+0 33
February	+0 25	+0 34	+0 33
March	+0 31	+0 32	+0 33
April	+0 31	+0 32	+0 33
May	+0 35	+0 33	+0 33
June	+0 31	+0 35	+0 33
July	+0 30	+0 31	+0 30
August	+0 25	+0 31	+0 30
September	+0 37	+0 32	+0 30
October	+0 37	+0 34	+0 30
November	+0 25	+0 32	+0 30
December	+0 23	+0 32	+0 30

In the case of the Kodaikanal photographs individual values were adopted, as indicated by the appropriate zero photographs.

The measures of the photographs were made with a large position-micrometer that can be used for photographs of the Sun up to 12 inches in diameter. In this micrometer the photograph is held with its film-side uppermost on three pillars fixed on a circular plate, which can be turned through a small angle about a pivot in its circumference by means of a screw and antagonistic spring acting at the opposite extremity of the diameter. The pivot of this plate is mounted on the circumference of another circular plate which can be turned by a similar screw-action about a pivot in its circumference. This pivot, 90° distant from that of the upper plate, is mounted on a third circular plate, with a position-circle graduated in divisions of 30 minutes of arc, which may be rotated about its centre. By this means small movements in two directions at right angles to each other can be readily given and the photograph can be accurately centred with respect to the centre of rotation of the position-circle. When this has been done, a Ramsden eyepiece, having at its anterior focus a glass diaphragm ruled with cross-lines into squares with sides of one hundredth of an inch (for measurement of areas), is moved along a slide adjusted so that the centre of the eyepiece moves diametrically across the photograph, the diaphragm being nearly in contact with the photographic film, so that parallax is negligible. The distance of a spot or facula from the centre of the disk is read from a scale and vernier to $1 / 250 t h$ of an inch, corresponding to 0.001 of the Sun's radius for images 8 inches in diameter. The position-angle is read from the large position-circle which rotates with the photographic plate. The photograph is illuminated by dif'fused light reflected from white paper placed at an angle of 45° below the photograph.

All photographs were measured independently by two measurers.

In the case of large or complex groups of spots, the chief components were measured individually; so also in the case of groups near to the east or west limbs of the Sun where the effects of foreshortening are appreciable. In other cases the position of the centre of a group was estimated by the measurer at the micrometer. In this respect a difference has been made from the practice during years prior to 1916 when, in the Daily Results ($\$ 1$.), components of groups were given separately, and in the Ledgers (§3.) combination into groups was made.

Introduction to Greenwich Photo-heliographic Results, 1954.

When required, corrections have been applied to the measured distances and position-angles to allow for differential refraction. The details of this correction were given in the Introduction for 1909. It is necessary. to apply this correction to about twenty per cent of the photographs taken at Greenwich in the months October to March.
§1. Positions and Areas of Sunspots and Faculae for each Day in the Year 1954.
In this section the measured positions and areas of sunspots and faculae are given for each day. The positions of sunspots are referred firstly to a system of apparent polar co-ordinates on the Sun's disk and secondly to a system of heliographic co-ordinates. The positions of faculae are given only in apparent polar co-ordinates.

The calculations of heliographic longitude and latitude are made from formulae given by W. de la Rue, B. Stewart and B. Loewy, Phil. Trans., 1869. The system of heliographic co-ordinates may be defined as follows. The inclination of the Sun's axis to the ecliptic is assumed to be $82^{\circ} 45^{\prime}$, the longitude of the ascending node of the Sun's equator on the ecliptic for 1954.0 to be $75^{\circ} 07$ '. 1 , and the period of the Sun's sidereal rotation to be 25.38 days. The meridian which passed through the ascending node on 1854 January l, Greenwich mean noon, is taken as the zero meridian and longitudes increase from east to west. The mean synodic rotation-period is 27.2753 days; synodic rotation-periods are counted from 1853 November 9, in continuation of Carrington's series.

Let r be the measured distance of a spot from the centre of the Sun's apparent disk and χ the position-angle of the spot from the Sun's axis, R the measured radius of the Sun on the photograph, S the tabular semi-diameter of the Sun in arc, and ρ, ρ^{\prime} the angular distances of a spot from the centre of the apparent disk, as viewed from the Sun's centre and from the Earth respectively. ρ - the heliocentric angle - is obtained from the following equations:

$$
\rho^{\prime}=\frac{r}{R} S \text { and } \sin \left(\rho+\rho^{\prime}\right)=\frac{r}{R}
$$

If B_{0} and ϕ are the heliographic latitudes and L_{0} and λ the heliographic longitudes of the Earth and the spot respectively.

$$
\begin{aligned}
& \sin \phi=\cos \rho \sin B_{0}+\sin \rho \cos B_{0} \cos X \\
& \sin \left(L_{0}-\lambda\right)=\sin X \sin \rho \sec \phi
\end{aligned}
$$

X is found from the position-angle measured eastwards from the north point of the Sun's disk by subtracting P, the position-angle of the north end of the Sun's axis also measured eastwards from the north point. The three quantities P, B_{0} and L_{0} for the time of the exposure of each photograph are derived from the Ephemeris for Physical Observations of the Sun, given on p. 332 of the Nautical Almanac for 1954.
§2. General Catalogue of Groups of Sunspots for 1954.
This catalogue first contains particulars of every group of sunspots which lasted for two or more days during 1954. The group numbers are in continuation of those given in 1953 and previous years; the Mount Wilson group numbers are also given. The table includes an indication of those groups which may be considered to be members of "recurrent series" of groups, as contained in Ledger I below ($\$ 3$.).

Introduction to Greenwich Photo-heliographic Results, 1954.

Spot groups seen on one day only are given in a separate table, where they receive a distinctive numeration.
"Revival", groups of spots have been tabulated in series in a table following the General Catalogue.
§3. Ledgers of the Areas and Heliographic Positions of Groups of Sunspots for 1954.
The groups of which details are given in these ledgers have been abstracted from a general ledger of all spot groups seen throughout the year. Apart from the groups, there are printed in a similar manner details of individual components of the principal groups. This has been done in all cases where it appeared probable that an individual component lasted to the second or third rotation after its first appearance.

Ledger I. - Recurrent Groups. The groups contained in this ledger were selected upon the following plan, reference being made to the General Catalogue:- If any spot when first seen was 60° or more to the east of the central meridian, the catalogue and, if necessary, the Daily Results also (§l.), were searched some fifteen to sixteen days earlier to ascertain whether a spot group of similar heliographic longitude and latitude was then near the west limb of the Sun. Similarly, if any spot group when last seen was 60° or more to the west of the central meridian, a search was made fifteen to sixteen days later. When there appeared to be a case of probable continuity between groups in consecutive rotations of the Sun, the character of the groups, their areas and their longitude and latitude have been carefully compared before accepting them as a recurrent group.

Ledger II. - Non-Recurrent Groups. This ledger contains those groups lasting for six days or longer which are not members of recurrent series.
§4. Total Areas, Mean Areas and Mean Heliographic Latitudes of Sunspots and Faculae in the Year 1954.

This section contains total areas of sunspots and faculae for each day in the year, together with mean areas and mean heliographic latitudes of sunspots and faculae for each Rotation of the Sun during 1954. Similar annual mean values are also given.
§5. Observations of Solar Filaments made with the Spectrohelioscopes in the Year 1954.
This section contains (1) measures of line-of-sight velocities of dark $H \alpha$ filaments seen on the Sun's disk near sunspots and (2) observations of solar flares in $H \alpha$ light. The observations were made principally with a spectrohelioscope lent by the Mount Wilson Observatory in the autumn of 1929 and set up at Greenwich in the south attic of the Main Building and, since 1950 February, at Herstmonceux in a spectrohelioscope room forming the ground floor of the dome housing the photoheliograph. The instrument is of a type described by G. E. Hale in the Astrophysical Journal, 70, 265, 1929. The spectrum is formed by a Rowland grating ruled with 14,438 lines to the inch. The first order spectrum around $H \alpha$ is normally used, the scale being $l \mathrm{~mm} .=4.35 \mathrm{~A}$. The width of the second slit is usually 0.1 mm . The diameter of the monochromatic image of the Sun's disk at the second slit is about 50 mm ., of which a portion 28 mm . $x 6 \mathrm{~mm}$. is rendered visible by the rotating rectangular prisms. The eyepiece used gives an overall magnification of $x 40$, approximately. A second spectrohelioscope of similar design, presented in 1949 by Mr . A.M. Newbegin, is also available when required so that simultaneous observations can be made by two observers. The observations during 1954 were made by H. Barton, P. S. Laurie and N. Rhodes.

ROYAL GREENWICH OBSERVATORY

Positions and Areas of Sunspots and Facula
For each day in the year
1954

Col. 1. (1) Time when photograph was taken expressed in days and decimals of a day reckoning from midnight at commencement of year. (2) Place of observation - Greenwich (G), Cape of Good Hope (C), Kodaikansl (K). (3) Date of photograph.

Col. 2. Number of spot group in order of appearance and in continuation of the group-numbers given in previous years. Groups seen on one day only are distinguished by the number of the rotation during which they were observed and by a letter given in the order of their appearance. When there is no number in the second column it is to be understood that there is a facula unaccompanied by a spot.

Col. 3. Distance of spot group or faculae from Sun's centre in terms of the Sun's radius.

Col. 4. Position angle of spot group or faculae measured from the north pole of the Sun's axis in the direction H., E., S., W., $^{\prime}$.

Col. 5. Heliographic longitude of the spot group derived from the measures.

Col. 6. Heliographic latitude of the spot group similarly derived.

Col. 7. Area of umbrae corrected for foreshortening and expressed in millionths of the Sun's visible hemisphere.

Col. 8. Area of whole spots composing the group similarly expressed.

Col. 9. Area of each group of faculae similarly expressed. The positions of faculae relative to the spots with which they are associated are indicated by the letters n, s, p, f, c, denoting respectively, north, south, preceding, following, concentric.

In line with the date of each day is given in brackets for the time of photograph, the position angle of the Sun's axis from the north point, the heliographic longitude and latitude of the centre of the disk and the total areas of spots and faculae for the day.

Greenwich Photo-Heliographic Results, 1954.
C 3

Group 17125. Feb. 8 - 11. A pair of small spots on February 9; a tiny spot on February 10 and 11.
Group 17126. Mar. 1-4. A small spot on March 1; a regular spot followed by a companion on the other days.

Greenwich Photo-Heliografhic Results, 1954.
C 5

Group 17127. Mar. 12-23. A stream of normal type, developing from a pair of small spots on March 12. The intermediate spots have died out by March 21.
Group 17128. Mar. 17 - 19. A tiny spot.

C 6
Greenwich Photo-Heliografhic Results, 1954.

Groud 17129. Apr. 8-8. One or two tiny spots. Group 17130. ADr. $15-18$. A small spot.

Greenmich Photo-Heliographic Results, 1954.
C 7

Group 17131. June 1-4. A pair of tiny spots on June 1 and 2; a single spot on June 3 and 4.

C 8
Greenwich Photo-heliografhic Results, 1954.

Group 17132. July 8-9. A tiny spot.
Group 17133. July 12-18. A small spot with a tiny companion on July 13.

Group 17134. July 16 - 17. A close palr of tiny spots.
Group 17135. July 25-30. Small changing spots.
Group 17136. Aug. 1-9. Return or Group 17133. A small regular spot with a companion on August 2 . After August 4 it begins to break up and die out.

Group 17137. Aug. $9-14$. A small stream, appearing suddenly near the central meridian and dying out before reaching the limb. Group 17138. Aug. 21 - 26. A short variable stream which is dying out as it passes round the limb.

Group 17139. Sept. 4-14. Intermittent. A pair or tiny spots on September 4; a single spot on the other days. Oroup 17140. Sept. 15-17. A single spot on September 15 and 17; a pair on September 16.

[^0]| | | | | POSITIONS AND | AREAS | F SUNS | POTS AND | D FACULAE | FOR | CH DA | IN THE | YEAR | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U.T. | $\begin{aligned} & \text { Group } \\ & \text { No. } \end{aligned}$ | measures | | POSITION | AREA | | | U.T. | aroup No. | measures | | POSITION | AREA | | |
| | | Dist. | Pos. Angle | Long. Lat. | Umbræ | Whole Spots | Faculx | | | Dist. | Pos. Angle | Long. Lat. | Umbræ | Whole
 SDots | Faculx |
| $\begin{gathered} 1954 \\ 287.607 \\ G \end{gathered}$ | | | \bigcirc | \bigcirc - | | | | 1954 | | | \bigcirc | \bigcirc - | | | |
| | | . 946 | 305.9 | | | | 470 | 296.591 | | . 941 | 297.3 | | | | 80 |
| | 17143 | . 751 | 210.1 | 190.8 -35.2 | | | 92 c | G | | . 911 | 223.5 | | | | 127 |
| | 17145 | . 729 | 58.9 | $119.5+26.2$ | 9 | 37 | 64 c | | 17147 | . 454 | 9.8 | 39.7 +31.5 | 5 | 12 | |
| Oct. 15 | | | (+26.3) | $(163.4)(+5.8)$ | (15) | (60) | (626) | Oct 24 | | | (+25.6) | (44.9) (+ 5.1) | (5) | (12) | (207) |
| $\begin{gathered} 288.305 \\ \mathrm{C} \end{gathered}$ | | . 949 | 310.9 | | | | 336 | | | | | | | | |
| | 17143 | . 818 | 218.9 | $192.9-35.0$ | 4 | 18 | 153 c | 297. 449 | 17147 | . 458 | 350.3 | $38.8 \quad+31.7$ | 4 | 15 | |
| | 17145 | . 620 | 54.5 | $120.2+25.9$ | 9 | 39 | | G | | | | | | | |
| | 17146 | . 817 | 120.7 | $105.6-20.8$ | 3 | 9 | $110 f$ | Oct. 25 | | | (+25.6) | $(33.6)(+5.0)$ | (4) | (15) | (0) |
| Oct. 16 | | | (+26.3) | (154.2) (+5.8) | (16) | (66) | (599) | | | | | | | | |
| | | | | | | | | 298.348 | | . 952 | 234.4 | | | | 135 |
| $\begin{gathered} 289.493 \\ G \end{gathered}$ | 17143 | . 923 | 228.8 | $195.8-34.4$ | 0 | 5 | $129 f$ | G | 17147 | . 516 | 332.8 | $37.9+31.9$ | 2 | 12 | |
| | 17145 | . 427 | 37.8 | $121.9+25.1$ | 1 | 7 | | Oct. 26 | | | (+25.4) | $(21.8)(+4.9)$ | (2) | (12) | (135) |
| | 17146 | . 662 | 130.7 | $106.3-20.7$ | 0 | 6 | | | | | | | | | |
| Oct. 17 | | | (+26.2) | (138.6) (+ 5.7) | | (18) | (129) | | | | | | | | |
| | | | | | | | | $\underset{\mathrm{G}}{299.501}$ | | | 296.5 124.9 | | | | 174 |
| $\begin{gathered} 290.303 \\ C \end{gathered}$ | | . 929 | 228.0 | | | | 172 | Oct. 27 | | | (+25.3) | $(6.6)(+4.8)$ | (0) | (0) | (305) |
| | 17147 | . 992 | 58.0 | 43.1 +32.4 | 0 | 34 | | | | | | | | | |
| | | . 882 | 64.1 | | | | 85 | | | | | | | | |
| Oct.18 | | | (+26.2) | $(127.9)(+5.6)$ | (0) | (34) | (257) | 300.578 | | . 933 | 293.4 | | | | 115 |
| | | | | | | | | G | | . 881 | 130.2 | | | | 227 |
| | | | | | | | | | | . 933 | 55.4 | | | | 156 |
| $\begin{gathered} 291.396 \\ \mathrm{G} \\ \text { Oct. } 19 \end{gathered}$ | | . 969 | 230.8 | | | | 98 | Oct. 28 | | | (+25.2) | (352.4) $(+4.7)$ | (0) | (0) | (498) |
| | 17147 | . 946 | 57.8 | $42.7 \quad+32.1$ | 6 | 17 | 170 f | | | | | | | | |
| | | | (+26.1) | (113.5) (+5.5) | | (17) | (268) | | | | | | | | |
| | | | | | | | | 301.477 | | . 888 | 304.6 | | | | 138 |
| | | | | | | | | G | | . 812 | 140.1 | | | | 122 |
| $\begin{gathered} 292.464 \\ \text { G } \\ \text { Oct } 20 \end{gathered}$ | 17147 | . 866 | 55.9 | $41.9+31.9$ | 7 | 15 | $154 f$ | | | . 875 | 52.6 | | | | 109 |
| | | | | | | (15) | (154) | Oct 29 | | | (+25.0) | (340.5) (+4.6) | (0) | (0) | (369) |
| | | | (+26.0) | (99.4) (+5.4) | | | | | | | | | | | |
| | | | | | | | | 302.384 | | . 896 | 305.5 | | | | 217 |
| $\begin{gathered} 293.579 \\ G \end{gathered}$ | | . 814 | 277.7 | | | | 209 | G | | . 992 | 54.8 | | | | 183 |
| | 17147 | . 748 | 51.3 | $41.5+31.7$ | 7 | 10 | $124 f$ | Oct. 30 | | | (+24.9) | (328.5) (+4.5) | (0) | (0) | (400) |
| | | . 919 | 51.8 | | | | 89 | | | | | | | | |
| Oct. 21 | | | (+25.9) | (84.7) (+5.3) | | (10) | (422) | | | | | | | | |
| | | | | | | | | 303.306 | | . 953 | 302.7 | | | | 122 |
| | | | | | | | | C | | . 958 | 54.4 | | | | 292 |
| $\begin{gathered} 294.400 \\ G \end{gathered}$ | | . 906 | 278.9 | | | | 254 | Oct. 31 | | | (+24.8) | (316.4) (+4.4) | (0) | (0) | (414) |
| | | . 760 | 299.6 | | | | 59 | | | | | | | | |
| | 17147 | . 649 | 45.5 | $41.1+31.4$ | 6 | 15 | $80 f$ | | | | | | | | |
| | | . 912 | 17.9 | | | | 148 | 304.292 | | | 125.8 | | | | 134 |
| Oct. 22 | | | (+25.9) | (73.8) (+5.3) | (6) | (15) | (541) | C | | . 900 | 51.0 | | | | 206 |
| | | | | | | | | Nov. 1 | | | (+24.6) | $(303.4)(+4.3)$ | (0) | (0) | (340) |
| $\begin{gathered} 295.432 \\ G \\ \text { Oct } .23 \end{gathered}$ | | . 966 | 281.0 | | | | 104 | | | | | | | | |
| | | . 842 | 298.8 | | | | 125 | 305.388 | | . 793 | 47.8 | | | | 90 |
| | 17147 | . 535 | 32.7 | $40.4+31.6$ | 2 | 12 | | G | | . 936 | 51.0 | | | | 241 |
| | | | (+25.8) | (60.2) (+5.2) | | (12) | (229) | Nov. 2 | | | (+24.4) | (288.9) (+4.2) | (0) | (0) | (331) |

[^1]

Group 17148. Nov. 5-9. A small spot, not seen on November 7; a pair on November 9.
Group 17149. Nov. 9-10. A pair of tiny spots on November 9; a single spot on November 10.
Group 17150. Nov. 9-15. A pair of spots, apdearing just past the central meridian, of which the follower is the most stable. Group 17151. Nov.10-15. Intermittent. A few small spots.
Oroup 17152. Nov.10-14. A small spot, quickly dying out.
Groud 17153. Nov.13-14. A dair of small spots.
Group 17154. Nov.17-19. A pair of tiny spots on November 17; a single spot on November 18 and 18.

Group 17155. Dec. 15 - 21. A regular spot followed by a few varlable companions.
Groud 17158. Dec. 18-28. One or two small changing spots, not seen on December 21.
Groud 17157. Dec. 20-1965 Jan. 5. A stream, suddeniy appearing near the central meridian, with a regular spot as leader. The follower is a double spot, the two components separating after January 1.

General Catalogue of Groups of Sunspots

For the year 1954

Groups of sunspots, lasting for two or more days, are numbered in the first column in continuation of the group-numbers given in 1953 and the previous years. Groups seen only once are not included in this catalogue but are given with a distinctive numeration in a following table on P. C 20.

The second column gives the corresponding Mount Wilson group number, as identified from the bi-monthly summaries of the Mount Wilson magnetic observations of sunspots published in Publications of the Astronomical Society of the Pacific.

The third column gives the U.T. of the central meridian passage of each group as deduced from its mean longitude (given in the eleventh column). For those groups which are in existence at the time of the central meridian passage of their longitude, the time is given to $O d O 1$, corresponding to 0.13 of solar longitude. In other cases, in which groups disappear before or appear after the central meridian, the deduced time is given to OdI.

The fourth column gives the duration of each group in days. Intermittent groups, i.e., groups which are not seen upon the photographs of every day between their first and last appearances, are indicated by a fraction, the numerator of which represents the number of days on which they are actually observed, the denominator being the number of days covering the extreme limits of observation.

The sixth and eighth column, headed "Longitude from central meridian", give, for the days on which each group was first and last seen respectively, the heliographic longitude from the meridian passing through the centre of the Sun's disk at the time of observation, longitudes west of the centre being reckoned as positive.

The mean areas for umbre and whole spots entered in the ninth and tenth columns are corrected for the effect of foreshortening and are expressed in millionths of the Sun's visible hemisphere.

The eleventh and twelfth columns give the mean heliographic position of the group in longitude and latitude respectively.

The thirteenth colum gives reference to all groups contained in Ledger I and Ledger II; for a group in Ledger I both its recurrent series number and its order in the series are also given.

With reference to the identification both of recurrent and revival groups, it should be noted that longitudes are based on the ephemeris given in the Nautical Almanac, assuming a solar rotation period constant at all latitudes. After an interval of one rotation, recurring groups will, therefore, show in general - apart from any proper motion they may have of their own apparent drifts in longitude varying in amount according to their respective latitudes. The following table, derived from the formula $\xi=14^{\circ} .37-2.60 \sin ^{2} \phi$, gives the apparent drift in longitude appropriate to different latitudes after an interval of 27 days , a drift forwards corresponding to an increase in heliographic longitude.

Latitude	...Drift forwards.	LatitudeDrift backwards.
0°	. 5°	20°	.. 3°
5°.	.. 4.5	25°	.. 7.5
10°	.. 3	30°	.. 12.5
15°	. 0.5	35°.	.. 18

Greenwich Photo-Heliographic Results, 1954.
C 19

GENERAL CATALOGUE OF SUNSPOTS																		
SUNSPOTS SEEN ON ONE DAY ONLY																		
The groups of sunspots tabulated below were seen on one day only and appear in the Daily Results with a distinctive numeration, comprising the number of the rotation during which each was observed and a letter given in order of appearance. These short-lived groups are usually composed of one or two very small spots. The deduced time of central meridian passage of each spot is given in the fourth column of the table.																		
No. of Group	Date	Long1tude prom Central Meridian	U.T. of Central Meridian Passage	Area Corrected for Foreshortening		Position or Group		No. of Group	Date	$\begin{gathered} \text { Long1- } \\ \text { tude } \\ \text { from } \\ \text { Central } \\ \text { Meridian } \end{gathered}$	U.T. of Central Meridian Passage	Area Corrected for Foreshortening		Position of Groud				
				Umbræ	Whole Spots	Long1tude	Latitude					Umbræ	Whole Spots	Long1tude	Latitude			
$\begin{array}{r} 1342 a \\ b \\ c \end{array}$	$\begin{array}{r} 1954 \\ \text { Jan. } 11 \\ 18 \\ 24 \end{array}$	$\begin{aligned} & -35.8 \\ & -50.1 \\ & -21.5 \end{aligned}$	$\begin{gathered} 1954 \\ \text { Jan. } 14.2 \\ 22.2 \\ 26.0 \end{gathered}$	$\begin{array}{lr}0 & 6 \\ 0 & 4 \\ 2 & 12\end{array}$		$\begin{array}{rr} 187.6 & -2.7 \\ 81.9 & -37.8 \\ 31.2 & +8.9 \end{array}$		$\begin{aligned} & 1349 a \\ & 1350 a \end{aligned}$	$\begin{gathered} 1954 \\ \text { July } 14 \end{gathered}$ Aug. 27	$+31.6$	$\begin{gathered} 1954 \\ \text { July } 12.1 \end{gathered}$	15		$344.6+2.2$				
						Aug. 30.1	1				8	57.8	-4.8					
$\begin{array}{r} 1345 a \\ b \end{array}$	$\text { Apr. } \begin{gathered} 9 \\ 20 \end{gathered}$	$\begin{aligned} & +31.0 \\ & +29.3 \end{aligned}$	$\text { Apr. } \begin{array}{r} 7.1 \\ 18.1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{r} 1 \\ 10 \end{array}$			$\begin{array}{rr} 175.5 & -0.8 \\ 29.9 & +6.0 \end{array}$		1351ab	Sept. 4 25	$\begin{array}{r} +74.2 \\ -52.8 \end{array}$	Aug. 30.1 Sept 29.3		85	$\begin{aligned} & 57.3 \\ & 18.2 \end{aligned}$	$\begin{aligned} & +22.8 \\ & -36.1 \end{aligned}$	
$\begin{array}{r} 1346 a \\ b \end{array}$	May $\begin{array}{r}9 \\ \\ \\ \hline 14\end{array}$	$\begin{array}{r} +70.5 \\ -0.6 \end{array}$	May $\begin{array}{r}4.0 \\ \\ \\ \end{array}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 14 \\ & 11 \end{aligned}$	$\begin{array}{rr} 180.0 & +33.3 \\ 45.3 & +5.0 \end{array}$		$\begin{array}{r} 1352 A \\ b \end{array}$	$\begin{array}{ll} \text { Oct. } & 2 \\ 3 \end{array}$	$\begin{aligned} & +47.8 \\ & +21.7 \end{aligned}$	$\begin{aligned} & \text { Sept } .28 .8 \\ & \text { Oct. } \quad 1.7 \end{aligned}$	22	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{array}{r} 25.3 \\ 347.0 \end{array}$	$\begin{aligned} & +36.2 \\ & -19.6 \end{aligned}$			
1347a	June 4	+54.4	May 31.2	0	9	179.9	+28.5											
								1353a	Nov. 11	-67.2	Nov. 16.4	0	14	104.2	$+6.3$			
1348a	June 22	$+63.0$	June 17.6	0	6	308.9	+11.8											
b	July 3	-45.8	July 6.8	6	28	55.4	-20.9	1354a	Dec. 1	+50.6	Now. 27.6	0	8	316.3	-25.9			

Greenwich Number	Mt. Wilson Number	Oreenwich Number	Mt. Wilson Number
$1342 a$	11169	$1349 a$	11183
$1345 a$	11174	$1350 a$	11189
$1346 b$	11177	$1352 a$	11195
$1348 b$	11180		

REVIVAL GROUPS OF SUNSPOTS												
Groups of spots occupying the same heliographic position in consecutive disk passages (partial or complete) but with definite breaks in their history are termed 'Revivals'. Such groups have been abstracted from the preceding catalogue and are grouped in series in the following table. When a 'Recurrent' series i.e. Ledger I forms part of a 'Revival' series, a reference is given in the last column of the table. Groups that are given in detail in Ledger If are also indicated.												
No.	No. of Group	U.T. of Central Meridian Passage	Rotation	$\begin{gathered} \text { Dura- } \\ \text { tion } \\ \text { in } \\ \text { Days } \end{gathered}$	First Seen		Last Seen		Area	Mean Position		$\begin{gathered} \text { Reference } \\ \text { to } \\ \text { Ledger } \end{gathered}$
					Date	```Longltude from Central Meridian```	Date	```Long1tude from Central Meridian```		$\begin{gathered} \text { Long1- } \\ \text { tude } \end{gathered}$	Lat 1 tude	
		1954			1954	-	1954	-		-	-	
1	17143	Oct. 13.36	1352	6	Oct. 12	-12	Oct. 17	+57	16	193	-35	II
	50	Nov. 9.7	1353	7	Nov. 9	+1	Nov. 15	+71	182	192	-33	II
2	17146	Oct. 20.0	1352	2	Oct. 16	-49	Oct. 17	-32	8	106	-21	
	52	Nov. 16.0.	1353	5	Nov. 10	-73	Nov. 14	-22	42	109	-21	

Ledgers of Groups of Sunspots

For the year 1954

Ledger I :
Recurrent Groups
Ledger II :
Non-Recurrent Groups

LEDGERS OF GROUPS OF SUNSPOTS FOR THE YEAR 1954.

LEDGER I. - RECURRTRT GROUPS
LEDGER II. - NON-RECURRENT GROUPS

The time (U.T.) at which the photograph was taken is expressed in the first column by the day of the year and decimal of a day reckoned from Greenwich mean midnight.

The place where the photograph was taken is also indicated in the first column. A photograph taken at Greenwich is indicated by the letter G, and those taken at the Cape and Kodaikanal by the letters C and K respectively.

The projected area of the umbrae and whole spots, given in the second and third columns, is the area as it is measured on the photograph, uncorrected for the effect of foreshortening, and expressed in millionths of the Sun's apparent disk.

The area corrected for foreshortening given in the fourth and fifth columns is expressed in millionths of the Sun's visible hemisphere.

The longitude given in the $s i x t h$ colum is based on the ephemeris given in the Nautical Almanac, assuming a daily sidereal motion of 14°. 18 , due to the Sun's rotation, constant at all latitudes; this corresponds to Carrington's assumed rotation period of 25.38 days.

The proper motion given in the geventh column is derived from the difference of longitude thus computed from the measured positions on any given day and the first day on which the group of spots or single spot is visible, after the correction for the motion appropriate to the latitude has been applied according to the formula, $\xi=14.37-2.60 \mathrm{sin}{ }^{2} \phi$. A plus sign (increasing lonsitude) indicates a motion forwards, a minus sign a motion backorards relative to the position on the first day.

The remaining columns correspond to those with similar headings in the preceding section.

When a group is 80° or more from the Sun's central meridian, the measures for that day are not included in taking the mean area or the mean longitude and latitude of the group. In such cases of close proximity to the Sun's limb, the addition of brackets denotes that only part of the group is visible.

LEDGER I. - RECURRENT GROUPS OF SUNSPOTS																	
$\begin{aligned} & \text { Date } \\ & \text { U.T. } \\ & \text { Place } \end{aligned}$	Projected Area		Corrected Area UmbreWhole Spots	Longi tude and Proper Motion		Latitude	Long. from C.M.	Date U.T. Place		Projected Area		Corrected Area	Longitude and Proper Motion		Lat1-tude	Long. from C.M.	
	Umbra	Whole							Umbræ	Whole Spots	Umbrex Whole $\begin{aligned} & \text { Whats } \\ & \text { Spote }\end{aligned}$						
No. 1662. Latitude -23:8								No. 1662. Group 17157-continued									
Group 17157 in Rotation 1355 17162 n 1358								Spot a									
								- 0 - 0									
								362.342	C	8	29	416	250.5	0.0	-24.0	-7.9	
								363.278	C	50	289	27156	252.6	+2.3	-24.0	$+6.6$	
								364.277	C	58	389	33222	253.5	+3.4	-23.3	+20.6	
								0.285	C	56	349	36227	254.7	+4.9	-23.2	+35.1	
Group 17157. Dec. 29-1955 Jan. 5. A stream, suddenly appearing near the central meridian, with a regular spot, a, as leader. The follower is a double spot, the two components separating after January 1.								1.286	C	42	196	33155	254.6	+5.0	-23.4	+48.2	
								2.283	C	25	178	28196	255.0	+5.6	-23.8	$+61.7$	
								3.282	C	10	73	20143	255.5	+6.3	-23.8	+75.4	
				-	-		\bigcirc		Group 17182. 1855 Jan. 20-26. A small spot, not seen on Jan. 25.								
362.342 C	12	62	$6 \quad 34$	249.2	0.0	-23.1	-9.2										
363.278 C	96	526	$51 \quad 282$	250.7	+1.7	-23.4	+ 4.7	19.284	C	4	19	$7 \quad 34$	254.7	$+9.2$	-23.7	-74.7	
364.277 C	116	780	65437	250.5	+1.7	-23.2	+17.6	20.342	C	4	25	426	254.4	+9.1	-23.8	-61.1	
0.285 C	102	634	64398	251.5	+3.0	-23.3	+31.9	21.328	C	4	31	324	253.9	+8.8	-23.5	-48.6	
1.286 C	75	416	$56 \quad 307$	250.0	+1.7	-23.1	+43.6	22.273	C	4	17	311	253.6	+8.8	-23.4	-36.5	
2.283 C	48	291	$48 \quad 297$	251.3	+3. 2	-23.5	+58.0	23.287	C	8	25	514	253.0	+8.4	-23.3	-23.7	
3.282 C	18	132	31221	251.7	+3.8	-23.8	+71.6	24.378	G	0	0	$0 \quad 0$	-	
4.282 C	0	8	(0 21	246.6	..	-23.3)	+79.6	25.410	G	4	22	212	252.3	+8. 2	-24.9	$+3.5$	
Means	-	.	$46 \quad 282$	250.7	-	-23.3	-•	Means		-•	-•	$3 \quad 17$	253.6	-	-23.8	-	

Greentich Photo-heliographic Results, 1954.
C 27

ROYAL GREENWICH OBSERVATORY

Total Areas of Sunspots and Facula

Projected and corrected for foreshortening for each day, and

> Mean Areas and Mean Heliographic Latitude of Sunspots and Facule for each rotation of the sun and for the year I 954

C 32
Greenwich Photo-Heliographic Results, 1954.

total areas of Sunspots and faculet for each day in the year															
U.T.	Place	Projected Area			Area Corrected for Foreshortening			U.T.	Place	Projected Area			Area Corrected for Foreshortening		
		Unbre	Whole Spots	Faculs	Umbræ	Whole Spots	Faculæ			Umbra	Whole Spots	Facula	Umbræ	Whole Spots	Faculæ
1954 d								1954 d							
July 14.540	G	7	32	120	5	25	98	September 6.322	G	0	5	148	0	4	123
15.305	G	5	30	143	6	35	153	7.312	G	0	0	0	0	0	0
16.448	C	9	36	101	9	40	185	8.321	C	0	0	0	0	0	0
17.239	K	6	35	0	3	18	0	9.510	G	0	0	244	0	0	244
18.631	G	0	0	0	0	0	0	10.309	C	0	0	0	0	0	0
19.303	G	0	0	0	0	0	0	11.327	G	0	0	131	0	0	177
20.306	G	0	0	0	0	0	0	12.326	G	0	0	158	0	0	142
21.304	G	0	0	219	0	0	226	13.301	G	0	5	124	0	5	109
22.317	G	0	0	51	0	0	100	14.305	G	0	7	124	0	9	150
23.306	G	0	0	0	0	0	0	15.430	G	0	7	108	0	4	173
24.567	C	0	0	0	0	0	0	16.455	G	0	13	0	0	7	0
25.331	C	11	63	220	11	64	231	17.370	G	0	4	0	0	2	0
26.712	G	7	41	0	4	28	0	18.339	C	0	0	0	0	0	0
27.303	G	2	18	0	1	11	0	19.341	G	0	0	130	0	0	133
28.302	G	2	14	0	1	8	0	20.298	G	0	0	248	0	0	382
29.354	G	0	25	252	0	13	284	21.309	G	0	0	304	0	0	374
30.337	C	4	20	161	2	10	187	22.313	G	0	0	292	0	0	257
31.135	K	0	0	0	0	0	0	23.389	G	0	0	0	0	0	0
								24.451	G	0	0	0	0	0	0
								25.324	C	0	4	54	0	5	64
Augus 1.513	C	9	45	359	25	127	485	26.378	G	0	0	0	0	0	0
2.329	C	18	89	234	26	136	402	27.403	G	0	0	139	0	0	146
3.431	C	16	116	591	15	107	597	28.416	G	0	0	85	0	0	172
4.338	G	25	114	428	18	83	444	29.330	G	0	0	526	0	0	667
5.446	C	20	109	111	12	66	124	30.109	K	0	0	364	0	0	367
6.658	G	34	204	0	18	110	0								
7.421	G	28	135	0	15	72	0								
8.400	C	8	47	151	4	26	174	October 1.394	G	0	0	358	0	0	365
9.616	G	37	170	0	21	99	0	2.410	G	2	20	345	2	34	611
10.282	G	45	224	87	25	128	137	3.340	G	6	36	242	5	39	397
11.414	G	46	197	126	28	120	101	4.344	G	0	4	528	0	16	725
12.323	C	38	180	173	25	119	178	5.333	C	0	6	572	0	8	535
13.424	G	5	36	335	4	31	413	6.345	G	0	0	562	0	0	474
14.310	G	0	5	330	0	6	398	7.351	G	0	0	397	0	0	323
15.351	G	0	0	210	0	0	370	8.443	C	0	0	258	0	0	284
16.325	G	0	0	0	0	0	0	9.374	G	0	0	212	0	0	267
17.323	G	0	0	0	0	0	0	10.301	C	0	0	97	0	0	159
18.321	G	0	0	0	0	0	0	11.352	G	0	0	185	0	0	329
19.297	G	0	0	0	0	0	0	12.343	G	0	34	422	0	34	474
20.391	G	0	0	109	0	0	192	13.351	G	6	36	744	4	24	614
21.313	G	9	37	137	5	23	151	14.424	G	10	62	621	8	46	651
22.292	G	41	151	0	27	98	0	15.607	G	22	82	515	15	60	626
23.327	G	51	258	0	37	187	0	16.305	C	23	92	514	16	66	599
24.465	G	41	180	178	37	162	164	17.493	G	2	26	122	1	18	129
25.343	G	14	63	217	16	73	256	18.303	C	0	9	209	0	34	257
26.324	G	2	9	239	4	16	430	19.396	G	4	11	142	6	17	268
27.318	G	2	13	0	1	8	0	20.464	G	7	15	128	7	15	154
28.327	G	0	0	0	0	0	0	21.579	G	9	13	464	7	10	422
29.359	G	0	0	103	0	0	165	22.400	G	9	22	522	6	15	541
30.302	G	0	0	274	0	0	368	23.432	G	4	20	191	2	12	229
31.303	G	0	0	273	0	0	269	24.591	G	9	22	161	5	12	207
								25.449	G	7	26	0	4	15	0
								26.348	G	4	20	84	2	12	135
Septenber 1.309	G	0	0	0	0	0	0	27.501	G	0	0	264	0	0	305
2.307	G	0	0	0	0	0	0	28.578	G	0	0	414	0	0	498
3.296	G	0	0	0	0	0	0	29.477	G	0	0	377	0	0	369
4.716	G	2	19	191	3	29	289	30.384	G	0	0	242	0	0	400
5.429	G	0	2	261	0	2	354	31.306	C	0	0	245	0	0	414

total areas of sunspots and facule for each day in the year																	
U.T.	Place	Projected Area			Area Corrected for Foreshortening			U.T.		Place	Projected Area			Area Corrected for Foreshortening			
		Umbræ	Whole Spots	Faculæ	Umbræ	Whole Spots	Faculæ			Umbree	Whole Spots	Faculæ	Umbгæ	Whole Spots	Faculæ		
1954 d								1954									
November 1.292	C	0	0	309	0	0	340	December	1.461	G	0	9	313	0	8	343	
2.388	G	0	0	282	0	0	331		2.514	G	0	0	314	0	0	384	
3.423	G	0	0	220	0	0	227		3.420	G	0	0	596	0	0	652	
4.406	G	0	0	338	0	0	388		4.479	G	0	0	248	0	0	227	
5.381	G	2	9	510	1	5	542		5.467	G	0	0	282	0	0	239	
6.386	G	7	44	154	5	30	131		6.456	G	0	0	245	0	0	231	
7.584	C	0	0	0	0	0	0		7.518	G	0	0	0	0	0	0	
8.320	C	4	19	284	5	25	320		8.280	C	0	0	84	0	0	85	
9.378	G	11	80	403	8	71	426		9.421	G	0	0	336	0	0	393	
10.385	G	48	379	260	40	292	343		10.371	G	0	0	0	0	0	0	
11.300	C	66	478	239	48	354	352		11.399	G	0	0	406	0	0	385	
12.513	G	70	423	627	53	324	620		12.449	G	0	0	347	0	0	324	
13.394	G	55	308	523	47	260	541		13.411	C	0	0	219	0	0	265	
14.410	G	31	171	291	31	171	314		14.360	C	0	0	199	0	0	257	
15.418	G	15	89	329	30	176	583		15.465	G	65	297	54	39	182	117	
16.293	C	0	0	64	0	0	127		16.430	G	112	540	108	71	341	139	
17.434	G	2	13	224	2	13	246		17.588	G	95	480	91	67	323	236	
18.480	G	0	4	301	0	3	330		18.412	G	100	492	481	82	411	469	
19.291	C	2	15	95	1	10	70		19.308	C	54	400	313	53	395	285	
20.391	C	0	0	143	0	0	122		20.440	G	55	283	402	76	379	475	
21.279	C	0	0	165	0	0	196		21.299	C	25	117	178	70	318	335	
22.289	C	0	0	232	0	0	306		22.446	C	4	19	0	2	11	0	
23.464	G	0	0	0	0	0	0		23.427	G	17	143	0	9	79	0	
24.365	G	0	0	154	0	0	251		24.401	G	13	98	0	8	57	0	
25.362	G	0	0	220	0	0	298		25.322	C	6	27	0	4	17	0	
26.294	C	0	0	168	0	0	230		26.101	K	6	24	0	4	17	0	
27.369	G	0	0	215	0	0	202		27.501	G	0	0	238	0	0	233	
28.305	C	0	0	269	0	0	269		28.280	C	0	0	163	0	0	214	
29.295	C	0	0	319	0	0	379		29.342	C	12	62	163	6	34	247	
30.502	G	0	0	313	0	0	367		30.278	C	96	526	149	51	282	217	
									31.277	C	116	780	121	65	437	150	

MEAN AREAS OF SUNSPOTS AND FACULE FOR EACH ROTATION OF THE SUN, FROM 1954 JANUARY 1 TO DECEMBER 21

The mean areas have been formed by taking the means of the areas for each day of observation throughout each rotation of the Sun, the projected areas being the areas as measured on the photographs and expressed in millionths of the Sun's apparent disk, and the areas corrected for foreshortening being expressed in millionths of the Sun's visible hemisphere.

The rotations adopted in the following table (which is in continuation of those for the years 1873-1953 printed in the Greenwich Observations for 1884 and succeeding years) correspond to the synodic rotation of the Sun, and the commencement of each is defined by the coincidence of the assumed prime meridian with the central meridian, the assumed prime meridian being that meridian which passed through the ascending node of the Sun's equator on the ecliptic at mean noon on on January 1, 1854, and the assumed period of the Sun's sidereal rotation being 25.38 days. The numeration of the rotations is in continuation of Carrington's series (Observations of Solar Spots made at Redhill by R. C. Carrington, F.R.S.), No. 1 being the rotation commencing 1853 November 9. The dates of commencement of the rotations are given in U.T.

No. of Rotation	Date or Cormencement of each Rotation			No. of Days on which Photographs were taken	Mean of Dally Areas						
				Projected	Corrected for Foreshortening						
				Umbra	Whole Spots	Faculæ	Umbre	Whole Spots	Faculæ		
1342	1954	January	1.07		27	0	1	53	0	1	62
1343		January	28.41		28	0	2	48	0	1	58
1344		February	24.75	27	53	289	112	32	181	129	
1345		March	24.07	28	1	4	62	0	3	74	
1346		April	20.35	27	0	1	40	0	1	49	
1347		May	17.58	27	0	3	20	0	2	24	
1348		June	13.79	27	0	2	10	0	2	11	
1349		July	10.98	27	7	39	111	6	34	130	
1350		Augus t	7.20	28	13	61	105	9	42	134	
1351		September	3.44	27	0	2	134	0	2	160	
1352		September	30.71	27	5	21	328	3	18	373	
1353		October	28.00	27	12	75	269	10	64	316	
1354		November	24.31	28	18	94	246	16	84	280	

MEAN AREAS OF SUNSPOTS AND FACULEE FOR THE YEAR

The mean projected areas are expressed in millionths of the Sun's apparent disk.

The mean areas corrected for foreshortening are expressed in millionths of the Sun's visible hemisphere.

Year	No. of Days on which Photographs were taken	Mean of Dally Areas					
		Projected			Corrected for Foreshortening		
		Umbra	Whole Spots	Facule	Umbere	Whole Spots	Facula
1954	365	9	49	117	6	35	138

MEAN HELIOGRAPHIC LATITUDE OF SUNSPOTS FOR EACH ROTATION OF THE SUN, FROM 1954 JANUARY 1 TO DECEMBER 21

The numbers given in the accompanying table have been formed as follows:-

The heliographic latitude of each spot for each day has been multiplied by its area (corrected for foreshortening), and the sum of the products, for spots north of the equator, has been divided by the sum of the corresponding areas to form the mean heliographic latitude of spotted area north of the equator; similarly for spots south of the equator. In forming the mean heliographic latitude of entire spotted area, the algebraic sum of the products for spots north and south of the equator has been divided by the sum of the areas; and for the mean distance from the equator of all spots the numerical sum of the products, without regard to the sign of latitude, has been similarly divided.

The mean areas have been formed by dividing the sum of the daily areas (corrected for foreshortening) by the number of days of observation for each rotation of the Sun and are expressed in millionths of the Sun's visible hemisphere.

No. of Rotation	Date of Commencement of each Rotation			No. of Days on which Photographs were taken	Spots North or the Equator Spots South of the Equator				Mean Hellographic Latitude of Entire Spotted Area	Mean Distance from Equator of all Spots	
				$\begin{aligned} & \text { Mean } \\ & \text { or Da1ly } \\ & \text { Areas } \end{aligned}$	Mean Hellographic Latitude	$\begin{aligned} & \text { Mean } \\ & \text { or Dally } \\ & \text { Areas } \end{aligned}$	Mean Hellograph1c Lat1tude				
1342	1954	January	1.07		27	0.4	8.92	0.4	16.70	-2.73	12.45
1343		January	28.41	28	1	31.31	0	..	+31.31	31.31	
1344		February	24.75	27	1	7.30	180	9.65	-9.98	9.64	
1345		March	24.07	28	0.4	6.00	3	4.41	- 3.32	4.58	
1346		April	20.35	27	1	20.80	0	..	+20.80	20.80	
1347		May	17.58	27	2	16.41	0	..	+16.41	16.41	
1348		June	13.79	27	1	20.67	1	20.89	- 3.08	20.80	
1349		July	10.98	27	34	22.17	0	. ${ }^{\text {a }}$	+22.17	22.17	
1350		Augus t	7.20	28	5	25.20	37	26.48	-20.64	26.34	
1351		September	3.44	27	1	24.38	2	24.50	-9.18	24.46	
1352		September	30.71	27	13	29.40	5	31.78	+13.69	30.01	
1353		October	28.00	27	8	25.75	56	31.26	+23.89	30.55	
1354		November	24.31	28	84	33.08	0.3	25.88	+32.88	33.05	

MEAN HELIOGRAPHIC LATITUDE OF SUNSPOTS FOR THE YEAR

Year	No. of Days on which Photographs were taken	Spots North of the Equator		Spots South or the Equator		Mean Hellographic Latitude of Entire Spotted Area	Mean Distance from Equator of all Spots
		$\begin{gathered} \text { Mean } \\ \text { of Daily } \\ \text { Areas } \end{gathered}$	Mean Hellographic Lat1 tude	$\begin{gathered} \text { Mean } \\ \text { or Da1ly } \\ \text { Areas } \end{gathered}$	Mean Hellographic Lat1 tude		
1954	365	12	28.84	23	17.20	-1.55	21.16

Observations of Solar Filaments

Made with the Spectrohelioscopes in the year 1954

OBSERVATIONS OF SOLAR FILAMENTS MADE WITH THE SPECTROHELIOSCOPES IN THE YEAR 1954

The following observations relate to dark filaments visible on the Sun's disk in the light of $H \alpha$ in the immediate vicinity of sunspots*.

Measures of line-of-sight velocity are taken with the "line-shifter", whose scale from $0-10$ divisions $=0.37 \mathrm{~A} .=17 \mathrm{~km} . / \mathrm{sec}$. at $H \alpha$. The zero of the $H \alpha$ line is determined from measures of the darkest part of the line in an undisturbed portion of the Sun near the centre of the disk. The purpose of the observations being to locate large line-of-sight velocities*, measured displacements are interpreted as being due to Doppler effects.

The probable error of a single measure of line-of-sight velocity, as determined from a number of successive readings, is about 3 km ./sec., including the probable error of the zero determination. Three or four measures being generally made on each filament, the probable errors of the tabulated values in the third column of the following table do not usually exceed $2 \mathrm{~km} . / \mathrm{sec}$., except, perhaps in the case of the larger velocities, which have accordingly been rounded off to the nearest $5 \mathrm{~km} . / \mathrm{sec}$.

In the following table, the headings of which are self-explanatory, particulars are given of each dark filament as follows -
(1) The measured line-of-sight velocity in km./sec., + indicating motion away from the observer and - motion towards the observer.

Abstract

Where two values are given it is to be understood, unless otherwise stated in the footnotes, that different velocities were observed along the length of the filament, and that the tabulated values are the extreme velocities measured, which in nearly all cases correspond to the opposite ends of the marking. In those cases in which one end of a filament, showing progressive velocities along its length, appeared to touch a sunspot, the line-of-sight velocity observed at that extremity of the filament is printed in italics.

(2) (a) The apparent length of the filament in minutes of arc, read by means of a scale inserted in the field, or from a drawing. An asterisk denotes that the marking was small and roughly circular in shape. The diameters of these circular markings are of the order of $10^{\prime \prime}$.

[^2](b) The apparent least distance in minutes of arc from the centre of the nearest sunspot or group of spots. In those cases indicated by dots in the appropriate column it was not possible to obtain a measure.
(c) The position of the filament relative to the group of associated sunspots or to a single component of the group. In cases where a sunspot has been so designated in the Ledgers in the preceding Results., the appropriate letter a (the leader of the group) or b (the follower) has been added. The abbreviations n, s, f, p, c, stand respectively for, north, south, following, preceding, central.
(3) Particulars of the associated group of sunspots, abstracted from the General Catalogue, including the longitude from the Sun's central meridian at the time of observing the filament (deduced from the mean longitude of the sunspots).

Notes have been added of unusual features seen at the time of observation. Filaments which were apparently descending into sunspots with progressive velocities and which showed a definite curvature of shape are also noted.

OBSERVATIONS OF SOLAR FILAMENTS MADE WITH THE SPECTROHELIOSCOPE IN THE YEAR											
Dark H α Filament							Associated Oroup or Sunspots				
Rer. No.	Date and U.T.		Measured Line-of-Sight Velocity $\mathrm{km} . / \mathrm{sec}$.	Length	Least Distance from Sunspot	Position relative to Sunspot or Oroud	Number or Group	Long1 tude from Central Meridian	Central Meridian Passage	Latitude	Area
	d			'	1			-	d	-	
1	Mar. 1		-63 to +45	3.0	0.8	n	17126	+43	Feb. 26.1	-24	110
2	2	9.2	-32	1.0	0.2	c	126	+56			
3	12	14.0	-89 to +90	1.0	0.2	c	127	-60	17.14	-8	403
4	Oct. 25	11.8	+19	2.2	1.0	s	147	+ 7	Oct. 24.93	+32	14
5	Dec. 15	9.2	-12 to +54	0.7	0.1	c	155	-1	Dec. 15.5	+34	317
6	Dec. 15		+36	0.3	1.5	f	17155	-1	Dec. 15.5	+34	317
7	15	9.3	$+30$	0.6	1.0	f	155	-1			

NOTES
Rer.
No.

1. Assoclated with a Flare 1. This flare has been published with 1853 and hence no list of flares is needed for 1954.
C.B.H. 31722

(C) Crown copyright 1958

Published by
Her Majesty's Stationery Office
To be purchased from York House, Kingsway, London w.c. 2

423 Oxford Street, London w. I ${ }_{13 \text { A Castle Street, Edinburgh } 2}$ 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 Tower Lane, Bristol I 2 Edmund Strect, Birmingham 3 80 Chichester Street, Belfast or through any bookseller

[^0]: Group 17141. Oct. 2-12. Intermittent. A few small spots on October 2 and 3; a single spot on October 12.
 Group 17142. Oct. 4 - 5. Tiny spots.
 Group 17143. Oct.12-17. Two or three tiny spots.
 Group 17144. Oct.12-14. A pair of spots on October 12; a single spot on October 14.
 Group 17145. Oct.14-17. A pair of small spots of which only one remains on October 17.

[^1]: Group 17148. Oct. 18-17. A tiny spot.
 Group 17147. Oct. 18-26. A persistent small spot.

[^2]: * An analysis of the line-of-sight velocities of dark H α markings near sunspots, observed at the Royal Observatory, Greenwich, 1830-33, is given in Nonthly Notices, 94, 472, 1934. A further paper on the characteristic motions of such filaments associated with solar flares appears in Monthly Notices, 102, 2, 1942.

