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ABSTRACT

A general overview of the theoretical and simulation methods used to
study plasma instabilities in the high latitude ionosphere is presented.
This is done by way of example, using the E x B instability to illustrate
the various techniques. The linear theory is presented from both the fluid
and kinetic points of view, as well as both local theory and nonlocal
theory. The nonlinear theories of the instability are §lso discussed,
describing both analytical techniques and simulation methods (e.g., pseudo-
spectral, finite difference). Finally, we compare the theoretical results
with observational data which provides strong 'evidence that the E x B
instability is active in the high latitude F region.

I. INTRODUCTION

The high latitude ionosphere is one of the more exciting regions of the
near-earth space environment. This is primarily because it is "connected"
to the distant magnetosphere and solar wind, and many phenomena which occur
in the high latitude ionosphere are directly related to processes in the
magnetosphere and solar wind, perhaps the most spectacular being auroral
displays because of their visual impact. In recent years, high latitude
plasma turbulence (i.e., electron density irregularities) has received
considerable attention in the space plasma physics community [Keskinen and
. Ossakow, 1983; Kintner and Seyler, 1985; Tsunoda, 1988]. It is known that
the scale sizes of plasma irregularities span an enormous range [Kelley et
al., 1982; Baker et al., 1983; Rodriquez and Szuszczewicz, 1984], from a few
centimeters to thousands of kilometers: eight orders of magnitude! It is
clear that a variety of mechanisms &are involved in creating this range of
structure sizes. The types of mechanisms that have been proposed to explain
irregularity production are electron precipitation, plasma mixing by the
global convection pattern, plasma and fluid instabilities, etc. Thus, the
subject is very interesting, in part, because of ,its complexity and the
interplay of different physical processes. For a recent review of the
subject, the interested reader is referred to a recent article by Tsunoda
(1988).

There is reasonably good evidence that plasma irregularities with scale
sizes € 10 km are produced primarily by an instability process. OQf course,
there still remains a large range of scale sizes to be explained. No single
instability appears capable of generating all of the observed gtructure so a
number of instabilities have been suggested: E x B, Kelvin-Helmholtz,
current convective, drift wave, Farley-Buneman, ion cyclotron, ion acoustic,
lover hybrid, velocity shear, etc. Vithin the context of investigating a
particular instability and its role 1in producing ionospheric turbulence, a
number of questions should be answered at the outset to clarify the type of
analysis to be used and its purpose. What is the equilibrium state of the
system? Should fluid theory be used or kinetic theory? Should a local
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theory be developed or a nonlocal theory? Should a linear analysis be
performed or a nonlinear analysis? What analytical and/or numerical methods
are appropriate? The experimental data that one hopes to understand and
explain provide the key to answering these questions. It is important to
identify the ambient plasma and field conditions, the sources of free energy
which can drive a plasma instability, the length and time scales associated
with the fluctuations, etc.

The purpose of this paper is to provide an overview of the theoretical
and computational methods used to study plasma instabilities in the high
latitude ionosphere. We will focus on the E x B instability to illustrate
the various techniques; this instability is also known as the gradient drift
instability and the E x B gradient drift instability. The reasons for
choosing this instability are as follows. First, the instability is
relatively simple to understand and to model., Second, virtually all of the
methods available to study a plasma instability have been applied to the E x
B instability (to my knowledge, the only notable exception are particle and
hybrid code simulations). And  finally, there is good observational
evidence that this instability - is one of the causes of plasma structure in
the high latitude ionogphere for scale sizes 100’s m to 10’s km.  We add
that this paper is very similar t6 a recent article by Huba (1989), but that
we have expanded the analysis in' this paper to include ion inertia effects
and magnetospheric coupling. . . ‘

The organization of the paper is as follows. In the next section we
present a brief discussion of the ambient plasma and field conditions in the
high 1latitude ionosphere, and provide a pliysical setting for the
instability. In Section III .we describe thé linear theory of the
instability. Ve present both the  fluid theory and the kinetic' theory, as
well as both the local theory and the nonlocal theory:. In Section IV we
describe the nonlinear theory of 'the instability, emphasizing different
analytical and numerical methods ‘that have been developed. In Section V we
present a discussion of the observational evidence for the E x B instability
in the high latitude ionosphere, and compare the data with recent simulation
results. In Section VI, we summarize the major points of the paper in the
final section. We include an Appendix which describes an ingtability model
which incorporates magnetospheric coupling.

II. PHYSICAL MODEL AND EQUILIBRIUM

It is important to first get some feeling for the physical parameters
of the high latitude ionosphere, and hov they relate to fundamental plasma
parameters.  In Table I we present typical values for various parameters.
In general, one can characterize the high latitude F region as being a
weakly collisional, low B, cold plasma.

In Fig. 1 we specify a physical situation which can occur in the high
latitude F region and which can lead to the E x B instability [Rino et al.,
1978; Vickrey et al., 1980). We show F region "blob": this is a region of
enhanced electron density. (a factor of 2-10 above ambient) in the altitude
regime 200-600 km with a longitudinal extent of ~ 100's km and a latitudinal
extent of 1000’s km. We also include an eastvard ambient electric field
and note that there is a poleward density gradient on the equator side o
the blob.

In Fig. 2 we simplify the physical model in Fig. 1 using a slab
coordinate system.,K We take the ambient magnetic field to be in the z- -
direction (B = By e;), the ambient electric field to be in the y-direction
(E -)?0 ey), end the density to be inhomogeneous in the x-direction (ng =
np(x)). .
0 The basic equations describing the plasma are the following:



Table I: Typical F Region Parameters

Electron density:

Neutral density:

Temperature:

Magnetic field:

Oxygen plasma:

Debye length:

Electron gyroradius:

Ion gyroradius:

Electron plasma frequency:
Electron cyclotron frequency:
Electron collision frequency:
Ion plasma frequency:

Ion cyclotron frequency:

Ion collision frequency:
Plasma beta (B):

n, & 103 - 106 em=3
ne < 1012 cm”
Te ~ Ty £ 0.1 ev
Bgp 20.3 G
m1=16m
Npe = 2.7 mm
Pe & 2.5 cm
24,3 m
e $5.6x1 7 see-l
& 5.3 x 10° gec™
Ve € 1.4 x 10° sec”
1 £ 3.3 x 105 sec:
9 = 1.8 x %0 sec”
vi £ 7 sec”
B & 4.5 x 103
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Fig. 1) Schematic showing a high latitude plasma blob. The ambient
electric and magnetic fields, and density gradient are oriented
so that the E x B instability can be excited.

Z
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Fig. 2) Slab geometry and plasma configuration used in the analysis.
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vhere « denotes species (i: ions, e: electrons) and the symbols have their
usual meaning. In (2) v,, is the particle-neutral collision frequency, we
are in the neutral wind frame of reference (i.e., ¥y = 0), and we have taken
T = O for simplicity.

The equilibrium drifts are obtained from (2) by setting d/dt = 0 and
solving for V 3. We obtain
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The first term in (4) is the usual E x B drift while the second term is the
Pedersen drift. Note that the Pedersen drift, unlike the E x B drift, is
specie dependent so that it gives rise to the Pedersen current. This
current is the source of free energy which drives the E x B instability.

The equilibrium density is obtained from (1) by setting 3/3t = O.
Thus, we require

Von o (x) Vg =0 (5)

vhich leads to nyy(x)V,9x = constant. We' choose to work in the E x B frame
of reference, (i.e., Voox =~ ¢Eg/Bg) so that V, g, = 0. .Thus, the
equilibrium density nyy(x) can be an arbitrary function of x.

III. LINEAR THEORY
A.: Physical Picture

A simple picture of the physical processes involved in the E x B
instability is illustrated in Fig. 3. We use the same geometry shown in
Fig. 2 but are looking along the z-axis. In Fig. 3 we imagine a "heavy"
fluid on top of a "light" fluid; the boundary between these two regions is
denoted by the horizontal line. We perturb this boundary with a sinusoidal
perturbation. In the F-region the ion Pedersen drift is much larger than
the electron Pedersen drift because vi,/Q >> von/%. Thus, the ions
(denoted by the solid line in Fig. 3) drift in the dfrection of Ep and leave
behind the electrons (denoted by the dashed line in Fig. 3). Because of the
charge imbalance that results, a perturbed electrostatic field is set up, as
shown. The perturbed electric field SE then causes the plasma to drift with
a velocity 8] = cdE/B ey. For the directions chosen for Vng and E, the
perturbed velocity acts to enhance the density perturbation: the heavy
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Fig. 3) Schematic showing the physical mechanism of the E x B
instability.



fluid falls and the light fluid rises. This 1is characteristic of an
interchange instability, such as the classic Rayleigh-Taylor instability.
On the other hand, if the density gradient were chosen in the opposite
direction, the perturbation would not grow. Thus, instability will only
occur for Eg x ez * Vng > O.

B. Fluid Theory

Fluid theory is a very useful and important method to describe plasma
dynamics, e.g., the onset and evolution of plasma instabilities. However,
one must alwvays keep in mind the limitations of fluid theory and not apply
it to plasma regimes where it is not valid. In general, fluid theory is an
appropriate theory to describe a plasma species « when kinetic effects are
not important, e.g., in the absence of wave-particle interactions (w ~ kv,),
finite Larmor radius effects (krp, ~ 1) where v, is the thermal velocity and

o 18 the gyroradius of species «, etc. Thus, one usually assumes the cold
p asma, long wavelength approximation (w >> kvy and krp, << 1) vhen using
fluid theory.

With regard to the E x B instability in the lonosphere, fluid theory is
valid for krpjy << 1 and w << 9j. This translates into the following spatial
and temporal time scales: A >> 25 m and T > 5 x 1072 sec. Ve note that
the instability is a flute mode (i.e., k - By = 0); there are no wave-
particle resonances transverse to B vhen @ << @ (more specifically, v < &
vhere vy is the growth rate).

We now derive a dispersion -equation which describes the E x B
ingtability in the £luid 1limit. For simplicity, we make the following
assumptions: krp; << 1 (long wavelength), ® << ©; (low frequency), n i
(quasi—neutrality%, T = 0 (cold plasma), k * B = 0 (flute mode), B << ? (low
beta), and consider only electrostatic perturbations. In contrast to [Huba,
1989}, ve include the effects of ion inertia; we allow the ratio vj,/w to be
arbitrary. The basic equations are the following:

B gy -0 (6)
0--5 Brovry) 2
av
£=%1 (§+%Yix§o)‘“in‘li (8)
opene bl )]

We perturb these equations about the equilibrium, i.e., we take n = np(x) +
i, § = E? - V%, and Y, = + ¥, vhere § is the perturbed electrostatic
potentia The equilibrium dagfts are Vo9 = 0 and Yjo = (Viy/94)(cEy/B )ey.
We take the perturbations to have the ?ollowing form: § = p(x)exp i(kyy -
wt)].
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Substituting these quantities into (6) - (9) one obtains six equations
with six unknowns, (f, &, V Vixs Viy). After some straightforvard
algebra these equations can ﬁe comgined to yleld a simple equation for §:

o [, 28 2f, 1 Fol |y (10)
9x |0 ox 0%y ® W+ ivin BO ny

where no' = 3ng/9x. Interestingly, in the limit of strong collisions (i.e.,
>> ®w), ve note that the mode equation is independent of the ion neutral
coRlision frequency.

(1) Local Theory. In general, one usually solves (10) using the local
approximation. This approximation, also referred to as the short wavelength
limit, is based on the assumption that A << L, where X is the wavelength of
the perturbation and L, (=. (3ln(ng)/3x)~*) is the density gradient scale
length. This is shown schematically in Fig. 4a; the plasma fluctuations are
on a much smaller scale than the scale of associated with the change in
ambient density. ‘

The advantage of the local approximation is that one assumes that the
perturbations are Fourier modes even in the inhomogeneous direction, i.e., §
« expli(kex + kyy - iwt)]. If one further assumes that kL, >> kgL, >> 1
then the first term in (10) can be neglected, and the dispersion equation is
simply given by [Ossakow et al., 1978}

Vo
o(w + ivin) + VY4 E; =0 (11)
vhere Vg = cEg/Bg and @ = o, + iy, We evaluate i‘/Ln = ng'/ng at some x =
X0 typ?cally where maximum growth occurs. Equation (11) can be simplified

by considering the collisional and inertial limits, i.e., Vip >> ® and vy,
<< w, respectively. It is easily shown that

VO/Ln i Vin >> w (collisional)

¥ = (12)

(vo/anin)l/2 i Vi << o (inertial)

From (12) we note that (1) instability only occurs when Vg and L, (or Ej and

) are both positive or negative (i.e., in general, Eg x e; *Vng > 0),
(g) the mode is purely growing (i.e., o, = 0), (3) the growth rate is
independent of wavenumber k, and (4) the growth rate is largest in the
collisional limit.

(2) Nonlocal Theory. The other analytical method for solving (10) is
based on nonlocal theory. In this case one assumes A\ >> L, i.e., the long
wavelength approximation [Huba and Zalesak, 1983; 1984]. This is shown
schematically in Fig. 4b. Here, the plasma fluctuation scale length is much
longer than the scale associated with the change in ambient density (e.g.,
surface waves (9)).

For this situation one must solve the differential equation (10). The
easiest way is to assume a density profile given by a step function, i.e.,




Fig. 4)

(a)

(v)

Schematic showing ‘the distinction between the (a) short
vavelength limit and the (b) long wavelength limit,
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n, x>0
ng(x) = (13)
ny x <0

The perturbed potential is assumed to be

¢, e Yo x>0
$(x) = ' (14)

k. x .
¢ e y x <0

Ihtegrating»(lO)‘across the discontinuous density layer at x = 0 yields
the following matching conditions:

10 © (15a)

$|e =0 | , (15b)

vhere we let ¢ » O. ‘
The dispersion equation is obtained by substituting, (13) and (14) in

the jump conditions given by (15). We then obtain the following dispersion
equation

-n —nl

oo + 1vy ) + vy k Vg =0 . ' (16)

iny 0 n, + ny

Note that (16) is similar to (11); one can recover (16) from (11) by making
the substitution 1/L, = ky(ny - n3)/(ny + njp). The growth rate is easily
obtained in the collisional and inertiai limits, as in local theory case:

i Bl
kyVo m 3 Vin > @ (collisional)
e o an

- My - ny 1/2 »
| kyVovin W i Vin << w (inertial)
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As in local theory, instability only occurs when Vg and (ng - n1) are both
positive or negative, the mode is purely growing, ang the collisional growth
rate is larger than the inertial growth rate. However, unlike local theory,
the growth rate in the long yavelength limit is proportional to ky in the
collisional limit and to kyl/2 in the inertial limit.

(3) General Picture. "In the previous two sections we have presented
relatively simple techniques to evaluate (10) analytically. These methods
are very useful because they permit analytical solutions which are important
in understanding the turn-on criteria associated with the instability,
quantitative estimates of the growth rate, and how the unstable modes scale
with different parameters (e.g., Vo, ky, Lys +++). 1In general, local theory
is usually used (at least initiagly) because it 1is easy and because, in
general, it yields the largest growth rate. On the other hand, it is
important to also consider the nonlocal 1limit because large scale
disruptions of plasma are often observed in which \ > Ly. Furthermore, some
modes are only unstable in the nonlocal limit (e.g., the Kelvin-Helmholtz
instability driven by sheared velocity flows transverse to B [Chandrasekhar,
1961]; applications to the high latitude ionosphere are given in Kintner and
Seyler (1985) and Keskinen et al. (1988)).

Ultimately, if one wishes to determine the growth rate in the regime A
~ L, one must solve (10) numerically  for a specific density profile. Ve

sketch out a typical solution in Fig. 5 for the E x B instability in the
collisional limit. The solid line is the analytical solution given by (11)

and (15), and the dashed line is the numerical solution. As expected, the
numerical solution asymptotes to the appropriate limits. However, for L,
sufficiently large, i.e., very small wavelengths, additional physical
effects enter the picture, such as diffusion and finite Larmor radius
effects which have not been included in the analysis.

For the sake of completeness, we write down the appropriate momentum

transfer equations which include these additional effects. We do not solve
them here but simply give references where they have been solved. The
electron momentum transfer equation can be written as

e e
0’=_me [},3_ c!exg)_\)enY'e’\’ei(Y'e'Y'i)_xE 7 (18)

vhere P, = nT,. The second and third terms are the collisional drags with
neutrals and ions, respectively, and the final term is electron pressure.
The combination of collisional drag and pressure results in diffusion
damping of the E x B instability.

The ion momentum transfer equation can be written as

dv VP : )
~3, e 1 : ) i
dt ° ﬁ{i' (E' te Y-i X §) - V¥ - \’ie[Yi - Ye) - nm, -V gi (19)

which is somewhat more complicated than the electron equation. The
additional terms here are (1) collisional drag with the electrons, (2) ion
pressure and (3) the ion stress tensor [lj. The ion stress tensor includes
the effects of ion-ion collisions and finite Larmor radius corrections. In
general, all of the additional terms in (18) and (19) lead to damping (or
reduced growth) of the E x B instability [Sperling and Glassman, 1985].
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Fig. 5) Sketch of the growth rate (y) vs wavelength (k) for the E x B
instability in the fluid limit, i.e., krpi < 1. Kinetic theory
is required for the regime kry; > 1 as noteé in the figure.
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C.. Kinetic Theory

As indicated in the previous section, £luid theory has limitations.
For the case of the E x B instability, the theory is restricted to the
regime krpj << 1. When krpy ~ 0(1) the finite Larmor radius effects become
important which cannot be handled by fluid theory. One can use the

annronriate ion stress tensor in the fluid 1imit [Roherts and Tavylor, 10621

e VPELaG LS wLiaRos LRINSVL Al WAR falalG aald b LU UBLLS LAY AVL Yy AoV ]

to gain some understanding of hov finite Larmor radius effects influence the
instability but one still requires kyr be . a small parameter. This is
shown schematically in Fig. 5 (labellex FLR) The best (and correct) way to
handle the problem is to use kinetic theory: golve the Vlasov equation with
an appropriate collision model. This method removes all wavelength and
temperature restrictions.

To my knowledge, very little work has been done on the kinetic theory
of the E x B instability. This is because observations of plasma structure
have focused on the wavelength regimes 100’s m - 10’s km so that fluid
theory is more than adequate. Gary and Cole (1983) have presented a kinetic
theory of the § x B instability; however, their formulation is questionable
because they did not consider the ion Pedersen drift in the orbit equations.
Ve now outline a kinetic theory of the E x B instability; a detailed
analysis can be found in Huba et al. (1989).

The starting point of kinetic theory is the Vlasov equation using the
Krook collision model:

3f Y S of , n
ﬁ*!'ﬁ*f[%%‘:x%]'av—“-~“m[fa-n—°‘f'l] (20)
~ o ~ o

vhere £, is the distribution function, fM is a Maxwellian distribution
function, vy, is the collision frequency with neutrals, and i, is the
perturbed density (all of species «).

The first step 18 solving  (20) is to determine the zeroth-order
distribution function £4(x,¥) (i.e., the equilibrium distribution function).
The equilibrium distribution function for the electrons and ions can be
written as functions of the  single-particle constants of motion in the
unperturbed fields. For electrons we take

Foo(v, %) vzz, %) = ng(®) (w2 Zexpl(v, 2 + v, By 2] (21)
where v 2 = vx2 + (vy -V ) = X - (v - Vg)/ %, Vg = cEg/By, and vy =
(2T /me#'-/2 The unperturbed electron distribut on %unction can be expanged

locally about some x = x5 based upon the weak inhomogeneity approximation
vhich yields )

4

-3/72

v, -V
Feo(vlz, vzz) . no(uvez) exp[-(vlz . vzz)/vezl(l - -%;E;-§> (22)

vhere ng and L, are evaluated locally. Note that ve are using the local
approximation (i.e., XA << L,)

We assume a local, dri?ting Maxwellian distribution for the ions given
by
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Fio(vlz’ vzz) = n(‘uviz)—s/zexp[—(vl2 + vzz)/vizl (23)

where vlz = Vy 2, (vy -V y) R vi = (2T /mi)l/z, Voy = Vai + Vpi, Vai =
v%/ﬂiL is the ion diamagnetic drift, and Voi = (Vin/9)Vp is the ion
Pedersen  drift. The ion  diamagnetic drifg is proportional to the
temperature Ti and was not included in the fluid analysis because we assumed
T; = 0.

i The next step is to determine the perturbed distribution function .
This is usually done by integrating over the unperturbed orbits x’(1) (i.e.,
the method of characteristics, see Krall and Trivelpiece (1973)). For the
problem at hand we have

e, j0 aFaO
— . ? - .
Sfa = - n, —wdt exp[i& "5 (T)‘ i(w + ivan)T] V8¢ 5y
(24)
8n
+ Van n ). dt exp[ik v xX'(T) - 1(w+ iv )1]F .

Finally, after the perturbed distribution fungtion is found, one then
calculates the perturbed gensity fluctuation fi, = [d°v f, and substitutes it
into Poisson’s equation ¥ = 4n(fiy - fiy) to determine the electrostatic
dispersion equation. One finds that the dispersion equation is given by

D(wyk) =1 + Xg+ X3 =0 (25)
where
2
o Gl [1 ) (0 - gy - k¥ ivin]Gi]
i kzvi_ T - Iy G
2
o e [1 ) (0 - x,vg + i“in)Ge]
e kzvz 1 -y Gl
and Gi egp( bi)Io(bi)/(w + ky v pi *+ 1vip), Gg = exp(-b )Io(be)/(w + iven

4me/my, Vo = VE/Qln) vpi = (Vip/2)V0 Vg = ch/B? = kivi/os,
and IO is the'modified Bessel fuhction of order 0. In wr ting X Ve have
assumed flute perturbation (k- 50 0), and have taken w/®, <<1 and Von/
<< 1. 1In the limit Te = Ty 0 and vy, = 0, one can easily recover (11)
from (25).



In Fig. 6 wve show the growth rate as a function of kryi for the
folloving parameters: Vgy = 0.01 vy, Vg = 0.10 vy, vi, = 0.10 R, Ty a Tg,
my = 1836 m,, and Ven = (0.0, 0.1, 1.0) Q4. Several interesting features
are the folfowing. First, as krpy » 1 we note that the growth rate
decreases in magnitude from its value when krpj << 1 (although it may seem

that there is growth when krp; = 0 from Fig. ‘6, this is not the case as.

discussed in Section III.B.2). This is a manifestation of finite Larmor
radius effects vhich have a stabilizing influence on the instability.
Second, for vgn < Vi, it is found the growth rate actually meximizes in the
regime kryy >> 1. This behavior is analogous to the kinetic interchange
mode discussed in Gary and Thomsen (1982). Angd finally, for vy n > Vip one
finds that the mode is stable for sufficiently large krpg. Thgs is caused
by e%ectron diffusion damping of the mode, i.e., y = ¥0 - kD where D =

Ventfe-
IV. NONLINEAR THEORY

Although linear theory is important in. determining whether or not an
instability can be excited in a specific physical situation (i.e., by
providing turn-on criteria and estimates of growth rates), it is only the
first step in developing a full understanding of plasma turbulence. The
second step, and the more difficult one, involves the development of a
nonlinear theory. This is crucial because experimental data are obtained,
in general, during the nonlinear (saturated) phase of the instability.
Thus, in order to meaningfully compare observational data with theoretical
models, a nonlinear theory is clearly needed., For example, prgdicti ns of
the saturated amplitudes of fluctuating' guantities (e.g., |f]4, |E[%) and
power spectral densities (e.g., |fi/ng]® vs k) are useful in making
comparisons to the types of data obtained in high latitude experimental
campaigns. )

As noted above, developing a nonlinear theory is usually much harder
. than developing a linear theory, Analytical studies are possible and
helpful, but usually require a number of simplifying approximations and
assumptions in order to make any progress mathematically; unfortunately,
these assumptions often break down when applying the theory to realistic
ionospheric parameters. To overcome this problem, one can resort to
nonlinear numerical simulations which can remove many of the limitations of
an analytical theory. However,-one must then contend with the subtleties of
numerical analysis which is fraught with its own set of difficulties.
Nevertheless, large scale computational simulation codes offer the best
method to unravel the details of the nonlinear evolution of plasma
instabilities.

In this section we will initially discuss analytical techniques used to
study the nonlinear evolution of the E x B instability. The emphasis will
be on the underlying physics of mode coupling. Following this we will
present a discussion of nonlinear simulation studies of the instability.

A. Analytical Results

\
413 }

The major assumptions that are made in developing analytical models of

the nonlinear behavior of the § x B instability are the following. TFirst,
At is assumed that the fluctuating quantities remain small, i.e., & << ng
and E << Eg. Based on this assumption only quadratic .nonlinearities are
retained. Second, the local approximation is assumed; the pérturbation

vavelengths are small compared to equilibrium gradient scale lengths (e.g., -

A << L, as shown in Fig. 4a). And finally, it is assumed that the density
and field fluctuations do not modify the “equilibrium, Thus, only
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Fig. 6) The growth rate of the E x B instability (v/9j) vs wavenumber
(kryy) for different electron collision frequencies. This figure
is based upon kinetic (or Vlasov) theory.



perturbations need to be followed in time.

The underlying physical mechanism vhich saturates the E x B instability
in the analyses to be discusged is. mode coupling: linearly growing modes
couple to linearly damped modes. A steady state is achieved when a balance
is reached between the energy being put into growing modes and the energy
being removed by some dissipation process. It is crucial that there be an

wdaa ha diatahdldsn was soazs wrd .
energy sink in this model. Otherwise the instability would grow without

bounds because the driver 1is -being held constant. Thus, the equations
presented in Section TIII.B (i.e., (6) - (9)) have to be modified in order
to introduce damped modes. This 1is accomplished by replacing the electron
momentum equation (7) with the following equation

-3

' e
0= - o (E + Ye x B/e) - venze . (26)

- £
m
e e

n
n

As indicated in Section III.B.3, the inclusion of electron-neutral
collisional drag and finite electron temperature lead to diffusion damping
of the instability. Following the analysis described in Section III, one
can easily show that the dispersion equation can be written as

2 .
ko v, V
2 in' 0
(v + vy ) (r + kD) = ;% T (27)
n
vhere k2 = ky 2,ik,2and D = VentLe” Where rigo = vo/Q and vg = (Tg/m )1/2

The first term 1n 24) drives the ?nstability, it Ts similar to (1?) but is
modified to account for modes with finite kﬁ' The second term is the
damping term; the density .fluctuations are "smoothed out” by collisional
diffusion. For example, in the collisional 1limit (vj, >> v), it is easily
shown that :

2
K2 v
0_ .2
v=-42L2_ % (28)
2L,

Given this general background, we now present two examples of
theoretical analyses which provide estimates of the saturated amplitudes of
the density and field fluctuations, and of the nature of the power spectral
density.

(1) Three Mode Coupling. A relatively simple analysis based upon a
three mode interaction has been applied to a host of interchange
instabilities in the E and F regions (e.g., gradient drift [Rognlien and
Weinstock, 1974], «collisional Rayleigh~Taylor [Chaturvedi and Ossakow,
1977], E x B [Chaturvedi and Ossakow, 1979], current convective [Chaturvedi
and Ossakow, 1981], inertial interchange modes [Huba et al., 1985; Hassam et
al., 1986]). This technique provides a simple understanding of the mode
coupling process, and an estimate of the saturated fluctuation levels.

The equations used in the analysis are (6), (8), (9), and (26).
Perturbing these equations and retaining only quadratic nonlinearities, we
arrive at the following set of coupled nonlinear equations for the E x B
instability, .
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~ “ Un ~ -
9. n [ 0 «vz n [ ~
==—_-=Vxe * —-D S— == V¢ xe_ * Wn (29)
at n, B z n, n, Bno 2z
and
3 z NS
[5? v, xVE V4 vin]v2¢ - Vg &y ¢ VD (30)

0

Equation (29) is the electron continuity equation. The second term on the
LHS is the linear E x B drift, the third term is electron diffusion, and on
the RHS is the nonlinear B x B drift term vhich is the only nonlinearity
retained. Equation (30) comes from current conservation (V -+ ] = 0) and
contains the driver (i.e., the Pedersen drift « V). Linearizing (29) and
(30) yields the dispersion equation given by (27).

The nonlinear mode coupling can be seen by substituting the following
density and potential fluctuations into (29) and (30): fi « sin(x)cos(y) and
3 « sin(x)sin(y). It is easily ‘found that the E x B nonlinearity in (29)
drives a density perturbation A < sin(2x). Thus, we will consider the
following perturbations,

$ = $1’1 sin(kxx)sin(kyy) , | (31)

n = 51,1 sin(kxx)cos(kyy) + ﬁz’osin(kax) (32)

Substituting (31) and (32) into  (29) and (30) yields the following set of
mode coupled equations,

3% k. n

1,1 1,1

F Vb “1nEo£% Eg“ (33)

an k cn, k

w13 3 2 & -0y L y

o - TRPMat TR L b1 Bng kekody 185 o (34)
3§3&9.=~— 3D A, o+ & sk k. § L0 (35)
at x 2,0 " B 2n0 xy'l,171,1

The final terms on the RHS of (34) and (35) are the nonlinear coupling
terms; note that the coupling leads to damping of the (1,1) mode but to
growth of the (2,0) mode. Thus, when the (1,1) mode is linearly unstable
(as determined by (27)), it eventually drives the (2,0) mode unstable when
the (1,1) mode reaches a sufficiently large amplitude. This in turn cauges
the growth of the (1,1) mode to slov and eventually stop; ultimately a
steady state is achieved. We show a schematic of the mode coupling in Fig.

A



7. Here, the boundary between growing and damped modes is given by the
marginal stability criterion vy = O.

We can estimate the saturation levels of the fluctuations by finding
the steady state solution to (33) - (35). Ve 1let 9/3t = 0 and solve for
$1,1, ﬁ1’1 and ﬁ2,0' We find that for a weakly damped system that

. 2k 2D
"1,1 7k I »* ) (36)
B = hen (37)
2,0 "KL "0
D . 1/2 .
ﬁ1,1 = Z(VBE; Eq (38)

where we have . taken El 1% -k$1 1 and have assumed Vo/L, >> k2D. Ve can
quantify i and E at’ saturatién by using the following high latitude
parametersx Vo = cEg/Bg = 100 m/sec, L, 0 km, ky = ky, = 0.01 m~ A§

= 600 m), To = Ty = 0.1 ev, vy = 1000 sec“ e = 2.5ctmy and D=1m /sec.
Ve find that fiy,1/ng = 0.4%, iy o/ng = 1. 0%, and Eq 1/Eg = 0.3%. Thus, the
instability can saturate at relatively low levels consistent with the
assumption that the fluctuation level be small.

An interesting extension of this analysis has been described in Huba et
al. (1985) in which it was demonstrated that the mode coupling equations
(33) - (35) reduce to the famous Lorenz equations [Lorenz, 1963]. Thus,
this three mode system can exhibit a strange attractor with chaotic
behavior. Ion inertia plays a crucial role in this phenomenon in that if it
is neglected then the three mode system does not exhibit chaos and a stable
convection pattern results.

(2) Power Spectrum. Although the three mode calculation highlights the
importance of nonlinear mode coupling and provides estimates of the
saturated fluctuation levels, it. is a gross simplification of the actual
interchange process in the ionosphere because ionospheric turbulence is a
many mode phenomenon. Clearly, numerical simulations are needed to follow
the complex interaction of large numbers of modes. This will be discussed
in the next section. However, an analytic estimate of the spatial power
spectrum of the E x B instability can be obtained from conservation laws
associated with the fundamental plasma £luid equations. As in the three
mode system, the analysis is based upon the assumption that a steady state
can be achieved via mode coupling; the growing modes are saturated by
transferring energy to damped modes. The calculation that follows is from
Keskinen and Ossakow (1981) and Keskinen (1989). The interested reader is
referred to these articles for more details.

Equations (29) and (30) are the basic equations used in the analysis.
We first multiply (29) by fi and integrate over all x and y. This leads to
the following equation

Idxdy I3 3117 - A8 x e, - Wy - 59§ x e, + U - DAVA] = O (39)

The third term in (39) vanishes upon integration over all x and y because A

y
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Fig. 7) Schematic showing mode coupling for the E x B instability. The
groving and damped modes are shown in ¥ space. The coupling of

the growing (1,1) mode and the damped (2,0) mode is also
indicated.
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2

+ 0 as x,y + »; this can be shown using Gauss’ Law. We Fourier expand fi and
% and obtain the following expression from (39)

12 ¢ " . 2
I dldky 13 33T + 45 €, x & g & F + D] - 0 (40)
vhere I, = Iﬁklz. From (30) we obtain
ik E, i
- =10 _Yn_ 4 (41)
k nok W+ i\’in k .

Substituting (41) into (40) we find that

19
[ oy 13 &1y - md - 0 (42)
vhere
K2V,
7 ;% L - k“D i Vi > v (collisional)  (43a)
k, [v,Vo]t/2 k%D
Y = i -5 i vy, << v (inertial) (43b)
and ve have used (27). Assuming a steady state and transforming to a

cylindrical coordinate system, we find from (42) and (43) that

. -
fkc dk k jz 40 51, - kaax dk k jz 46 v31 (44)
ik 1Tk

k 0 -~ kc 0 ~ -~

min

where ykg is the positive term in (43) (i.e., the growth term), and ka is
the negative term in (43) (i.e., the damping term). In (43) it is assumed
that the vaves are linearly unstable in the range %kyj, - k., and are

linearly damped in the range ki - kpay; ko is the wavenumber which
corresponds to marginal stability 27 = 0).

It is now assumed that the spectrum I(k,8) has the following form

I(k,0) = Tcos™ (1 + k2/i2)~(n+1)/2 (45)
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vhere m > 0 'and Iy = constant. Substituting (45) into (44) it can be shown
that : :

M2 M2 ' 172
ko ]n-l _3- r( 5 )r(—i—) Z(VinVO/Ln) e <<y (46a)
o el Tl o <7

=]
]

Gz--)n-I = r(mzl)r(mzé) o >> (46b)
“n - m+2, ., M+3 ' Vin Y
max r( 3 )T 5 —==) kmax

vhere T ig the gamma function and is defined as
© .v
T(z) = [ de ¢*7let
0

and it is assumed that n > 1 and kyj, < kg < ko, From (46) it is clear that
1 <n<3. .
For an inverse pover law with a spectral index n = 2Zand m=2 it is
found that k Equation (46a) is applicable for low altitudes (< 500
?) in the h?gh latitude ionosphere. If we take Vg = 100 m/sec, D = 1
/sec, Ly = 10 km, and Kky,, = 0.63 m~ -1 (Mmin = 10 m), we find that 2n/kg =
500 m which is consistent with observations %Tsunoda, 1989].

B. Numerical Results

As indicated earlier, large scale numerical simulations offer the best
technique to understand the nonlinear evolution of plasma instabilities. In
general, two types of simulations have been performed to study the nonlinear
evolution of interchange instabilities. One type of simulation focuses on
the evolution of small-scale ‘turbulence, i.e., kL, >> 1 (see Fig. 4a). The
purpose of these simulations is to obtain an understanding of the cascade of
wvave energy from large to small wavelengths in tvo dimensions, and to
calculate the spectral characteristics of the turbulence. Basically, these
studies are an improvement of the analytic studies discussed above. The
other type models the macroscopic evolution. of the density layer (length
scales 0.1 € kL, € 3). These simulations have generally been performed in
configuration space using finite-difference techniques [Zalesak and Ossakowv,
1980; Zalesak et al., 1985; Mitchell et al., 1985] although there have
recent simulations wusing pseudo-spectral techniques [Zargham and Seyler,
1987; Kelley et al., 1987]. We now discuss in detail the important results
from these types of simulations.

(1) Small-Scale Structure. Ve first discuss simulation studies of

small-scale turbulence, i.e., kL, >> 1. Ve study the steady state
turbulence that develops in a model system described as follows. A weakly
collisional, magnetized plasma (B = Bg e;) 1s confined between two

horizontal conducting boundaries a distance L apart; the plasma density at
the upper boundary (x = L) is higher than that at the lower boundary (x =
0). An ambient electric is in the y-direction, E = Egj ey. Thus, the system



is unstable to the E x B instability. This model is clearly not a complete
representation of the ionospheric plasma; its chief advantages are that it
is a well-posed problem and it admits steady state solutions (see Rognlien
and Weinstock (1974)). .

The coupled equations for the perturbed density and potential are given
by (29) and (30). These equations are solved using a pseudo-spectral method
code developed by Fyfe et al. (1977) and is based on the work of Orszag
(1971). The dependent variables fi and § are Fourier-decomposed as follovs:

n(x,t) = lgﬁ(l;_,t)exp(:lls-g) (47a)

~

$(x,t) = ) $(k,t)exp(ik-x) (47b)
k

~

vhere k = k kX and k, and k, are integers. The nonlinear E x B
term (RHS o¥ (59)) s computed ﬁy fast Fourier transforming 9 and 9§ from k
space to x space, calculating the nonlinear term in x space by a simple
multiplication, and then fast Fourier transforming the result back to k
space. The equations are stepped forward in time in k space, and the cycle
is repeated. Because of the imposition of conducting boundaries at x = 0
and x = L, we require that v, = 0 at these boundaries (the plasma cannot
flow through the boundaries) This leads to the folloving conditions on A
and §t fi(ky,ky) = A" (ky,ky) and By, k) = -3 (kg k).

Ve present some representative requts of this type of simulation study
in Figs. 8 and 9. These results are from the paper by Hassam et al. (1986)
in which the nonlinear evolution on the Rayleigh-Taylor ingtability was
investigated. We mention that (29) and (30) are equivalent to the equations
used in Hassam et al. (1986) if we make the identification that Vg =
8/R3Vin- The numerical results are computed on a 32 x 32 mesh; in order to
prevent aliasing of the wave energy during the fast Fourier transformation,
all modes with [k] > 32/3 are set to zero amplitude. The plasma vas
initialized with small amplitude, randomly distributed modes. Tvo stages
vere clearly discernible in the temporal evolution of the system: (1) the
linear 'stage in vhich the k spectrum develops peaks at small k, and large k

in accordance with linear theory (see (27)), and (2) the n0nlinear stage in

which the system reaches a turbulent state with a broad spectrum of modes.
In Fig. 8 wve plot the total energy in the system as a function of time
vhere the energy is defined as

(48)

11
=
N

Initially there is a slight decrease in energy because many of the modes are
damped. However, this is followed by the linear phase in which the unstable
modes grow exponentially up until t ~ 50, Following this the plasma modes
are strongly nonlinear and the instability saturates; the total energy is
roughly constant for t > 100.
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Fig. 8) Plot of total wave energy (E) vs time (t) during the evolution of
the E x B instability (from Hassam et al. (1986)).
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Fig. 9) Plot of the two dimensional, time averaged mode structure of the
electrostatic potential and density fluctuations for the E x B
instability (from Hassam et al. (1986)).



After the total energy saturates, the amplitudes of the wave modes can
still be dynamic as energy is exchanged between different modes. The
general characteristics of the spectra, however, remain unchanged: most of
the energy resides in the longer wavelengths, and a power law type of
falloff to shorter wavelengths is found. 1In order to see these features we
present showv Fig. 9 in which the time-averaged potential and density
fluctuation spectra are shown in k space. Note that the spectra have been
reasonably smoothed out by the averaging process. Clearly, the bulk of the
power resides in the long wavelength modes, small k, and k,. Interestingly,
the potential spectrum is very anisotropic with relatively little energy in
the region around ky ~ 0., This is consistent with (30) in which the RHS is
zero for = 0. Oh the other hand, the density spectrum shows a peak in
~ amplitude around the region ~ 0. This is a reflection of the fact that
wvhile on average the turbulence tends to flatten the background density
profile (i.e., = 0), the fact that we hold the density fixed at x = 0 and
X = L results’ in sharp gradients near the boundaries leading to a
substantial amount of power in the k, ~ O density fluctuations.

Finally, we present the time-averaged power spectra (P, and Py) of the
potential in Fig. 10. Here, P, and Py are defined as

2
P (k) = 12 4| , (49a)
y

2
P (k) = é |4>15| (49b)

X

The approximate spectral indices, obtained by a least squares fit, are alsgo
shown in Fig. 10. Ve note that there is a definite anisotropy as indicated
Zyk;§§.9i6f§r::gepin“thebz}ggs?3?f Py and Py, specifically, we find that P,

Finally, we comment” that the above discussion has not focussed on the
quantitative details of the simulations. The purpose of this section is to
give the reader a general understanding of the nonlinear, many-mode coupling
process, an example of one simulation method used to study this process, and
examples of the type of insights that can be gained from this study (e.g.,
wave spectra, spectral indices). We note that this type of analysis can
also be carried using finite difference simulation codes and we refer the
interested reader to Keskinen and Ossakow (1983).

(2) Large-Scale Structure. We now discuss nonlinear simulations of the
Ex B instability relevant to the regime kL, ~ 0(1). A number of
simulations in this regime has been carried out at the Naval Research
Laboratory over the past decade [Zalesak and Ossakow, 1980; Keskinen and
Ossakow, 1982; Zalesak et al., 1985; Mitchell et al., 1985; Huba et al.,
1988a,b]. The first point we wish to stress 1is that the full nonlinear
equations are solved numerically. That is, the dependent variables (density
and potential) are solved exactly; they are not split into equilibrium and
perturbation quantities. Thus, there 1s no need to impose the condition
that fluctuating quantities remain small as in the previous section.
Moreover, the ambient density profile can evolve dynamically and self-
consistently with the changes in the electrostatic potential. For
simplicity, we show results from a simulation in the collisional regime (v,
>> w). This corresponds to the situation where the density and potential
perturbations are confined to the F region, i.e., there is no coupling to
the magnetosphere. We discuss a magnetosphere-ionosphere coupling model of
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$



plasma instabilities in the Appendix. The equations being solved are
continuity and current conservation:

jo
(a4

T+ U ny, =0 ‘ (50)

V:nv=0 : ‘ (51)

vhere Y, = -cV¢$/B x ez.

The numerical methods used to solve (49) and (50) are described in
Zalesak et al. (1985). The continuity equation (49) is solved using the
multi-dimensional flux-corrected techniques of 2alesak (1979) while the
potential equation (50) is solved with the incomplete Cholesky conjugate
gradient algorithm of Hain (1980). The simulations presented here are
performed on a 100 x 80 grid (x,y). The ~ ambient density is initially
characterized by a 1.5 to 1.0 density enhancement with a Gaussian profile of
scale gize 6 km in the x-direction and uniform in the y-direction. The
ambient magnetic field is in the 2z-direction  (Byg = 0.5 G), and an ambient
electric field is in the y-direction (Ey = 0. OZg V/m). The entire density
enhancement E x B drifts in the x-direction vith a velocity V, = 500 m/sec.
Periodic boundary conditions are assumed in the y-direction, and the grid is
initialized with a random 1% density fluctuation.

The results of the simulation in shown in Fig. 11. The behavior of the
density profile 1is -typical of that observed in previous simulations
[Keskinen and Ossakow, 1983]. In panel 2 (t = 520 sec) we see that a set of
"fingers" has begun to form. The high density fingers grow outward into the
low density background, while the low density fingers penetrate into the
high density region. Subsequent nonlinear evolution involves the continued
elongation of these fingers in the x-direction, with very little apparent
change in their size in the y-direction. The original density enhancement
is ultimately sliced into a group of sheets parallel to the initial density
gradient.

Although Fig. 11 clearly shows the development of plasma structure in
the plane transverse to B, one cannot directly compare Fig. 11 with any
satellite or rocket data which is only one dimensional. Thus, in order to
facilitate the comparison between the observational data and the simulation
results, we plot density versus distance in Fig. 12 for three different
satellite paths. Ve define © to be ? angle between the satellite path
(xg) and the -x-direction, i.e., 6 = cos (-x ‘e /|xs|) (see Fig. 11). The
striking features of Fig. 12 are 'the folloWing. First, the perceived scale
gize of the ambient density profile varies considerably for the different
paths. The actual scale size is roughly 6  km vhich is evident in the top
panel (& = 0°). However, for paths that slice the gradient at an angle one
may be "fooled" into thinking that the scale size of the density profile is
much larger than 6 km. Second, the density fluctuations look very different
depending on the path. The top panel (6 = 0°) suggests that the density
isn’t very structured because the path only intersects one striation (or
elongation). However, for paths which cut across many striations, as in the
bottom two panels (6 = 63° and 83°), the density looks highly structured.
Also, for the case © = 83°, there is a considerable amount of plasma
structure for x > 40 km, a region where there is no apparent background
density gradient which could drive the instability. This is primarily a
reflection of the fact that the instability has proceeded far enough to
effectively destroy the original plasma structure.
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Fig. 11) Temporal evolution of the collisional E x B instability as it
structures a Gaussian density enhancement.
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Fig. 12) Plot of the density (n) vs distance (xg) where the path
corresponds to a satellite moving at angle © relative to the x-
direction [(a) & = 09 (b) © = 63° (c¢) © = 83°]. It is
important to note how different the structure looks depending on
the path.
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Given this background, we nov discuss experimental observations which
support the contention that E x B instability is the source of high latitude
turbulence (at times).

S

V. EXPERIMENTAL OBSERVATIONS

As noted by Tsunoda (1989) the most convincing evidence that the E x B
instability is active in the high 1latitude ionosphere is reported by
Cerisier et al. (1985) based on data from the Aureol 3 satellite. In. this
paper, electric field and density fluctuations, with reported scale sizes of
100’s m to a few km, are found to occur asymmetrically on larger scale
density enhancements (sizes of the order of 10’s km). That is, on one side
of the density enhancement plasma turbulence is observed, while on the other
side the density profile is smooth. This is shown very clearly in Fig. 13
vhich is from Tsunoda (1989). Note 1in the top panel that the left hand
sides of the density enhancements are structured, while the right hand
sides, although much steeper, are unstructured. This is consistent with the
necessary condition for the onset of the E x B instability vhich requires
that Eg x e, ° Wng > 0. Cerigsier et al. (1985) found that this condition
vas satisfied for more than half of the observations of the type shown in
Fig. 13 (i.e., 4 out of 6). However, it should also be pointed out that it
is very difficult for a single satellite to unambiguously determine whether
or not this criterion is satisfied. This is because only the component of
the density gradient along the path of the satellite is known. The real
gradient (i.e., shortest density gradient scale length) can have any
direction within 90° of the observed one.

To illustrate the difficulties of interpreting data from only a single
satellite, we plot the density profiles based on our simulation results
(shown in Fig. 12) as a function of time instead of space. That is, we will
assume that a spacecraft passes through the plasma structure observed in the
simulations at a velocity of ~ 7 km/sec. The results are shown in Fig. 14.
Note that when © is large, the "perceived" gradient scale length can be
considerably larger than the actual scale length of 6 km. By the same
token, the perceived scale size of the plasma structure also varies
depending on the path as noted on Fig. 14. Thus, although it is difficult
to make a definitive, quantitative comparison between observational data and
simulation results, the evidence for the occurrence of the E x B instability
in the high latitude ionosphere is very compelling.

VI. SUMMARY

We have presented a general overview of the theoretical and
computational methods used to study plasma instabilities in the high
latitude ionosphere. We illustrated the various methods with the E x B
instability being the "guinea pig". The fundamental concepts and techniques
are rather general and can be applied to other instabilities. Aside from
going through several types of analytical and numerical calculations, wve
also tried to emphasize the physical conditions for which the different
methods are valid, and the limitations of each method. It is also important
to mention that, for pedagogical purposes, we have considered only the
simplest model possible to describe the E x B instability in the high
latitude ionosphere. There are a host of other physical processes which
have been neglected, but should be included in a self-consistent manner.
One major issue involves the coupling of the wave fields to the E-region and
the magnetosphere, and understanding how the coupling impacts the evolution
of the instability. Preliminary calculations suggest that coupling can
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dramatically affect structure evolution and are discussed in the Appendix
[Mitchell et al., 1985]. )

Closely related to the coupling issue 1is the issue of three dimensional
dynamics, -i.e., relaxing the equipotential field line approximation. This
is a difficult problem and extremely pertinent to virtually all high
latitude physical processes. Some research has been done regarding the
linear theory of the E x B instability including parallel dynamics [Sperling
et al., 1984; Drake et al., 1985; Huba and Chaturvedi, 1987]. Recently,
there has been the successful development of a 3D electrostatic code to
describe the evolution of ionospheric barium clouds which can be applied to
high latitude processes [Drake et al., 1988; Zalesak et al., 1988j.

Finally, it should be noted that the subject of high latitude
ionospheric turbulence is very complex and not completely understood at this
time. Although the E x B instability appears to be successful in explaining
some observations in the sub-kilometer range, 1it.certainly cannot explain
all of them. In particular, some recent observations [Kintner, 1976; Basu
et al., 1986; Basu et al., 1988] -suggest that velocity shears are playing a
role in the development of plasma structure. These observations have
spurred interest in how velocity shear impacts the E x B instability [Huba
et al., 1983], and in the Kelvin-Helmholtz instability [Kintner and Seyler,
1985; Keskinen et al., 1988] and other velocity shear instabilities [Ganguli
and Palmadesso, 1988; Ganguli et al., 1988; Basu and Coppi, 1988].
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APPENDIX: MAGNETOSPHERE-IONOSPHERE COUPLING MODEL

A relatively simple model of the effect of magnetosphere-ionosphere
coupling .on high latitude instabilitles has been developed at NRL [Mitchell
et al., 1985; Keskinen et al,, 1988]. .. We have described this model in the
first WITS Handbook [Huba et al., 1988b]. We include another discussion of
the subject here for the sake of completeness, and to relate the theoretical
analysis of Section III to this model.

We first discuss- some’ underlying concepts associated with ionosphere—
magnetosphere coupling and the evolution of plasma instabilities. The § xR
instability is primarily an electrostatic flute mode; that is, it generates
perturbations in the 'density and/oxr electric field transverse to the
magnetic field B rather than parallél ‘to R. Moreover, the magnetic field
remainsg constant, i.e., unperturbed. Alternatively; one can say that the
perturbed transverse electric fields map perfectly - along B (i.e., the
magnetic field lines are ' equipotential ~lines). [Strictly speaking, it is
expected that (1) the magnetic field lines are not perfect equipotential
lines and (2) the magnetic field will, be disturbed by any instability.] We
note the following.  First, '~ the transverse’ electiic field will have an, '
folding distance along the magnetic field given by L, (oy/oy )
vhere k is the transverse wave: number of the electric fielé perturbation;
and o is the parallel (perpendicular) conductivéty [Farley, 1959). For
the hig latitude F region we "note that o/o; 2 10°; thus, kilometer scale -
irregularities can map well into the magnetosp ere. Second, the disturbance
will propagate along the" magnetic field “at - the Alfveén velocity. The
parallel distance it will travel ‘s given by Ly = Vp/v vhere vy is the
characteristic growth ‘tate of the instability and Vy 1s the Alfven vglocity.
For the high lazitude F region we note that v £ 0.1 sec and V, 2 10° km/sec
s0 that Ly 2 10* km. ~Again, on the timevscale of ‘the instability, the modes
can map well into ‘the magnetosphere. Conversely, modes generated in the
magnetosphere can.couple to the ionosphere.

Given this background we ‘now describe our ' model. To simplify the
anelysis we will assume the modes 'are electrostatic. This means that the
time scalee of interest in the problem are long compared to the transit time’
of an’Alfven wave across the modeled region along the magnetic field. This
agsumption implies that ‘the plasma 'is quasi-neutral everyvhere, and that the
electric field perpendicular to the magnetic field maps perfectly along the
field within ‘the modeled region. = 'Further, since the electrons have a
greater mobility parallel to ' the magnetic field than the ions, we assume
that parallel currents are -electron currents and that ' the ions have no
velocity parallel to the field. As a result of these assumptions, the model
may be viewed &g & ‘set of " ion layers perpendicular to the magnetic field
which are strongly Iinked by the mapping of thé perpendicular electric field
between layers and * by ‘the parallel electron currents which flow betveen
layers in order to preserve quasi-neutrality. This is shown in Fig. 15.

For each layer, the governing equations are the continuity and momentum
equations for ‘each species, i.e., (1) and (2). In order to maintain quagi-
neutrality (i.e., - I = 0) it is assumed that all currents generated
within this model must also close within this model.: The field-line
integrated divergence of the perpendicular current must thérefore be zero,
i.e., : ‘



0=1[dz 9] =79-" (‘-J-lPed + "lipoll

-7 (xp [- o] - CM[%‘E + 8 (epx v,4) v]vn)

vhere and are the field line integrated Pedersen and
polarizat on currents ?see Fig. 15), = [(necv;/BQi)dz is the field-line
integrated Pedersen conductivity, and . B I(nec/BQi)dz is the field-line
integrated inertial capacitance. For details of this derivation see
Mitchell et al. (1985). Thus, the plasma on each level E x B drifts under
the influence of the perpendicular electric field (E = -V¢), which is itself
determined by the fact that the perpendicular Pedersen and polarization
drift currents driven by the field must close by means of parallel electron
currents within the model. :

The Pedersen currents tend to decay any potential which is not
supported by the density gradients, while the polarization drift currents
tend to slow this decay. As a result, the balance between these effects
defines an inertial relaxation rate v = L./Cy for changes in the potential,
The relative importance of Pedersen versus polarization currents is dictate
by the parameter Vv/y where vy is the linear growth rate of the instability
under investigation. Pedersen currents dominate when vy >> 1 and
polarization currents dominate when v/y << 1. Thus, ion inertia is playing
a significant role in the evolution of the instability when magnetospheric
coupling is important; this is the reason we included ion inertia in the
theoretical analysis in this paper.

To demonstrate the effect of magnetosphere-ionosphere coupling on the
evolution of the E x B gradient drift instability we present the results of
a simulation in which magnetospheric coupling is dominant. These results
should be contrasted to those shown . in Fig. 11 in which magnetospheric
coupling is ignored. The physical configuration is the same as that
described for Fig. 11. Ve only consider structure in the plane trarsverse
to the ambient magnetic field, i.e., the xy plane. The F-layer is initially
characterized by a 1.5 to 1.0 density enhancement with a Gaussian profile of
scale size 12 km in the x-direction and uniform in the y-direction, a
uniform magnetic field in the z-direction (B, = 0.5 G), and a background
electric field in the y-direction (E, = .025 V/m). The entire enhancement E
¥ B drifts in the x-direction at a "velocity vy, = 0.5 km/sec. . Finally, ve
consider v/y = 0.20 so that the polarization current dominates over the
Pedersen current. A uniform horizontal magnetosphere is assumed above the
F-layer linked by the vertical magnetiec field 1lines. The back edge of the
F-layer enhancement, relative to the drift, is unstable to the E x B

(A1)

gradient drift instability. The  simulations are performed on an 100 x 80.

cell grid (x,y) with a cell size of 1.0 km.x .25 km which is drifting with
the enhancement at the E, x B velocity. Periodic boundary conditions are
assumed in the y-direction, and the grid is initialized with a random 1%
density fluctuation. o » :

The evolution of structure in the ‘inertial regime (i.e., strong
ionosphere-magnetosphere coupling) 1is shown in Fig. 16, and is very
different from the collisional case (iee Fig. 11). The linear growth rate
for this case is v = 5.0 x 103 sec (or a growth time of T = 200 sec) so
that the growth of the mode is retarded by ionosphere-magnetosphere
coupling. During the time period between panel 1 and panel 2 (t < 704 sec),
the growth of the instability closely resembles that of Fig. 11. There is
development of long, narrow density fingers. However, for t > 700 seconds,
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Fig. 15) Schematic of the physical model used for magnetospheric-

‘ ionospheric coupling. The coupling between the ionosphere and

the magnetosphere is maintained by parallel electron currents

flowving along equipotential field lines. The perpendicular

currents are the Pedersen current in the ionosphere, and the
polarization current in the magnetosphere.
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Fig. 16) Temporal evolution of the inertial E x B instability as it
structures a Gaussian density enhancement. In this situation the

magnetosphere is playing an important role in the structuring
process.
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the behavior changes radically from that in Fig. 11. In panels 3 and 4, ve
see that the fingers form mushroom-like heads and tend to thicken. No
longer are they long, thin interpenetrating fingers; rather they are fat
interpenetrating blobs. Any narrow  fingers which begin to form quickly go
to a mushroom shape and then spread out. ' In a number of simulations we have
noted a tendency for the structure in . the y direction to undergo an inverse
cascade to the longest mode which will f£it in the system. This feature can
clearly be seen in panel 4, vhere the structured state throughout most of
the simulation region shows two blobs' one of high density, and the other of
low density.
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