U.S. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Robert M. White. Administrator ENVIRONMENTAL DATA SERVICE Thomas S. Austin, Director # Solar - Geophysical Data NO. 390 FEBRUARY 1977 Supplement NATIONAL GEOPHYSICAL AND SOLAR - TERRESTRIAL DATA CENTER BOULDER, COLORADO For obtaining bulletins on a data exchange basis, send request to: World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado 80302. For sale through the National Geophysical and Solar-Terrestrial Data Center, NOAA, Boulder, CO 80302. Subscription Price: \$34.00 annually for both Part I (Prompt Reports) and Part II (Comprehensive Reports) or \$18.00 annually for either part. Annual supplement containing explanation is included. For foreign mailing add \$32.00 for both parts or \$16.00 for either part. Single issue price \$1.50 for either part and \$1.40 for the extra issue. Make checks and money orders payable to: Department of Commerce, NOAA/NGSDC. To standardize referencing these reports in the open literature, the following format is recommended: Solar-Geophysical Data, 390 Part I (or Part II), pages. February 1977, U.S. Department of Commerce, (Boulder, Colorado, U.S.A. 80302). # **SOLAR-GEOPHYSICAL DATA** EXPLANATION OF DATA REPORTS #### INTRODUCTION This pamphlet contains the description and explanation of the data in the monthly publication, Solar-Geophysical Data, compiled by the National Geophysical and Solar-Terrestrial Data Center (NGSDC) in Boulder, Colorado, U.S.A. NGSDC is one of the several components of the Environmental Data Service in the National Oceanic and Atmospheric Administration. The monthly bulletins are available on a data exchange basis through the World Data Center A for Solar-Terrestrial Physics, which is operated by NGSDC, or at a nominal cost.* These data reports continue a series which was issued by the Central Radio Propagation Laboratory of the National Bureau of Standards, known begin-ing November 1955 and for many years as the CRPL-F Series Part B. The title Solar-Geophysical Data was first used in 1955. The name of the organization compiling the data reports has changed many times but the personnel involved have stayed pretty much the same. From June 1965 to January 1977 the compilations and editing have been done by Miss Hope I. Leighton under the supervision of Miss J. Virginia Lincoln. As of February 1977 Helen E. Coffey has become editor. Mr. A. H. Shapley is Director of NGSDC. Solar-Geophysical Data is intended to keep research workers abreast on a timely schedule of the major particulars of solar activity and the associated interplanetary, ionospheric, radio propagation and other geophysical effects. This report series is made possible through the cooperation of many observatories, laboratories and agencies as recorded in the detailed descriptions which follow. For many data types, the material published in Solar-Geophysical Data is only a fraction of what is available from the NGSDC archives. The published data is considered to be that in greatest demand and thus the dissemination in this form is efficient and economical for both the user and the data center. Users are invited to avail themselves of the data services of NGSDC and the collocated World Data Center A for STP. Beginning with the July 1969 issue the publication was divided into two Parts (I and II). Part I (Prompt Reports) contains data for 1 and 2 months prior to the month of publication. Part II (Comprehensive Reports) contains data for 6 and 7 months prior to the month of publication plus, from time to time, data from miscellaneous earlier months. These reports may be referenced in the open literature.** It must be understood, however, that because of the rapid publication schedule, some data categories are not considered to be definitive. This applies particularly to the Prompt Reports where such data sets are marked as provisional. Errata or revisions are included from time to time. Additions to the descriptive text will appear with the data when new material is added, or revision is made. The first page of each issue of Part I and II gives the general contents and is backed by a running index to locate data for a specific month for the past year. A complete index for data since July 1957 is given in the blue section of this pamphlet. ^{*}For sale from the National Geophysical and Solar-Terrestrial Data Center, NOAA, Boulder, CO 80302, Subscription Price: \$34.00 annually for both Part I (Prompt Reports) and Part II (Comprehensive Reports) or \$18.00 annually for either part. This supplement is included. For foreign mailing add \$32.00 for both parts or \$16.00 for either part. Single issue price \$1.50 for either part and \$1.40 for this extra issue. Make checks and money orders payable to: Department of Commerce, NOAA/NGSDC. ^{**}To standardize referencing these reports in the open literature, the following format is recommended (with this issue as the example): Solar-Geophysical Data, 390 Part I (or Part II), pages, February 1977, U.S. Department of Commerce (Boulder, Colorado, U.S.A. 80302). In various places in this text, data types are identified both by name and an alphanumeric designation (A.2, C.3, etc.). The latter come from the data categories given in *Guide to International Data Exchange*, issued in 1973 by the ICSU Panel on World Data Centres. ΑŢ A useful reference containing descriptions of many solar and geophysical phenomena as well as directing the reader to more detailed discussions is the *Handbook of Correlative Data*, issued February 1971 by the National Space Science Data Center, NASA, Goddard Space Flight Center, Greenbelt, Md. 20771. (The Handbook is also available through World Data Center A for Solar-Terrestrial Physics.) # TABLE OF CONTENTS | | <u>Page</u> | |---|---| | Data for One Month Before Month of Publication | | | Alerts Daily Solar Indices Solar Flares Solar Radio Waves Solar X-ray Radiation Coronal Holes Solar Wind Measurements Solar Proton Monitoring Interplanetary Magnetic and Electric Fields Mean Solar Magnetic Field Solar Proton Events (Provisional) | 5
7
9
10
11
11
12
15
16
19 | | Data for Two Months Before Month of Publication | | | Solar Activity Centers Sudden Ionospheric Disturbances Solar Radio Waves Cosmic Rays Geomagnetic Activity Radio Propagation Indices | 21
27
31
34
35
38 | | Data for Six Months Before Month of Publication | | | Active Region Summary Solar Flares Solar Radio Waves Energetic Solar Particles and Plasma Solar X-ray Radiation Common Scale Magnetograms | 40
40
43
49
52
53 | | Data for Seven Months Before Month of Publication | | | Abbreviated Calendar Record
Flare Index by Region | 56
57 | | Data for Miscellaneous Time Periods | • | | Retrospective World Intervals | 58 | | Partial List of Contributors of Data | 59 | | Index to Volumes for 1957-1974 | | | Key to Index for <i>Solar-Geophysical Data</i> Index Tables | 64
68 | | Stonyhurst Disks | | # DATA FOR ONE MONTH BEFORE MONTH OF PUBLICATION # TABLE OF CONTENTS | | | | <u>Page</u> | |--------------------|-----------------------|--|------------------| | Alert Period | <u>is</u> | | | | | Н.60 | IUWDS Alert Periods (Advance and Worldwide) | 5 | | <u>Daily</u> Solar | <u>Indices</u> | | | | A.2,
A.2, | | Relative Sunspot Numbers and Adjusted 2800 MHz Solar Flux
Combined Sunspot Numbers and Solar Flux Values
Graph of Sunspot Cycle
Predicted and Observed Relative Sunspot Numbers | 7
7
7
7 | | Solar Flares | <u>s</u> | | | | | C.1
C.1d | Hα Solar Flares
No-Flare-Patrol Chart | 9
10 | | Solar Radio | Waves | | | | | A.10
A.10
C.3 | Solar Interferométric Charts
East-West Solar Scans
Outstanding Occurrences at Fixed Frequencies (SELECTED) | 10
10
10 | | Solar X-Ray | Radiatio | <u>on</u> | | | A.11g, | C.5e | SMS/G0ES | 11 | | Coronal Hol | <u>es</u> | | | | | A.7f
A.7g | Helium D3 Chromosphere
Helium Synoptic Map | 11
11 | | Solar Wind | Measureme | ents_ | | | | A.13a
A.13d | Measurements of Pioneers 6, 7, 8 and 9 IPS Measurements (Solar Wind) | 12
13 | | Solar Proto | n <u>Monitor</u> | ring | | | | A.12ba
A.12bb | Pioneer 6 Pioneers 8 and 9 | 15
16 | | Interplanet | ary Magne | etic and Electric Fields | | | | A.17
A.18
A.17c | Interplanetary Magnetic Field - Pioneers 8 and 9
Interplanetary Electric Field - Pioneers 8 and 9
Inferred Interplanetary Magnetic Field | 16
18
18 | | Mean Solar | Magnetic | Field (A.3d) | 19 | | Solar Proto | n <u>Events</u> | | | | | | Provisional Data | 19 | #### ALERT PERIODS (H.60) The table gives the Advance Geophysical Alerts (PRESTO) as initiated by (or received by) the Western Hemisphere Regional Warning Center of the International Ursigram and World Days Service (IUWDS) at Boulder, Colorado, and also the Worldwide Geophysical Alerts (GEOALERTS) as designated by the IUWDS World Warning Agency, Boulder, Colorado. These alerts are of the types recommended by the International Ursigram and World Days Service. A description of the IUWDS program can be found in Synoptic Codes for Solar and Geophysical Data, Third Revised Edition 1973, revised by RWC Circular Letters. This code book and its revision are available from the IUWDS Acting Secretary for Ursigrams, G. R. Heckman, NOAA, Boulder, Colorado, U.S.A., 80302. The PRESTO messages are originated by the reporting observatory or at the Regional Warning
Centers. They are for advance reporting of major events. The format of these messages follows (extracted from Synoptic Codes for Solar and Geophysical Data): #### PRESTO - 1. Content. - Report of major events to the other RWC and to the local or regional customers. - 2. General form. PRESTO observatory **JJHH**mm report 3. Definition of symbols. PRESTO = key word for RAPID reporting of major events observatory = name of reporting observatory in clear text JJHHmm = Greenwich date and time of issue of message in hours and minutes UT report = one or more of statements as below #### For GEOMAGNETIC ACTIVITY MAGSTORM BEGINS **JJHHmm** STRONG MAGSTORM IN PROGRESS JJHHmm (A≥50) WEAK MAGSTORM IN PROGRESS JJHHmm (30≤A<50) One may add plain language comments related to auroral reports or Forbush effect expected Note: #### For MAJOR FLARES SOFLARE - importance class - coordinates (i.e. N20 E78) - JJHHmm (date and time) - "duration in minutes given" or state-ment "in progress" One may add plain language comments like "Y-shaped" or "covering spots" or "sus-pected proton flare" For TENFLARE (solar radio emission outburst at 10 cm > 100% TENFLARE (solar radio emission outburst at 10 cm/10%) over background) TENFLARE - XX units - JJHHmm for onset - duration in minutes, or statement "in progress" at the time of PRESTO, or statement "observed until hours and minutes UT" Units give the increase of the flux density over the pre-burst level in conventional units (10-22 km- Hz-1) by significant digits and words such as "1700 units over backgound" #### For PROTON EVENT COSMIC RAY INCREASE - JJHHmm - percent increase above normal based on neutron monitor POLCAP ABSORPTION - JJHHmm - dB of absorption by riometer or ionospheric forward scatter technique PROTON EVENT - JJHHmm - specify energy range from a spacecraft report Notes: 1. PRESTO should be circulated as soon as the event has been recognized. - The PRESTO will only report events and no forecasts. Any change of a forecast would be sent to the interested customers as a GEOSOL, GEOALERT or in plain language. - If the observatories follow this scheme, it is not necessary to report the kind of experiment SOFLARE signifies a chromospheric report TENFLARE signifies a centimetric outburst COSMIC RAY INCREASE signifies a neutron monitor count increase POLCAP ABSORPTION signifies a ground based polar cap report PROTON EVENT signifies spacecraft reports The GEOSOL or GEOALERT messages are originated by the Regional Warning Center or by the World Warning Agency in Boulder, Colorado, U.S.A. They are for the purposes of reporting the current level of solar activity and for forecasting solargeophysical events. The format of these messages follows: #### GEOSOL Or GEOALERT - 1. Content - For sending combined data and forecasts to other RWCs and for general data users - For sending ADVICE information to other RWCs - 2. General form. ``` repeat for each region] Note: Definitions of class C, M or X flares follow: QXXYY nnijk ...FLARE JJHHmm QXXYY CLASS C: A solar flare which is not associated with significant X-ray production. heliographic coor- dinates of flare CLASS M: Solar flares which are accompanied by significant X-ray production, greater than 10⁻²ergs cm⁻²sec⁻¹ in 0.5-5A band, or 10⁻³ergs cm⁻²sec⁻¹ in 0.5-5A band, comparable SID (SWF or SPA). date and UT of Outstanding flare kev word Solar flares which are accompanied by total number of flares, number > Imp I, number of M and X flares in active region great X-ray production, greater than 10^{-1} {\rm ergs~cm^{-2}sec^{-1}} in 0-84 band, or 10^{-2} {\rm ergs~cm^{-2}sec^{-1}} in 0.5-54 band, heliographic coordinates of active region comparably great SID, or by a 10 cm radio noise outburst of more than 1000 flux units over background and duration greater than 10 minutes. JJHHmm 8HHJJ MAGSTORM 7777C kev numbers and observa- tions used for forecast This classification is designed to give an indication of the geophysical effect which is likely to be associated with a solar key numbers signify solar forecast to follow for day event. Class C events will usually be accompanied by only minor sudden ionospheric disturbances (SID), class M by significant SID, and class X by major SID. date and UT of beginning of magnetic storm . key word may be repeated or omitted QXXYY ZZZZZZ···ZZZZ OUTSTANDING EVENTS _ALERT FIN QXXYY ...FLARE = key word to indicate OUTSTANDING event data follows, where \frac{PROTON}{posterior} FLARE - protons from this flare observed in the earth's vicinity end of message type of alert MAGFLARE - a geomagnetic and/or cosmic storm active region description has been associated with this flare heliographic coordinates of active region MAJORFLARE - this flare is the basis for the forecast of geomagnetic storm, cosmic storm and/or protons in the earth's vicinity Definition of symbols. = key word for sending combined data and forecasts GEOALERT = key word for sending combined data and forecasts including ADVICE information JJHRmm = UT of beginning of OUTSTANDING flare Q = quadrant of the OUTSTANDING flare location, where III = warning center of origin MEU - Meudon WWA - Boulder (SOLTERWARN) 3 = SW (south-west) 4 = NW (north-west) 1 = NE (north-east) 2 = SE (south-east) TOK - Tokyo SYD - Sydney DAR - Darmstadt distance to central meridian in degrees MOS - Moscow MOS - MOSCOW DAK - Darmstadt originating center's serial number date (DD) hour (HH) and minutes (mm) in UT of YY = heliographic latitude in degrees NN = DDHHmm = l heliographic location of OUTSTANDING FLARE issue of message MAGSTORM = key to indicate magnetic storm data follows JJHHmm = UT of beginning of magnetic storm 9 = key number to indicate indices follow HHJJ = the middle of the 24-hour period for which the indices apply in UT; HH - hour; JJ - date 1 = key number to indicate sunspot data follows Omit these groups if no events to be re- 1 = key number to indicate sunspot data follows 1 = relative sunspot number (Wolf number) 1 = number of new sunspot groups that have appeared 1 (by rotation or birth) during this period 2 = key number to indicate 10 cm solar flux data follows 1 = number of l0 cm solar flux in 10-22 mm-2 Hz-1 units 2 = number of known IMPORTANT 10 cm bursts during this ported; Use clear text if event does not corres- pond to conventional classification. Include data from earlier PRESTO messages for this period. DETAILED FORECASTS period 3 = key number to indicate magnetic activity follows eee = A_{\rm K} index for Greenwich date 8 = key number to indicate 24-hour forecast information follows the UT hour (HH) and date (JJ) of the beginning of the 24-hour forecast period 7777 = key numbers to indicate available local observatories important event, if any, where 0 - no event follow 1 = end of magnetic storm 2 = storm in progress 6 = gradual storm commencement 7 = sudden storm commencement(sc) C = definitions of available local observatories, where 0 = none 1 = solar radio observations 3 = all (optical and radio) = partial solar optical observations 4 = all including solar 8 - very pronounced sudden storm commencement magnetic field meas- urements 4 - key number to indicate cosmic radiation data observed by neutron monitor follows ggg * median level in thousandths of an arbitrary normal level Q = quadrant of PREDICTED ACTIVE REGION, where 1 = NE (north-east) 3 = SW (south-west) 2 = SE (south-east) 4 = NW (north-west) important event, if any, where no event pro-decrease pro-decrease pro-decrease pro-decrease beginning of a Forbush decrease Forbush decrease in progress end of Forbush decrease end of Forbush decrease continual of solar particles (GLE XX = distance to central meridian in degrees YY = heliographic latitude in degrees heliographic location of ACTIVE REGION at HHJJ ZZZ···ZZZ = key word to describe the PREDICTED ACTIVE REGION, where SPOTNIL - indicates spotless disc PLAGENIL - indicates spotless disc free of calcium plage when these are used, QXXYY omitted heliographic location of active region QUIET = less than one chromospheric event per day ERUPTIVE = at least one radio event (10cm) and several chromospheric events per day (Class C Flare) ACTIVE = at least one geophysical event or several larger radio events (10cm) per day (Class M Flare) total number of flares nn total number of Flares [i = number of Flares greater than Importance I [j = number of M Flares k = number of class X flares In this region during this period PROTON = at least one high energy event (Class X Flare) ``` #### Notes: 1. Events are classified as below: Chromospheric Events: some flares are just Chromospheric Events without Centimetric (Class Bursts or Ionospheric Effects. (SID). C flare) Radio Event: flares with Centimetric Bursts and/or definite lonospheric Event. (SID). Geophysical Event: flare (Importance two or larger) with Centimetric Outbursts (maximum larger) with Centimetric Outbursts (maximum of the flux higher than the Quiet Sun flux, duration longer than 10 minutes) and/or strong SID. Sometimes these flares are followed by Geomagnetic Storms or small PCA. (Class M flare) High Energy Event: flare (class two or more) with outstanding Centimetric Bursts and SID. High Energy Protons are reported at the Earth increase of these events occurring on in case of most of these events occurring on the western part of the solar disk. (Class X - Some quiet groups being of very little importance, these can be reported only by their number. - If the word CAUTION is inserted between QXXYY group and the description word, it signifies one cannot forecast real evolution of the group at time of the message. - If the word DOUBTFUL is inserted between QXXYY group and description word, it signifies it is impossible to determine definitely the true class of activity expected. #### ADVICES AND ALERTS ---ALERT--- key word(s) to describe one or more of the fol-lowing situations during the next 24 hours or longer: > SOLNIL) End of active period OF PROTONNIL) Beginning of period of very low
activity SOLQUIET - No active regions on the solar disk MAGQUIET - Only sporadic weak geomagnetic activity SOLALERT JJ/KK - increased solar activity expected between days JJ and KK MAGALERT JJ/KK - increased geomagnetic activity expected between days JJ and KK MAJOR FLARE ALERT JJ/KK QXXYY - large bright flare (Class X) expected between days JJ and KK in region QXXYY PROTON FLARE ALERT JJ/KK QXXYY - protons expected in earth's vicinity as a result of pro-ton flare predicted to occur between days JJ and KK in region QXXYY PRESTO PROTON ARRIVAL ALERT KK/JJHHmm - forecast of arrival of protons in earth's vi-cinity on day KK from flare which occurred on day JJ at HHmm (UT) STRATWARM STARTS ____ includes day of week and geographical area - The Alert section is always included in the GEO-ALERT code format as it is used as ADVICE by RWCs & WWA. Notes: 1) - More than one type of Alert may be included in a message - Previous transmission of ALERT (SOL, MAG, MAJOR FLARE, PROTON FLARE, PRESTO PROTON ARRIVAL) requires the eventual transmission of appropriate NIL (SOL, MAG, PROTON) Transmission of STRATWARM STARTS or EXISTS re- - quires the eventual transmission of STRATWARM - GEOALERTS are converted by WWA to plain language and broadcast on WWV and WWVH as described in Circular letter RWC-123. #### DAILY SOLAR INDICES (A.2, A.8) Relative Sunspot Numbers and Adjusted 2800 MHz Solar Flux -- The first table presents Zürich relative sunspot numbers, Rz, for the month. The corresponding data for eleven earlier months are reprinted to permit the trend of solar activity to be followed. On the same page is presented a similar table of twelve months of daily solar flux values at 2800 MHz adjusted to one Astronomical Unit, Sa, as reported by the Algonquin Radio Observatory (ARO) of the National Research Council near Ottawa. Combined Sunspot Numbers and Solar Flux Values -- The next table gives several available daily indices for the month preceding that of publication. In addition to the calendar date, the table gives the day-number of the year and the daynumber of the standard 27-day (solar rotation) cycles. The data presented are Zürich relative sunspot numbers, (Rz), American relative sunspot numbers, (Ra'), daily solar flux values at 2800 MHz, (S), and daily solar flux values, (S_a), adjusted to 1 A.U. for 15400, 8800, 4995, 2800, 2695, 1415, 606, 410 and 245 MHz. <u>Graph of Sunspot Cycle and Table of Predicted</u> and Observed Relative Sunspot Numbers -- As of this publication date the minimum smoothed sunspot number based on Zürich relative sunspot numbers is 12.5. This centers on March 1976. A graph and table of observed and predicted smoothed numbers are therefore produced with March as the beginning of cycle 21. If a later month shows a lower number a new graph and table will be prepared. Smoothed sunspot numbers are used for these purposes and are defined by: $$R_{12} = 1/12 \left\{ \sum_{n=5}^{n+5} (R_k) + 1/2 (R_{n+6} + R_{n-6}) \right\}$$ in which $R_{\mbox{\scriptsize k}}$ is the mean value of R for a single month k and R_{12} is the smoothed index for the month represented by k = n. Predictions shown are those made for one year after the latest available datum by the method of A. G. McNish and J. V. Lincoln [*Trans. Am. Geophys, Union, 30*, 673-685, 1949] modified by the use of regression coefficients and mean cycle values computed for Cycles 8 through 20. The last prediction made also shows the 90% prediction interval, an indication of the uncertainty above and below the predicted number. The values of observed and predicted Zürich smoothed relative sunspot numbers are given in the table. The predicted values are based on observed data available and will change as calculated each month and new observations are included. The 90% prediction interval is shown in parentheses for each month. Relative Sunspot Numbers -- The relative sunspot number is an index of the activity of the entire visible disk of the sun. It is determined each day without reference to preceding days. Each isolated cluster of sunspots is termed a sunspot group and it may consist of one or a large number of distinct spots whose size can range from 10 or more square degrees of the solar surface down to the limit of resolution (e.g. 1/25 square degree). The relative sunspot number is defined as R = K (10g + s), where g is the number of sunspot groups and s is the total number of distinct spots. The scale factor K (usually less than unity) depends on the observer and is intended to effect the conversion to the scale originated by Wolf. The provisional daily Zürich relative sunspot numbers, RZ, based upon observations made at Zürich and its two branch stations in Arosa and Locarno are communicated by M. Waldmeier of the Swiss Federal Observatory. The daily American relative sunspot numbers, $R_{\mbox{\scriptsize A}}$ are compiled by Casper Hossfield, for the Solar Division of the American Association of Variable Star Observers. The RA' observations for sunspot numbers are made by a rather small group of extraordinarily faithful observers, many of them amateurs, each with many years of experience. The counts are made visually with small, suitably protected telescopes. Final values of R_Z appear in the <code>IAU Quarter-ly Bulletin on Solar Activity</code>, these reports, and elsewhere. They usually differ slightly from the provisional values. The American number, R_A ', being computed solely from observations made under favorable conditions selected from the reports of numerous observers, are final numbers and do not require revision. Daily Solar Flux Values - Ottawa-ARO --Daily observations of the 2800 MHz radio emissions which originated from the solar disk and from any active regions are made at the Algonquin Radio Observatory (ARO) of the National Research Council of Canada with a reflector of 1.8 meters diameter. These are a continuation of observations which commenced in Ottawa in 1947. Numerical values of flux in the tables are in units of $10^{-22} \text{Wm}^{-2} \text{Hz}^{-1}$ and refer to a single calibration made near local noon at 1700 UT. When the flux changes rapidly, or there is a burst in progress at that time, the reported value is the best estimate of the undisturbed level and provides the reference level for measuring the burst intensity. The various types of outstanding events are listed separately in another table. The observed flux values have variations resulting from the eccentric orbit of the earth in its annual path around the sun. Although these radio values are suitable to use with observed ionospheric and other data, an adjustment must be introduced when the observations are used in studies of the absolute or intrinsic variation of the solar radio flux. Thus the tables show both the observed flux, S, and the flux adjusted to 1 A.U., S_{a} . The observations are made for a single North-South polarization but reduced for the assumption of two equal orthogonal polarizations. Graphs showing the monthly mean adjusted flux and the monthly high and low values since 1947 are shown on page 9. Relative errors over long periods of time are believed to be ±2%, over a few days may be ±0.5%. The characteristics of the observations are surveyed in "Solar Radio Emission at 10.7 cm" by A. E. Covington [J. Royal Astron. Soc., Canada, 63, 125, 1969]. Values of the quiet sun for the minima of January 1954, and July 1964 have been derived as 65.0 and 67.2 s.f.u. using the solar flux adjusted to 1 A.U. [Covington, J. Royal Astron. Soc., Canada, 68, 31, 1974]. When the same method is applied to the daily values for 1975-1976, it would appear that the basic quiet sun was observed on a number of days from March 1975 to March 1976, and that the average of the eight quietest days is 67.3 s.f.u. A minimum value of 2.7 s.f.u for the slowly varying component was observed in February 1976 and will define radio sunspot minimum if the slow increase in both the monthly quiet sun values and the s.v.c. continue. Though experiments have indicated that a multiplying factor of 0.90 should be applied to the reported flux values in order to derive the absolute flux values, the published flux values have not been corrected by this factor because of the number of data series which have been computerized listing these values. Maintaining homogeneity of the published series is considered of greater value than having the absolute flux values published. A review of the history of the absolute calibration of the Ottawa series as well as a number of other series of observations made within the microwave region has been prepared by H. Tanaka of the Research Institute of Atmospherics, Nagoya University, as convener of a Working Group of Commission 5 of URSI [H. Tanaka $et\ al.$, "Absolute calibration of solar radio flux density in the microwave region," Solar Physics, 29, 243, 1973]. The factor of 0.90 stated above applies directly only to "Series C" data beginning in 1966. The reported correction factor includes a correction of 0.01 for the atmospheric attenuation referred to the zenith as well as the appropriate modification for the zenith angle of the sun at the times of calibrations. In data taken previous to 1966, this correction was neglected. A provisional summary of corrected daily flux values prior to 1966 has been made so that the early values may be compared on the same basis as later values and is available in World Data Center A. It has also been found necessary to incorporate a correction of -4% for the period July 1967 to May 1968. [ERB 790 Radio and Electrical Engineering Division, NRC.] These solar radio noise indices are being published in accordance with a CCIR Recommendation originally from the Xth Plenary Assembly, Geneva, 1963 (maintained at XIth, XIIth, and XIIIth Plenaries), which states "that the monthly-mean value of solar radio-noise flux at wavelengths near 10 cm should be adopted as the index to be used for predicting
monthly median values of foE and foF1, for dates certainly up to 6, and perhaps up to 12 months ahead of the date of the last observed values of solar radio-noise flux". Daily Solar Flux Values - Sagamore Hill -- the Sagamore Hill Solar Radio Observatory of the Air Force Geophysics Laboratories (located at 42° 37'54.36"N, 70°49'15.15"W) in 1966 began operating solar patrols at 8800, 4995, 2695, 1415, and 606 MHz. The patrol was extended to 15400 MHz in 1967, to 245 MHz in early 1969 and 410 MHz was added in early 1971. Flux calibrations in units of $10^{-22} \rm Wm^{-2} \rm Hz^{-1}$ are made at about meridian transit each day. All flux data are corrected to sunearth distance of 1 A.U. Corrections are also made for atmospheric attenuation based on the following average vertical attenuations: 15400 MHz 0.085 dB 8800 0.070 1415 MHz 0.05 dB 606 0.045 4995 MHz 0.055 dB 2695 0.051 A very small error has been discovered in the computer program which generates the <u>observed</u> daily solar flux values. The error exists in all reported values through June 1974 and may be corrected by multiplying the values reported by 0.9975. Starting with July 1974, this correction factor was included in the computation of the observed daily solar fluxes. # SOLAR RADIO FLUX, 10.7 CM ADJUSTED TO LAU. VERTICAL BARS INDICATE HIGH AND LOW DAILY VALUES WITHIN EACH MONTH AND DEFINE THE SLOWLY VARYING COMPONENT OF FLUX: THE DASHED CURVE APPROXIMATELY SEPARATES THE FLUX ASSOCIATED WITH CENTERS OF ACTIVITY FROM A QUIET SUN DERIVED AS THE FLUX INTERCEPT FOR ZERO SANSPOT NUMBER IN ANNUAL PLOTS OF DAILY FLUX VERSUS SUNSPOT NUMBER. MAGNITUDE OF THE BASIC QUIET SUN OBTAINED AS THE LOWEST DAILY FLUX VALUE OBSERVED DURING MINIMUM SUNSPOT ACTIVITY AND REPORT OF THIS BASIC EMISSION GIVEN BY HORIZONTAL LINE RADO MINIMUM IS DETERMINED BY SELECTING A MONTH WITH MINIMUM VALUES OF THE SLOWLY VARYING COMPONENT AS WELL AS THE BASIC FLUX. #### SOLAR FLARES (C.1) The H α solar flare data in Part I (Prompt Reports) are presented as a preliminary record of those flares received on a rapid schedule. Definitive data are published later in Part II (Comprehensive Reports). After six months the flares have been grouped and an attempt made to verify that errors in reporting have been eliminated. The explanation of these definitive flare data begins on page 40 of this text. It includes an explanation of the column headings together with definition of the letters used in the Remarks Column. A table of solar flare patrol observatories is on page 42. The solar flare reports are received from throughout the world at World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado 80302. Observations are made in the light of the center of H α line unless noted otherwise. NOAA operates the flare patrol at Boulder, and NOAA provides support and jointly operates with the Ionospheric Prediction Service of Australia the flare patrol at Culgoora. Tehran is operated by the USAF using NOAA equipment. The USAF operates Ramey, Palehua and Athens. The no-flare patrol observations matching the solar flare table are given in graphical form. The observatories reporting the patrols are indicated. The dark areas at the bottom half of each day are times of no cinematographic patrol. The dark areas at the top half of the day are times of neither visual nor cinematographic patrol. #### SOLAR RADIO WAVES (A.10, C.3) <u>Interferometric Observations</u> -- The chart presents solar interferometric observations at 169 MHz as recorded around local noon at Nançay, France (47°23'N, 8'47"E) the field station of the Meudon Observatory. The main lobes are parallel to the meridian plane: The half-power width is 3.8 minutes of arc in the East-West direction. The main lobes are about 1° apart [Ann. Astroph., 20, 155, 1957]. The records give the strip intensity distribution from the center of the disk to 30' to the West and East. These daily distributions are plotted on the same chart giving diagrams of evolution. Points of equal intensity given in relative units are joined day after day in the form of isophotes. Four equal intensity levels have been chosen to draw the isophotes. These intensities are proportional to 0.6, 1, 1.5 and 2. The first level corresponds to the sun without any radio storm center. In each noisy radio region the smoothed intensity around noon is given in $10^{-22}\,\rm Wm^{-2}Hz^{-1}$. East-West Solar Scans - Algonquin 10.7 cm -- East-West solar scans at 10.7 cm are taken daily at the Algonquin Radio Observatory of the National Research Council of Canada (N 45°56'43", W 78°3'33"). The antenna consists of an array of 32 3-meter paraboloids having interference fringes separated by approximately 1°. The zero order fringe on the meridian (where most of the published curves are taken) has an east-west width of 1.5', but the width increases to 1.7' for fringes 30° from the meridian. The antennas are kept fixed during each drift curve to avoid changes in sensitivity due to scanning and an effort is made to maintain a constant sensitivity from one day to another. When necessary, however, the receiver gain is adjusted to accommodate large fluxes. (Antenna specification can be found in Solar Phys., 1, 465-473, 1967 and details of the antennas' performance appear in Astron. J., 73, 749-755, 1968.) The position of the limbs of the photosphere are indicated on each curve by the vertical bars at the ends of the horizontal line, which itself represents the cold-sky level. The estimated level of flux units (one solar flux unit = $10^{-22} \text{Wm}^{-2} \text{Hz}^{-1}$). This level is determined for each curve by comparing the area under the curve with the total solar flux at 10.7 cm. (Prior to December 1968 the quiet-sun level was estimated each day from a calibrating noise signal inserted between the antenna and receiver. The present method was begun in December 1968 when it was discovered that the quiet-sun levels shown for September and October 1968 were approximately 8% too low.) East-West scans with 30 seconds of arc resolution (recorded simultaneously with the 1.5 minute scans) have been taken at selected intervals between 1969 and November 1971. Commencing November 1, 1971 they have been obtained on a routine basis along with circular polarization data. These data have not been included in the monthly summaries but can be made available on request. East-West Solar Scans - Fleurs 21 cm and 43 cm -- East-West strip scans of the sun at 21 cm and 43 cm are made possible by the "Fleurs" Radio Astronomy Station of the University of Sydney, Sydney, Australia. For the East-West solar scans from the 21 cm solar radio array the fan-beam has 2' of arc resolution. The two short horizontal lines drawn crossing the center line indicate the cold-sky level and the estimated quiet-sun level. The gain may differ from day-to-day. The curves have not been normalized to account for these gain variations other than by the indication of the estimated quiet-sun level. For the East-West solar scans from the 43 cm solar radio array the fan beam has a resolution of 4' of arc. The estimated quiet sun is indicated on the published profiles in the same manner as for the 21 cm scans. The curves have not been normalized for variations in gain. Outstanding Occurrences (SELECTED) -- A list of SELECTED centimeter and millimeter wavelength events at fixed frequencies is published one month following observations. Selections are made to provide 24-hour coverage as nearly as possible. See page 43, Outstanding Occurrences, for descriptions of the types of events and observatory characteristics. The Space Environment Monitor (SEM) aboard the Synchronous Meteorological Satellites (SMS) and the Geostationary Operational Environmental Satellites (GOES) include a ½ to 4Å x-ray ion chamber and a 1-8Å chamber. SMS-1 was launched in May 1974; SMS-2 was launched in February 1975; and GOES-1 in October 1975. These geostationary satellites are located over the western hemisphere and provide nearly continuous solar x-ray data. The SEM's data from two satellites are recorded, processed and disseminated in real time by the Space Environment Services Center of the NOAA Space Environment Laboratory in Boulder, Colorado. Further details of the SEM system are given in The SMS/GOES Space Environment Monitor Subsystem by R. N. Grubb [NOAA SEL, Boulder, Colorado 80302] The x-ray ion chambers are described in Calibration of X-ray Ion Chambers for the Space Environment Monitoring System by A. Unzicker and R. F. Donnelly, NOAA Tech. Rept. ERL 310-SEL 31, 1974 [U.S. Government Printing Office, Washington, DC 20402]. The 1-8Å ion chamber has 300 mm Hg of Argon as a filler gas and a beryllium window that is 5×10^{-5} m thick with an x-ray viewing area of 1.9 x 10^{-4} m². The listed 1-8Å flux is based on a gray-body spectrum of $2\frac{1}{2}$ x 10^{6} °K, which gives an average transfer function in good agreement with gray-body or free-free thermal spectra with temperatures in the range 2 to 100×10^{6} °K. The $\frac{1}{2}$ - 4Å ion chamber has 180 mm Hg of Xenon as a filler gas, with a beryllium window that is 5×10^{-4} m thick with an area of 5.8×10^{-4} m². The listed $\frac{1}{2}$ - 4Å flux is based on a 10^{7} °K gray-body spectrum. The average x-ray flux values include data obtained during solar flares. The time heading for each hourly average is the time at the end of the average. Low values of the x-ray flux are contaminated by a photoelectric effect on SMS-1, radio frequency interference within GOES-1, and by particle interference during solar proton events. Therefore, no flux values below $10^{-6} \rm Wm^{-2}$ for the 1-8Å detector or $10^{-7} \rm \ Wm^{-2}$ for the $\frac{1}{2}$ -4Å detector are reported. These cut-off levels also apply to data before August 1976, for which the published tables of hourly averages included incorrect units of 10^{-6} Wm⁻² for $\frac{1}{2}$ -
4\AA and 10^{-5} Wm⁻² for 1-8Å, when the units should have read 10^{-5} Wm⁻² for $\frac{1}{2}$ - 4Å and 10^{-4} Wm⁻² for 1-8Å. A "B" in the hourly average table indicates the flux was below the cut-off levels. An "M" in these tables denotes periods of missing data. The hourly values are averages of the 1-hour averaged data. The list of events does not include events with a maximum flux less than 3 x 10^{-6} Wm $^{-2}$ in the 1-8Å channel. The end of a flare is taken as that time when the 1-8Ă flux enhancement above the preflare level has decreased to half its maximum value. Often an active region will remain bright after a flare or the x-ray flux will remain above the preflare value long after the half peakenhancement end time. Copies of the detailed x-ray data measured every 3 sec may be obtained from World Data Center A for Solar-Terrestrial Physics, NOAA Environmental Data Service, Boulder, Colorado 80302. #### CORONAL HOLES (A.7f, A.7g) The helium D3 chromosphere at the solar limb is observed on a routine daily basis at Big Bear Solar Observatory using the 26 inch vacuum telescope with a Zeiss Universal Birefringent Filter which gives 0.18Å bandpass. The observations are made visually by scanning the limb and recording the regions in which the double limb characteristic of the helium chromosphere are visible. This technique enables the positions of coronal holes to be determined at the limb to an accuracy of typically ±2° in position angle, except under bad seeing conditions in which case there is a serious danger of mistaking the edge of an isolated emission patch for the coronal hole boundary. Observations made under poor seeing conditions are indicated by dashed lines. Observational and theoretical evidence that the gaps in the D3 chromosphere correspond to coronal holes has been presented by H. Zirin [Ap. J., 199, L63, 1975], who showed that the properties of the helium lines can be explained by a model in which the helium is photoionized by coronal backradiation. The weakening of chromospheric D3 in coronal holes is then a consequence of the reduced back-radiation in these regions. The results of the D3 limb scans are presented monthly and indicate the angular extent of the double limb versus time, where the position angle is measured from the sun's north pole (0°) to south pole (180°), with a positive sign for east limb and a negative sign for west. Days for which data are missing correspond to poor seeing conditions and/or equipment maintenance periods, and do not imply that the D3 double-limb was absent. These observations are furnished by H. Zirin and K. A. Marsh of Big Bear Solar Observatory, California Institute of Technology. Kitt Peak National Observatory -- Daily full disk spectroheliograms using the HeI 10830 Å line are obtained using the KPNO vacuum telescope (Livingston et al., Applied Optics 15, 33, 1976). and 512-channel photodiode detector system (Livingston et al., Applied Optics 15, 40, 1976). À significant amount of control of the strength of this line is due to short wavelength radiation originating in the corona and hence it is possible to infer the existence of features such as coronal holes and bright points (Harvey et al., Bull. A.A.S. 7, 358, 1975). An example of an observation is published in the first cited reference above. The inferred position of coronal holes is outlined on each day's photographic image and transferred by hand to an equal-area cylindrical projection of the sun's surface using the Carrington coordinate system shortly after the end of each solar rotation. Ideally, inferred coronal hole boundaries are sufficiently stable and well defined that the mapping process is now finished. In practice, boundaries are frequently not stable or well defined. What is drawn then is a weighted average of the inferred boundary where more weight is given to high quality observations and to those areas near the central meridian. Tick marks at the top of the maps represent the times of central meridian longitude of the spectroheliograms used to draw the maps. The longitude at OOUT at five day intervals are shown by longer tick marks. A heavy solid line indicates a boundary which is fairly stable and well defined; a hole is almost certainly present. A dashed line means either an unstable boundary if it is connected to a solid line or that some question exists about the reality of the hole if the entire boundary is dashed. Faint lines may sometimes be visible on the reproduced maps and these are the individual day's observations. Solid black areas represent active regions or their remnants. Occasionally a filament will also be so indicated because they are sometimes hard to distinguish from active regions. The threshold for drawing active regions is variable and little significance can be placed in shape or other details. Efforts to remove the subjectivity present in the preparation of these maps are underway but until these efforts are successful, users should be very careful. Further information can be obtained from J. Harvey or W. Livingston, Kitt Peak National Observatory, P. O. Box 26732, Tucson, Az. 85726. The 10830 observations would not be made without assistance from NOAA which is gratefully acknowledged. #### SOLAR WIND MEASUREMENTS (A.13) Pioneers 6, 7, 8 and 9 -- The NASA Ames Research Center plasma probe solar wind velocity data from Pioneers 6 through 9 are supplied by John H. Wolfe. These data include the date, the Deep Space Network (DSN) coverage period, the observation time in UT, the solar wind bulk velocity U_{H+} in kilometers/second, the density N_{H+} in particles/cubic centimeter, the temperature T_{H+} in millions of degrees Kelvin, the Earth-Sun-Probe (ESP) angle in degrees and the co-rotation delay time in days. On Pioneers 8/9, the $\rm U_{H+}$, the $\rm N_{H+}$ and the $\rm T_{H+}$ are derived by a least squares computer fit of the solar wind energy distribution to a Maxwell-Boltzmann distribution in a moving frame of reference. The velocity represents the bulk of convective velocity of the solar wind. On Pioneers 6/7, the peak velocities are reported because a least squares program was not developed for these data. The co-rotation delay, τ , defined as the time in days required for a steady state solar corotating plasma beam to rotate from the space-craft to earth. A diagram showing the angular positions of Pioneers 6 through 9 with respect to the earth is on page 13. Viewing from the North Ecliptic Pole onto the Ecliptic plane, note that Pioneers 6, 8, and 9 are lagging the earth and therefore the τ is positive. Pioneer 7 is leading the earth and therefore its τ is negative. The co-rotation delay depends on the heliocentric radial distance of the earth and the spacecraft, the angular separation between the earth and the spacecraft, the solar angular velocity and the solar wind bulk velocity which defines the degree of the hose angle of the co-rotating Interplanetary Magnetic Field. The equation used to compute the co-rotation delay, $\boldsymbol{\tau}_{\text{\tiny{\textbf{1}}}}$ follows: τ (in seconds) = ϕ/ω - $(r_p - r_e)/U_{H+}$. where ω is the angular velocity of the sun (in radians/second) corresponding to a 27-day solar synodical rotation period, and ϕ is the Earth-Sun-Probe angle (in radians). Instead of using the solar equatorial projection of the Earth-Sun-Probe (ESP) angle ϕ' , the ESP angle itself, ϕ , is used. The error caused by this substitution can be no more than approximately 0.008 radians (0.5°), as explained in the following paragraph. Because the solar equatorial plane is inclined approximately 7.25° to the ecliptic plane, and also the ESP angles for the Pioneers are all very nearly in the ecliptic plane, the projection of the ESP angles in the solar equatorial plane, $\phi^{}$, can be related to the ESP angle, $\phi^{}$, as follows: Define ϕ as $\alpha_2-\alpha_1$. α_2 is the angle in the ecliptic plane of the Earth from the "northern crossing" side of the line defined by the intersection of the ecliptic plane and solar equatorial plane. The "northern crossing" side of this line is the side where the Earth crosses into the space to the north of the equatorial plane from the space to the south as it circles the Sun. $\alpha^{}_1$ is similarly defined for the pioneer spacecraft. Then $\phi^{}$ (the projection of the ESP angle, $\phi^{}_1$, in the solar equatorial plane) can be expressed: $\phi' = \tan^{-1}(\cos 7.25^{\circ} \tan \alpha_2) - \tan^{-1}(\cos 7.25^{\circ} \tan \alpha_1)$ A difference of approximately 0.008 radians (0.5°) between φ^{+} and φ occurs when α_{2} = 45° and α_{1} = 135° (or vice versa). The difference is less than 0.5° for other combinations of α_{2}^{\prime} and α_{1} . Hence Locations of Pioneers 6 through 9 on 1 Jan 76 in the Ecliptic Plane relative to the Earth (in a fixed Sun-Earth line plot) as viewed from the North Ecliptic Pole. using φ rather than φ^{I} is sufficiently accurate for the purposes of these calculations. Solar Wind Speed from IPS Measurements at UC San Diego -- The solar wind speed is measured regularly with the three-station scintillation observatory at UCSD [Armstrong and Coles, J. Geophys. Res., 77, 4602, 1972]. The data are supplied by W. A. Coles and B. J. Rickett. The interplanetary scintillation (IPS) technique, pioneered by Dennison and Hewish [Nature, 213, 343, 1967] yields an average velocity transverse to the line-of-sight to a distant radio source. Listed each month is the solar wind speed and an error from observations of eight radio sources each day (however, in a typical month only five or six sources are useful). Each velocity is a weighted average from along the line-of-sight to the radio source, where the weighting factor decreases rapidly with distance from the sun. This spatial average is centered on an
effective position (P), which is nominally at the point of closest approach of the line-of-sight to the sun, unless this point is closer to the earth than 0.3 A.U. In the latter case, P is taken to be at the point 0.3 A.U. from the earth along the line-of-sight. The heliographic coordinates of P vary slowly over the year as shown in Figure 1. Each month the solar distance (in A.U.), heliographic latitude and the difference in longitude between the point P and the earth are tabulated at 10-day intervals. Each source is observed for 1-2 hours per day and the observation time (in UT) is also tabulated. Details of the spatial weighting function can be computed and examples are shown in Figure 2 on the assumption of a power law shape for the density spectrum. The results are not very sensitive to the assumed density spectrum as can be seen by comparison with Readhead's [MNRAS, 155, 185, 1971] calculations for a Gaussian spectrum, but they assume spherical symmetry. Close agreement is found between ecliptic IPS observation and IMP 7 observations of the solar wind speed, when the spacecraft data are smoothed by a weighting factor proportional to the expected turbulence level [Coles, Harmon, and Lazarus, *EOS*, *55*, 440, 1975]. Coles and Kaufman $[\[\] \]$ 55, 556, 1974] carefully analyzed the flow angle, as well as the speed, and found it to be very close to radial. Thus the regular data are analyzed under the assumption that the flow is indeed radial. This allows Figure 1 DATE OF OBSERVATION 14 Figure 2. Computed IPS weighting functions along the line-of-sight, at the solar elongation angles indicated. The density spectrum was assumed to be power law $\propto q^{-3.3}r^{-4}$ (where q is wave number and r is solar distance); a source diameter of 0.25 sec of arc was also assumed. a least-square estimate of the radial component of velocity and also an associated error estimate. When the solar elongation is greater than about 73°, the pattern velocity (at P) is less than the radial velocity (because the angle Earth-P-Sun is less than 90°); the tabulated velocities have been corrected for this projection effect. A further assumption is that the scintillation pattern is spatially isotropic; this introduces a second order error [Coles et al., EOS, 56, 1180, 1974] and in these preliminary data it has not been corrected. The flow angle is also estimated but is used only in editing data with poor signal-tonoise ratio. The data are not included in this table if the apparent flow angle is greater than 30° from the radial or if the speed error is greater than 33 percent of the speed estimate itself. Further analysis may yield speeds from data rejected by these criteria; those interested in particular periods should contact the authors directly. The speed estimate is derived from the "midpoint" of the correlation functions. This is found to be a reliable estimator for the solar wind speed. [See Coles and Maagoe, J. Geophys. Res., 77, 5622, 1972; Coles, Rickett and Rumsey, a review of IPS in "Solar Wind Three", published by UCLA, 1974]. The solar wind speeds derived from elongated radio sources [e.g., 3C273 and 3C298] are preliminary in that a bias of less than about 10% is sometimes present; corrected data are available to anyone interested. The "peak" velocity and other parameters of the scintillations are also computed, but are not included in the monthly reports. The use of scintillation observations to obtain solar wind velocities represents part of the activity conducted by the SCOSTEP project, Study of Travelling Interplanetary Phenomena (STIP). #### SOLAR PROTON MONITORING (A.12) Pioneer 6 -- These data are provided by Professor J. A. Simpson and his co-workers at the University of Chicago. Cosmic-ray particle counting rates are provided for three ascending energy ranges, from 0.6 to >175 Mev/nucleon. Counting rate measurements are made by the University of Chicago cosmic-ray telescopes aboard Pioneer 6. These are supplied, when possible, hourly throughout the pass. Both instruments consist of a stack of three solid-state detectors separated by absorbers, surrounded by an anti-coincidence cylinder. The Figure shows a cross-section view of the particle telescope. Counting rates are provided for the coincidence modes D₁ \overline{D}_2 \overline{D}_4 (protons and helium nuclei 0.6-13 Mev/nucleon, electrons 400-700 kev), D₁ D₂ $\overline{\mathrm{D}}_{+}$ (protons 13-175 Mev helium nuclei >13 Mev/nucleon and $\overline{\mathrm{D}}_{3}$ $\overline{\mathrm{D}}_{2}$ D₃ $\overline{\mathrm{D}}_{4}$ (proton >175 Mev). The geometrical factors for the three coincidence modes are 5.4, 0.92, and 0.5-1.65 (see below) cm²-ster, respectively. At energies above \sim 200 Mev, the last two coincidence modes become bidirectional. A detailed description of the telescope and the related electronics may be found in Fan et αl . [J. Geophys. Res., 73, 1552-1582, 1968] and Retzler and Simpson [J. Geophys, Res., 74, 2149-2160, 1969]. The counting rates are prepared from quick- look data, and are subject to future revision when the final data tapes reach the University of Chicago. Times given are only approximate (time accurate to \pm 15 minutes), and the counting rates are accurate to \sim 10%. When one of the two highenergy counting rates is at the quiescent level, a symbol Q is used instead of the actual rate. For the 0.6-13 Mev proton counting rate, the quiescent level is approximately 0.08-0.15 c/s. The two highest ranges exhibit a pronounced variation of the quiescent level with the solar cycle. - A_I Aluminized Mylar Window - D₁ Lithium Drift Silicon Detector - A₂ Aluminum Absorber - D₂ Lithium Drift Silicon Detector - A₃ Platinum Absorber - D₃ Lithium Drift Silicon Detector - Da Plastic Scintillator - PM Photo Multiplier Tube Pioneer 6/7 Cosmic Ray Telescope <u>Pioneers 8 and 9</u> -- The cosmic-ray proton count rates as observed on Pioneers 8 and 9 are provided through the cooperation of Dr. W. R. Webber and Dr. J. Lezniak of the University of New Hampshire. Quick look data from telescopes "5" and "1+2" are supplied. Telescope 5 is a wide angle, two-element solid-state telescope with an energy threshold of 14 Mev for protons and 0.6 Mev for electrons. The geometric factor is approximately 8.3 cm²-sterad during quiet times and 4.2 cm²-sterad during solar flare times. Telescope 1+2 is a narrow-angle, five-element, solid-state telescope with a proton energy threshold of 64 Mev on Pioneer 8 and 42 Mev on Pioneer 9. The geometric factor of this telescope is 2.35 $\rm cm^2\text{-}sterad.$ # INTERPLANETARY MAGNETIC AND ELECTRIC FIELDS (A.17, A.17a, A.18) Pioneer 8 -- The Interplanetary (IP) Magnetic Field data from the NASA-Goddard Space Flight Center magnetometer on Pioneer 8 are being supplied by Franco Mariani of the University of Roma and N. F. Ness of Goddard. The data supplied are the absolute magnitude, /B/, (in gammas, one gamma equals one nanotesla) and the solar ecliptic longitude, ϕ , (in degrees) of the field measured counterclockwise from the spacecraft-sun line, as viewed from the North Ecliptic Pole. The instrument is a mono-axial fluxgate magnetometer. The sensor is mounted on one of three transverse booms 2.1 meters from the spin axis and at an angle of $54^{\circ}45^{\circ}$ to the spin axis. Three samples are taken at equal intervals during one spacecraft rotation yielding three independent mutually orthogonal measurements defining the total vector magnetic field. The magnetometer incorporates an automatic inflight range #### LOCATION OF PIONEER SPACECRAFTS The above diagrams illustrate the position of Pioneers 6, 7, 8 and 9. Several types of observations are reported from these spacecraft as discussed in the accompanying descriptions. switch between two dynamic range scales of \pm 32 and \pm 96 gammas for a resolution of \pm 0.125 and \pm 0.375 gammas. The accuracy of the instrument is limited by spacecraft-associated magnetic fields and the sensor zero drift. A non-magnetic explosive-actuated indexing device is used to reportent the fluxgate by 180° to establish its zero level. Five bit rates are possible: 512, 256, 64, 16 and 8 bits/second. At the three higher rates, the average time interval between successive determinations of the field vector is 1.3, 1.4 and 1.75 seconds, respectively. A special purpose digital computer is included in the instrument to compute time averages of the field components when the spacecraft is operating at the low bit rates of 16 and 8. The data supplied include the date, the Deep Space Network (DSN) coverage period, the observation time in UT, the magnitude and solar ecliptic longitude of the field, as described above. The magnetic field data are sampled approximately every hour. Each hourly sample is an average over three consecutive vectors which are separated by 14 seconds or less, depending on the spacecraft bit rate. The IP sector structure at the Pioneer 8 position can be inferred from the longitudinal angle: angles between 45 and 225 degrees are associated with outward sectors, and the remaining angles with inward sectors. It is recognized, however, that the field direction, at the time of observation, may not adequately represent the direction over a period of hours. Pion<u>eer 9</u> -- The Interplanetary (IP) Magnetic Field data from the NASA Ames Research Center magnetometer on Pioneer 9 are being supplied by Chas. P. Sonett and David S. Colburn. The data supplied are in magnitude, /B/, of the field in gammas and the solar ecliptic longitude, ϕ , of the field in degrees, measured from the spacecraftsun line in a counterclockwise direction, as viewed from the North Ecliptic Pole. The instrument is a triaxial fluxgate magnetometer with onboard spin demodulation and use of appropriate filters to avoid aliasing errors. The filter time constant is adjusted to be proportional to the sampling interval. The sampling interval is 0.292, 0.583, 2.33,
9.33 and 18.7 seconds for 512, 256, 64, 16 and 8 bps, respectively. The digitization uncertainty in each component of the field is $\pm \ 0.2$ gammas. The quicklook data are not corrected for sensor offset in the component along the spin axis of the spacecraft. This, in general, gives an uncertainty in the field magnitude of less than one gamma and does not affect the determination of the longitude, ϕ . The data supplied include the date, the Deep Space Network (DSN) coverage period, the observation time in UT, the field magnitude and its solar ecliptic longitude, as described above. The magnetic field data are sampled approximately every hour. Each hourly sample is an average over three consecutive vectors which are separated by 18.7 second or less, depending on the spacecraft bit rate. The IP sector structure at the Pioneer 9 spacecraft can be inferred from the longitudinal angle: angles between 45 and 225 degrees are associated with outward sectors, and the remaining angles with inward sectors. It is recognized, however, that the field direction at the time of observation may not adequately represent the direction over a period of hours. Pioneers 8 and 9 -- The Interplanetary (IP) Electric Field data, as observed on Pioneers 8 and 9 on a real-time basis, are provided through the cooperation of Dr. F. L. Scarf from the Space Sciences Department of the TRW Group. These IP Very Low Frequency (VLF) wave data consist of a sequence of narrowband (400 Hz) signal amplitudes. The table presents the date and Universal Time (UT) when the Electric Field Potential amplitudes (in millivolts) were read. The real time 400 Hz data are selected to illustrate or characterize the activity during each pass and are being presented so that interested scientists can: - Attempt to correlate terrestriallyobserved phenomena with variations noted in the IP Electric Field intensities at the spacecraft position. - Have access to simultaneous measurements of Plasma and E-field data on each spacecraft. - Study Solar Wind fluctuations and magnetic sectoring with the E- and B-field data on Pioneer 9. Instrumental details of the Electric Field experiments are available in the following references: Pioneer 8: [J. Geophys. Res., 73, 6655, 1968] and Pioneer 9: [Cosmic Electrodynamics, 1, 496, 1970]. ## INFERRED INTERPLANETARY MAGNETIC FIELD (A.17c) The table shows daily inferences of the polarity of the interplanetary magnetic field. The first half of the day is based principally on magnetograms produced by the magnetometer at the Vostok Antarctic Station of the USSR. The magnetometer of the U.S. Air Weather Service operated at Thule by the Danish Meteorological Institute is used for the second half of the day. The inference relies on the studies of Mansurov [Geomag. Aeron., 9, 622-623, 1969] and Svalgaard [Geophys. Pap. R-6, 11 pp. Dan. Meteorol. Inst., Copenhagen, 1968] relating the variation of the polar cap magnetic field to the polarity of the interplanetary magnetic field. During 1972, the inferred polarity agreed with spacecraft observations on 83% of the days for which a definitive polarity was inferred. The rate of successful inferences for "toward" (interplanetary field directed toward the sun) day was somewhat greater than "away" days, 85% and 80%, respectively [Russell et al., J. Geophys, Res., 80, 4747, 1975]. Forming a combined index from the two individual station inferences yields an overall success rate of 87% [Wilcox et al., J. Geophys. Res., 80, 3685, 1975]. It appears that the sign of the east-west component of the interplanetary field is actually being inferred [Friis-Christensen et al., J. Geophys. Res., 77, 3371, 1972], rather than the polarity toward or away from the sun. Russell and Rosenberg [Solar Phys., 37, 251, 1974] show that the east-west component is an accurate predictor of the magnetic polarity approximately 90% of the time. On "toward" days incorrectly inferred to have "away" polarity in 1972, the average Ap index was 20% less than the average Ap index on "toward" days. "Away" days incorrectly inferred to be "toward" days had no significant geomagnetic bias [Russell et αl ., 1975]. This effect when combined with the success rate results in a slight (2.5%) bias of the average Ap index for all inferred "toward" days over inferred "away" days. The subject of inferring the polarity of the interplanetary magnetic field has been reviewed by Svalgaard [Correlated Interplanetary and Magnetospheric Observations, D. Reidel, 1974]. The effect is visible at Vostok in the first half of the Greenwich Universal Day and at Thule in the second half of the day. The inferences from Vostok and sometimes from Thule are made at the Institute for Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), Moscow, and are shown in the table as the first value (or set of values) each day. The inferences from Thule are made at the Space Environment Services Center, Boulder, Colorado, and are shown as the second value (or set of values) each day. If two values are shown for a half-day period, an apparent change of polarity occurred within that half day. The notation adopted for the table is that T represents days of negative Y-solar magnetospheric interplanetary magnetic field which would be characteristic of a "toward" sector and A represents days of positive Y-solar magnetospheric field, i.e., "away" polarity. An asterisk along with an A or T indicates half days when the effect was somewhat doubtful, but one polarity seemed predominant. An asterisk alone indicates half days when no clear polarity effect could be discerned. A dash indicates half days when missing data prevented inference of the polarity. # MEAN SOLAR MAGNETIC FIELD (A.3d) Sun-as-a-star integrated light measurements of the solar magnetic field are made daily at the Stanford Solar Observatory. The instrument is a Babcock-type magnetograph attached to a 23m vertical Littrow spectrograph. The mean field measurement represents a weighted average of the net magnetic field on the visible disk of the sun. The weighting arises from a variety of sources including limb darkening, solar rotation, and weakening of the line in magnetic regions. The difference in weighting between integrated light observations and averages of regular magnetograms is primarily due to limb darkening. An individual mean field observation consists of a measurement of the mean magnetic field seen in the line Fe I 5250Å and a measurement of the instrumental zero offset in the magnetically insensitive line Fe I 5124Å. A complete observation, including several checks for instrumental errors, takes about 20 minutes. Several observations vations are made each day. The reported value is a weighted average of all observations for the particular local day. The daily observations are usually centered about local noon (20 UT). The uncertainty in each days mean field is about 2 micro-teslas (.02 gauss). The observations started on May 16, 1975. A more complete explanation of the observation program may be found in Stanford University Institute for Plasma Research Report #682, "The Mean Magnetic Field of the Sun: Observations at Stanford", 1977. The data is provided in two forms: a simple tabulation by date and a Bartels rotation type polarity diagram. In the Bartels diagram the data has been shifted five calendar days to allow for sun-earth transit time for easier comparison with at-earth observations. For further information contact P.H. Scherrer or J.M. Wilcox, Stanford Electronics Labs., Stanford University, Stanford, California 94305. # SOLAR PROTON EVENTS An unnumbered page with a diagonal slash across it will be included whenever provisional outstanding solar proton events have been reported during the month before month of publication. This will be prepared by the Space Environment Services Center of the Space Environment Labora- tory. These sheets will be self-explanatory and are not to be used for research reference purposes. They will merely provide some of the immediately available evidence when significant solar proton events have occurred in the previous month. # DATA FOR TWO MONTHS BEFORE MONTH OF PUBLICATION # TABLE OF CONTENTS | | | | Page | |-------------|---|--|--| | Daily Solar | Activity | Centers | | | | A.6 | $H\alpha$ Synoptic Charts | 21 | | Daily | Charts In A.11h A.7h A.3a,c A.4 A.1 A.6 A.5 A.9d,cb A.5a A.5b | cluding: X-ray Spectroheliograms (OSO-8) | 21
22
22
23
23
23
23
23
24 | | Sudden Iono | spheric [| <u>Disturbances</u> | | | | C.6 | SID Events | 27 | | Solar Radio | <u>Waves</u> | • | | | | C.4
C.3t | Spectral Observations
43.25, 80 and 160 MHz Selected Bursts | 31
33 | | Cosmic Rays | <u>3</u> | | | | | F.1
F.1 | Table of Daily Average Neutron Counting Rates per Hour
Chart of Variations | 34
35 | | Geomagnetic | <u>Activit</u> | <u>y</u> | | | | D.1a
D.1ba
D.1g
D.1d
D.1f | Table of Indices Kp, Kn, Ks, Km, Cp, Ap, aa
Musical-note 27-day Recurrence Diagram
Table and Graph of Hourly Equatorial Dst Index
Principal Magnetic Storms
Sudden Commencements and Solar Flare Effects | 35
36
36
37
37 | | Radio Prop | agation I | ndices | | | | B.52
B.53 | Transmission Frequency Ranges - North Atlantic Path
Quality Indices on Transmissions to Lüchow (GFR) | 38
38 | #### SOLAR ACTIVITY CENTERS (A.1, A.3a, A.3c, A.4, A.5, A.5a, A.5b, A.6, A.7h, A.9cb, A.9d, A.11h) H-alpha Synoptic Charts -- These charts of the entire solar surface show solar activity in terms of polarity of magnetic fields, filaments (cross-hatched), major sunspots (large dots), bright H α plage
(closely spaced lines), faint H-alpha plage (stipple), distinct neutral lines (solid lines), and estimated neutral lines (dashed lines). Longitude is in terms of the mean rotation rate for sunspots as determined by Carrington. This is the heliographic longitude tabulated in the American Ephemeris and Nautical Almanac. The dates at the top of the synoptic chart correspond to these values, showing the time of central meridian passage for the corresponding heliographic long-itudes. The charts are labeled with the serial number of the solar rotation as counted by Carrington, with the first rotation commencing November 9, 1853. The positions of magnetic polarity reversal are inferred according to the techniques described by McIntosh [Rev. Geophys. and Space Phys., 11, 837-846, 1972; also Solar Activity Observations and Predictions, McIntosh and Dryer, ed., MIT Press, 1972]. The H-alpha structures that reveal these "neutral" lines are: filaments, filament channels, plage corridors, "iron-filing" pattern of fibrils adjacent to active centers, and arch-filament systems. The patterns are mapped by accumulating the positions of features on H-alpha filtergrams from several consecutive days. Seldom does a single photograph show the patterns in their complete form, owing to the transient nature of the filaments and the variable observing conditions. Magnetic polarities are inferred from Hale's law: leader sunspots in opposite solar hemispheres have opposite polarities. Northern leaders possess positive polarity during odd numbered solar cycles, while southern leaders are negative. Most sunspot groups are now members of cycle #21, with polarities reversed from the few cycle #20 groups still occurring near the solar equator. The polarities of all areas on the sun are inferred by beginning with a leader sunspot, or the leading portion of a bipolar plage, and alternating polarities with each successive neutral line. The H-alpha patterns mapped are the forms seen when the particular features were near W40 on the visible solar hemisphere. This bias toward the west enables a more realistic comparison with solar wind, particle, and magnetic-field data measured near the earth. Whenever a pattern undergoes a conspicuous change from the time of first visibility to the time when at W40, the former neutralline position is depicted as a line with dots superimposed. The charts published here are preliminary versions constructed as part of the real-time solar monitoring at NOAA's Space Environment Services Center in Boulder. In most cases, there has been corroboration with solar magnetograms made with photospheric spectral lines (Kitt Peak, Mt. Wilson, and Sacramento Peak). Some changes and additions will be necessary when more careful study of the filtergrams and magnetic-field data can be made. The date in the lower right corner is the date of the last revision before the publication. The mapping techniques include comparison with previous synoptic charts for maintenance of consistency and continuity. Daily use of inferred solar magnetic field data has demonstrated a 90% reliability within active regions and at least 75% reliability in the large-scale patterns in quiet regions. The reliability is degraded in regions where estimated neutral lines (dashed lines) are used extensively. Large portions of the charts for the period near solar minimum are so delineated. Charts beginning with Carrington Rotation 1648 are constructed with a computerized readerplotter and have improved coordinate accuracy over previous preliminary charts. Photographs or Charts -- On two pages per day are presented several photographs or charts of active solar centers recorded at optical and radio wavelengths. For each day the ephemeris heliographic longitude, Lo, at 0000 UT, position angle, P, and center of sun, Bo, are given. Transparent Stonyhurst disks (regular or modified) are provided with this text to fit the size of the charts. Regular Stonyhurst disks have the longitude lines spaced in intervals of 10° east and west of central meridian. Modified Stonyhurst disks have the longitude lines spaced at days east and west of central meridian. With the 1976 Explanation of Data Reports the small size transparencies were regular and the large size were modified. In this issue the small ones are modified and the large regular. Though a magnifying glass is needed to read detail, it is felt that the significant regions stand out on the scale used. For those interested, larger sizes of these photographs or charts can be made available at cost through the World Data Center A for Solar-Terrestrial Physics. These data for each day are x-ray spectroheliograms, 8.6 mm and 2 cm spectroheliograms, solar magnetograms, $\lambda5303$ coronal intensities, calcium plage and sunspot tracings, and $H\alpha$ filtergrams. The sunspot drawing also shows prominences. Details of these individual observations follow: X-ray Maps from OSO-8 -- The Lockheed Palo Alto Research Laboratory Mapping X-Ray Heliometer (MXRH) instrument on OSO-8 has been in operation since launch in June of 1975. The MXRH, which is in the wheel looking radially outward, consists of three one-dimensionally collimated (FWHM = 2.0 arcmin) systems, each tilted 120° from the other. Three one-dimensional distributions are obtained approximately every 20 seconds and can be unfolded to locate and isolate the emitting x-ray regions on the solar disk. The detection elements are proportional counters with three different detector types being employed in order to obtain a detectable, yet unsaturated, response over a dynamic range of 10°. Fourteen channel pulse height analyzers provide the energy information. The MXRH spectral response is approximately 1.5-30 keV where the lower value is set by the 75 µm thick Be window of the most sensitive detectors. The actual upper value is spectrum and intensity dependent and for most cases will be substantially below 30 keV. The maps presented here are prepared from quick-look data which are received daily over a phone line from GSFC to Lockheed. As such, they are based on a daily data sample which on average includes 200 minutes of solar coverage. A typical (neither the quietest nor the most active) thirty minute period is selected from these data to construct a map. The relative intensity of a region is indicated by differing dot sizes where "detectable" varies from system to system but nominally corresponds to a counting rate which is about 5 times the average background. The three dot sizes represent detectable (D) to 20D, 20D to 500D, and >500D. If a source has been highly variable in intensity (varying by more than an order-ofmagnitude over a time period of less than two hours) no typical intensity is assigned, but rather a highly-variable indicator is used. The temperature assigned to each source is determined by fitting the observed data to that predicted by convolving the instrument response function with the spectra of an isothermal low density plasma as obtained from an updated Tucker Koren formulation [Ap. J., 168, 283, 1971]. The temperatures assigned should be considered preliminary pending final in-orbit instrument calibration. When this calibration is complete, the MXRH maps will include emission measure and absolute flux information. Additional explanation or data may be obtained from L. W. Acton or C. J. Wolfson of Lockheed Palo Alto Research Laboratory, Dept. 52-12, Bldg. 202, Palo Alto, California 94304 (Telephone: (415) 493-4411, Ext. 45261). Workers needing historical or near-real-time solar x-ray information are invited to contact the Lockheed investigators. Coronal Green-Line Intensity at 1.15R₀ -- Scans of the solar corona are made with the Sacramento Peak Observatory Green-Line Coronal Photometer, designed by R. R. Fisher (AFCRL-TR-73-0696 and *Solar Phys. 36*, 343, 1974). The intensity of the corona is recorded at 120 points around the limb with an aperture of 1.1 arc min by chopping between the corona and sky at a rate of 100kHz. The scans depicted here are made at 1.15R₀, although at least one other height is routinely recorded. The display is in the form of a polar plot of the intensity around a circle with a radius of 10 millionths of the intensity of the center of the solar disk. The intensity at the edge of the circle is zero. Tick marks are separated by 10 millionths. Note that the horizontal and vertical scales on the graph may not be exactly the same. This is a pro- perty of the plotting unit that produced the graphs. There may also be slight changes in the scale from day to day. Models of the emissivity of the corona in the green line based on these data, useful for locating coronal holes, are available on a collaborative basis from R. C. Altrock, AFGL, Sacramento Peak Observatory, Sunspot, New Mexico 88349 USA. Mount Wilson Observatory Solar Magnetograms --The Mount Wilson Observatory solar magnetograms are computer-plotter iso-gauss drawings made with the magnetograph at the 150-foot tower telescope on Mount Wilson. The program is supported in part by the Office of Naval Research, the National Aeronautics and Space Administration, and the National Science Foundation. The polarities are indicated with "Plus" signifying the magnetic vector pointed toward the observer. The gauss levels are also indicated. This instrument measures the longitudinal component of the magnetic field using the line $\lambda 5250.216$ Fe I. A solar magnetograph is basically a flux measuring instrument. It measures the total flux over the aperture which is being used. The magnetograph apertures are square (image slicer is used) and the raster scan lines are separated by the dimension of the aperture. This separation of the scan lines is given by the ΔY (DELTAY) printed on the magnetogram. The unit of ΔY are arc seconds. The DELTAX represents in the same units the distance along the scan line between points at which the data were digitized. The scan is a
boustrophedonic raster scan which extends for all scan lines beyond the disk. The data within about 12 arc seconds of the solar limb are not plotted. The scanning system is always oriented so that the scan lines are perpendicular to the central meridian of the sun. The cardinal points on the magnetogram refer to heliocentric coordinates so that the "N" and "S" define the rotation axis of the sun. Because the magnetic field strength measured by the magnetograph is the product of the true field strength and the brightness of the image, the fields used to make the contours have been corrected for the brightness at each point. So effects of limb darkening and variable sky transparency have been corrected. Effects due to weakening of the line profile in magnetic field regions have not been included. In general the magnetic field strengths on the map are low by about a factor of two because of these effects, but this varies somewhat with distances from the disk's center. For more details c.f. Solar Physics, 22, 402-417, 1972. It is difficult to estimate precisely the errors in the magnetic data which goes into these magnetograms, and in any case, the errors vary from day-to-day. The zero level is probably accurate to a few tenths of a gauss, or better, on almost all magnetograms. The gauss scale is probably almost always accurate to 15% or better. The noise level is almost always well below the first isogauss level (5 gauss). Sometimes, because of the small scale of the reproductions, it is difficult to make out the details of the field distribution in some regions. Large scale copies of the particular magnetograms may be obtained by writing to: World Data Center A for Solar-Terrestrial Physics NOAA Boulder, Colorado, U.S.A. 80302 Kitt Peak Observatory Solar Magnetograms --Full disk magnetograms are now made daily, weather permitting, at the vacuum telescope on Kitt Peak in Arizona. At the exit focus of the spectrograph is a Babcock type magnetograph which utilizes as detectors a pair of 512-element silicon-diode arrays. The diode spacing, referred to the entrance slit, is one arc-second. Resolution achieved depends in practice mainly on "seeing", but in any case falls to zero at this one arc-second limit. At present the magnetograms are taken in the wings of Fe I 8688.6 Å, a line selected to faithfully record network, plage and penumbral magnetic flux but which underestimates umbral flux by a factor of about two. A full disk recording is made up of four swaths and requires 37 minutes of scan time. The display of magnetograph data is by a CRT generated picture where bright represents positive flux and dark negative flux. The display intensity is non-linear in an effort to compress the dynamic range so that weak fields can be seen along with the strong sunspot fields. The noise is about 10¹⁷ maxwells (i.e., 15 gauss over one arc-second). Blank areas indicate interfering clouds. These high resolution maps complement the Mt. Wilson iso-gauss charts. Detailed numeric listings exist and can be retrieved from the observatory archives. For further information contact: J. Harvey or W. Livingston, Kitt Peak National Observatory, P.O. Box 26732, Tucson, Arizona 85727. H-alpha Spectroheliograms -- The H-alpha spectroheliograms are furnished by the solar observatory at Ramey Air Force Base, Puerto Rico, operated by the U. S. Air Force 12th Weather Squadron of the 3rd Weather Wing. The telescope is a 25 cm (10 inch) refractor of approximately 160 cm (63-inch) effective focal length, equipped with a half-Angstrom bandpass Halle birefringent filter. These photographs are supplemented by photographs provided by the NOAA Space Environment Services Center Observatory at Boulder, Colorado, using a 11 cm (4.5 inch) refractor. Sunspot Drawings -- These drawings are simplified copies of originals made at the Boulder solar observatory operated by the NOAA Space Environment Services Center. Sunspot groups are boxed according to a judgement of bipolar pairs based on spot group evolution and the structure of associated H-alpha plage, following guidelines developed by P. S. McIntosh of the NOAA Space Environment Laboratory. Serial numbers appearing adjacent to some of the sunspot groups are the last three digits in the McMath-Hulbert plage number. It is not uncommon for more than one bipolar group to occur within the same large calcium plage. Drawings from the Sacramento Peak Observatory or photographs from the Culgoora Solar Observatory (C.S.I.R.O., Narrabri, N.S.W., Australia) may be used when Boulder data are missing. H- α Prominences -- Drawings of prominences are added to the limb of the sunspot drawings by tracing detail from photographic prints made from the NOAA Boulder H α patrol films. Calcium Plage Reports -- The contours are based on estimates made and reported on the day of observation. These data on calcium plage regions are as reported by the McMath-Hulbert Observatory of The University of Michigan supported by NOAA contract. They are the same regions which are summarized in the following section. Listed beside the drawings in each case are the quality of the day's observations and the initials of the observer for the day followed by a table of the plages by region number, then area in millionths of the solar hemisphere and intensity, if area ≥3000 millionths or intensity ≥2.5. When McMath-Hulbert Observatory has been unable to observe, available drawings supplied by the Solar Observatory at Catania, Italy are used. The areas will differ from the McMath-Hulbert areas since there is considerable subjectivity in the grouping of the bright calcium areas into regions. Each series should be homogeneous in itself. 2.0 cm and 8.6 mm Spectroheliograms -- The 2.0 cm wavelength (15.3 GHz) and 8.6 mm wavelength (35.0 GHz) solar radio maps are made at the La Posta Astrogeophysical Observatory of the Naval Electronics Laboratory Center, San Diego, Calif. (NELC La Posta). The program is funded in part by the Air Force Geophysics Laboratory. The geographic coordinates of the observatory are: Long. 116°26'6.43"W, Lat. 32°40'39.33"N; elevation 1188m above mean sea level. The antenna used for the observations is a 18.3 m (60 ft) diameter circular paraboloid with a Cassegrain feed system, on a computer controlled altitude-azimuth mount. The half power beam width of the antenna is approximately 4.0' at 2.0 cm and 2.8' at 8.6 mm. The observations are made with Dicke switch radiometers, the antenna being switched against a noise tube. The central disk quiet area solar antenna temperature is $\sim 7000^\circ \text{K}$ at 2.0 cm and $\sim 3800^\circ \text{K}$ at 8.6 mm. The measured rms noise of both radiometer systems when looking at the sun is $\sim 2^\circ \text{K}$ for a 1.0 second time constant. The data for the maps are collected by automatically directing the telescope to perform a square boustrophedonic raster with lines perpendicular to heliographic north-south, filling a 19 by 19 grid of points spaced 2.0' apart at 2.0 cm wavelength, and a 35 by 35 grid of points spaced 1.0' apart at 8.6 mm wavelength. The corners of the resulting grid are indicated on the maps. Note that at 2.0 cm the grid is 36' square while at 8.6 mm the grid is 34' square. The scale of the map is shown at the lower left corner of the grid by short axes with 1.0' tic marks. The Universal Time at which the map was begun is shown below the map. Approximately 25 minutes are required to fill the 2.0 cm wavelength grid, while approximately 65 minutes are required at 8.6 mm wavelength. The quantity being contoured is antenna temperature; all contours are labeled in units of 100°K. The contour interval is not necessarily constant on a map, and may be changed from map to map in order to provide a clearer picture of the radio emission. On days for which no map is presented the words NO DATA appear near the center of the grid. Below this appears a one word indicator of why no map has been provided. These words have the following specific meanings: - CLOUDY ----- A map was made for the day beginning at the time shown; however, the data were so seriously affected by clouds that it was deemed unwise to publish it. Such maps will be provided to individual researchers upon request. - WEATHER ----- The weather at the observatory was so inclement that no observations were made. No time is given in the format. - CALIBRATION -- A map was made for the day beginning at the time shown; however, the operation of the equipment was such that the reliability of the antenna temperature is in doubt. Such maps will be provided to individual researchers upon request. - EQUIPMENT --- The situation and condition of the equipment were such that no map was made. This includes such causes as receiver malfunction, mechanical and computer problems, and preventive maintenance. No start time is given in the format. Further information and requests for extra data as stated above should be addressed to: Max P. Bleiweiss, NELC La Posta, Rt. 1 Box 591, Campo, California 92006. Individual Regions of Solar Activity -- The table provides a history of each active center visible on the solar disk using data from McMath-Hulbert Observatory (calcium plages under NOAA contract) Mt. Wilson Observatory (magnetic classification of sunspots) and NOAA, Boulder (area, count and Brunner Classification of sunspots). The Greenwich date of central meridian passage of each region is given in the lead line for each region as well as prior rotation number. After the year, month, and day the McMath-Hulbert calcium plage region number is repeated followed by the latitude, central meridian distance, and heliographic longitude of the center of the region on that day. The next two columns give the corrected area in millionths of a solar hemisphere, and the intensity of the region at time of measurement on that day, on a scale of 1 = faint to 5 = very bright, referring to the brightest part of the plage. These data are based
upon estimates made and reported on the day of observation, However, they have been compared with the re-evaluated data and all significant discrepancies have been corrected, either directly in the data or by means of footnotes. These data are from observations obtained and reduced by different observers on days of widely different observing quality. For the quality of the observation on each day and the identification of the observer see daily calcium maps. The McMath-Hulbert Observatory requests that special attention be paid to the quality of observation for the days in question and to the possible personal equation of the respective observers. The sunspot data lists the Mt. Wilson* group number, the latitude, central meridian distance and heliographic longitude of each spot group and the magnetic classification and largest magnetic field strength measured in each group. The magnetic classifications are defined as follows: - AP = αp All the magnetic measures in the group are of the same polarity which is that corresponding to the preceding spots in that hemisphere for that cycle. - AF = αf All the magnetic measures in the group are of the same polarity which is that corresponding to the following spots in that hemisphere for that cycle. - BP = βp A bipolar group in which the magnetic measures indicate that the preceding spots are dominant. - $B = \beta$ A bipolar group in which the magnetic measures indicate a balance between the preceding and following spots. - BF = βf A bipolar group in which the magnetic measures indicate that the following spots are dominant. - BY = $\beta\gamma$ A group which has general β characteristics but in which one or more spots are out of place as far as the polarities are concerned. - γ = γ A group in which the polarities are completely mixed. Statements will be added to the above classifications if the group is also of the "D = δ -configuration": spots of opposite polarity within 2° of one another and in the same penumbra. The Mt. Wilson magnetic sunspot classifications are given for spot groups observed at Mt. Wilson. If a magnetic classification is based on magnetic measurements, that classification is enclosed in parentheses. When only half of the sunspot group is measured, a half parenthesis indicates which half was measured - either the leader or the follower. A magnetic classification not enclosed in parentheses is determined from the appearance of the spot groups and the plage. A blank in the classification column indicates sufficient information was not available to make an intelligent determination of the magnetic classification. Prior to July 1966 the only magnetic ^{*}The Mt. Wilson daily observations in monthly summary form may be obtained upon request from World Data Center A for Solar-Terrestrial Physics. classifications included in the lists were those for which there were magnetic measurements. The largest magnetic field strength measured in each group is given. The number which appears under the column headed "H" is a coded representation of the largest magnetic field strength measured in the group. The field strength is only given to the nearest 500 gauss because it is felt that the uncertainties of measurement do not permit greater accuracy. These measurements are made with the line $\lambda5250.216$ A(Fe I). No correction is made for blending the Zeeman components. The code is as follows: | Code | Maximum Field
Strength in Gauss | |---|---| | 1
2
3
4
5
6
7
8
9 | 100- 500
600-1000
1100-1500
1600-2000
2100-2500
2600-3000
3100-3500
3600-4000
4100-4500 | | 70 | * 1000 | The area in millionths of a solar hemisphere, sunspot count and classification as observed at NOAA-Boulder are used to complete the sunspot information. Telegraphic Ramey or Manila sunspot data are substituted when available to fill gaps in Boulder data. The initial letter is used in the table to indicate the source of sunspot information. The sunspot classification in column marked "Class" is represented by three consecutive uppercase letters. It is the revised classification devised by P. S. McIntosh of NOAA. It consists of a modified Zürich Brunner class, the type of largest spot within the group, and the relative spot distribution or compactness of the group. This classification is included in the USSPS code, I.U.W.D.S. "Synoptic Codes for Solar and Geophysical Data, Third Revised Edition 1973", p. 108. The definitions of the classification and an illustration of the types of sunspots follow. When possible separate bipolar sets of spots are identified by measured magnetic polarities, by the positions of spots relative to lines of polarity reversal inferred from structures on Halpha filtergrams, and by the record of birth and evolution of spots. If these observations are not available, the following definitions identify most unipolar and bipolar spot groups: (see Figure and definitions to follow). Unipolar Group: A single spot or a single compact cluster of spots with the greatest distance between two spots of the cluster not exceeding three heliographic degrees. In modified Zürich H-class groups, this distance is measured from the outer penumbral border of the largest spot to the center of the most distant spot in the group. Strong new spots which are clearly younger than a nearby h-type spot (see Penumbra: Largest Spot) are usually members of a new emerging bipolar group and should be called a separate group. Bipolar (Elongated) Group: Two spots of a cluster of many spots extending roughly eastwest with the major axis exceeding a length of three heliographic degrees. An h-type major spot can have a diameter of three degrees, so a bipolar group with an h-type spot must exceed five degrees in length. ### Modified Zürich Class (first upper case letter) - A A unipolar group with no penumbra. - B A bipolar group with no penumbra. - C A bipolar group with penumbra on spots of one polarity, usually on spots at only one end of an elongated group. Class C groups become compact class D when the penumbra exceeds five degrees in longitudinal extent. - D A bipolar group with penumbra on spots of both polarities, usually on spots at both ends of an elongated group. The length does not exceed 10 degrees of heliographic longitude. - E A bipolar group with penumbra on spots of both polarities and with a length between 10 and 15 heliographic degrees. - F A bipolar group with penumbra on spots of both polarities and with a length exceeding 15 heliographic degrees. - H A unipolar group with penumbra. The principal spots are nearly always the leader spots remaining from an old bipolar group. Class H groups become compact class D when the penumbra exceeds five degrees in longitudinal extent. Note that Zürich classes G and J are missing in this revision. Class G groups are included in the definition of classes E and F, and class J groups are included in class H. #### Penumbra: Largest Spot (second upper case letter) - "x" No penumbra. The width of the gray area bordering spots must exceed three arc seconds in order to classify as penumbra. - "r" The penumbra is rudimentary. It is usually incomplete, irregular in outline, as narrow as three arc seconds, brighter intensity than normal penumbra and has a mottled, or granular, fine structure. Rudimentary penumbra represents the transition between photospheric granulation and filamentary penumbra. Recognition of rudimentary penumbra will ordinarily require photographs of direct observation at the telescope. - 's" Symmetric, nearly circular penumbra with filamentary fine structure and a spot diameter not exceeding 2½ heliographic degrees. The umbrae form a compact cluster near the center of the penumbra. Also, elliptical penumbra are symmetric about a single umbra. Spots with symmetric penumbra change very slowly. "a" Asymmetric, or complex penumbra with filamentary fine structure and a spot diameter along a solar meridian not exceeding 2½ heliographic degrees. Asymmetric penumbra is irregular in outline or clearly elongated (not circular) with two or more umbrae scattered within it. The example in the figure is transitional between "s" and "a". Asymmetric spots typically change form from day-to-day. "h" A large symmetric penumbra with diameter greater than 2½ heliographic degrees. Other than size, it has characteristics the same as "s" penumbra. "k" A large asymmetric penumbra with diathan 2½ heliographic degrees. Other than size, its characteristics are the same as "a" penumbra. When the longitudinal extent of the penumbra exceeds five heliographic degrees, it is almost McINTOSH certain that both magnetic polarities are present within the penumbra and the classification of the group becomes Dkc or Ekc or Fkc. ### Sunspot Distribution (third upper case letter) - "x" Single spot. - "o" An open spot distribution. The area between leading and following ends of the group is free of spots so that the group appears to divide clearly into two areas of opposite magnetic polarity. An open distribution implies a relatively low magnetic field gradient across the line of polarity reversal. - "i" An intermediate spot distribution. Some spots lie between the leading and following ends of the group, but none of them possesses penumbra. - "c" A compact spot distribution. The area between the leading and following ends of the spot group is populated with many strong spots, with at least one interior spot possessing penumbra. The extreme case of compact distribution has the entire spot group enveloped in one continuous penumbral area. A compact spot distribution implies a relatively steep magnetic field gradient across the line of polarity reversal. The first letter of the McIntosh classification is essentially the Brunner classification with the following
exceptions: McIntosh types: Ero and Fro = Brunner class G Eko Eso Fso Class C Eao Fao Eho Fho , Fko McIntosh types: Hrx = Brunner class J Hsx Hax # N.B. For detailed research analyses these region tabulations should be used with caution. Calcium Plage Index -- This table provides the daily calcium plage index based on the formula by Wesley R. Swartz, Ionosphere Research Laboratory, Pennsylvania State University as published in February 1971 text. The formula is re-expressed below: Ca II_{index} = $$\left[\sum_{i} I_{i} A_{i} \cos \theta_{i} \cos \phi_{i}\right]$$ / 1000 where the summation includes all the plages visable on the day. I_i = intensity of plage i A_i = corrected area of plage i in millionths of a solar hemisphere (McMath-Hulbert Observatory data) $\Theta_{\mbox{\scriptsize i}}$ = central meridian distance of plage i in degrees ϕ_i = latitude of plage i. Values of this index for the period January 1, 1958 through January 31, 1971 appear in the Pennsylvania State University Ionosphere Research Laboratory Report 373(E), *The Solar Ca II Plage Index*, Wesley E. Swartz and Regan Overbeck, October 8, 1971. # SUDDEN IONOSPHERIC DISTURBANCES (C.6) Sudden ionospheric distrubances (SID) are presented in a table as one line per SID event. This table gives the date, beginning, ending and maximum time in UT of each event; an importance rating; types of SID observations; and flare, if known. The selected times of beginning, ending and maximum are usually those of a sudden phase anomaly (SPA). The time that is chosen from the SPA reporting stations is selected by taking into consideration the amplitude of the event and the time of the associated flare, if known. In the table D = greater than, E = less than and U = approximate time indicated. The importance rating is obtained by subjective averaging of the importances reported by all stations for all the different types of SID. The importance rating is based on a scale of 1, the least, to 3+, the most important. If SPA events are not available, shortwave fade out (SWF) events are used to determine the times. The degree of confidence of identifying the event is reported by the stations as a subjective estimate. This is then evaluated to decide whether the reported event is an SID or not. From the reports believed to be SID, a wide spread index is prepared signifying that the SID is geographically widespread. The index ranges from 1 (possible-single station) to 5 (definitemany stations). Some phenomena are listed if noted at only one location, if there has been a flare or other type of flare-associated effect reported for that time. In the flare column an * represents no flare patrol as yet available for time of event, and NF means no flare observed though there was a flare patrol at that time. Consideration is also given as to whether other reports are available from that longitude on that date. Below the table are listed the stations together with the type of SID reported which were analyzed to prepare the SID event table. A second table lists the number of SID for each day by the McMath region of the associated flare, if known. The table on page 29 of this text gives the two-letter station code, the geographic location of the station and the type or types of SID information submitted. These data are made possible through the auspices of the International Ursigram and World Days Service, the U.S. Coast Guard, and private interested individual observers (AAVSO). Greater detail concerning the reporting stations can be found in "The Listing of Sudden Ionospheric Disturbances" by J. Virginia Lincoln [Planet. Space Sci., 12, 419-434, 1964] and in earlier versions of this text. The SID stations presently active are shown on the chart on page 30 by their longitude and by the type of SID recorded. The numbers across the top at 30° intervals indicate the earliest sunrise (top) and the latest sunset (bottom) times in UT for the stations within $\pm\ 15^\circ$ longitude. The times are based on the summer solstice (June 22). The small triangles throughout the chart indicate the midpoint of transmitting paths for SWF, SPA, SES, and SFD for only those stations that are underlined. (Many of the non-underlined SWF stations are commercial terminals, and the location of the transmitters being recorded are not always known.) The world-wide coverage of SID effects is indicated by the density of the triangles, and will show in which parts of the world the ionosphere is studied for SID effects. boxes around the three SCNA stations note that those stations record cosmic noise absorption with the same equipment; i.e., recorders designed by Robert Lee of the High Altitude Observatory, Boulder, Colorado. N.B. The detailed data as formerly published are available at cost of reproduction from World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado 80302. SID, sudden ionospheric disturbances (and GID, gradual ionospheric disturbances) may be detected in a number of ways: shortwave fadeouts (SWF), increases in cosmic noise absorption (SCNA), enhancement or decrease of low frequency atmospherics (SEA or SDA), sudden phase anomalies at VLF (SPA), sudden enhancements at VLF (SES), sudden phase anomalies at LF (SPA and SFA), and sudden frequency deviations (SFD). $\underline{\text{SWF}}$ -- SWF events are recognized on field-strength recording of distant high-frequency radio transmissions. In the coordinated program, the abnormal fades of field strength not obviously ascribable to other causes are described as shortwave fadeouts with the following further classification: S-SWF (S) : sudden drop-out and gradual recovery Slow S-SWF (SL) : drop-out taking 5 to 15 minutes and gradual recovery G-SWF (G) : gradual disturbance: fade irregular in either drop- out or recovery or both. SCNA-SEA -- Sudden ionospheric disturbances recognized on recorders for detecting cosmic noise absorption at about 18 or 25 MHz are known as SCNA, or recognized on records for detecting enhancements of low frequency atmospherics at about 27 kHz are known as SEA. SPA and SES -- Sudden phase anomalies (SPA) are observed as a phase shift of the downcoming skywave on VLF recordings or on pulse measurements on LF recordings. An estimate of the intensity can be obtained in terms of the degree of phase shift [see Chilton, C. J., et al., J. Geophys, Res., 68, 5421-5435, 1963]. The length of path and amount of sunlight on the path must of course be considered. Sudden enhancements of signal strength (SES) are observed on field-strength recordings of extremely stable VLF transmissions. SPA recorded by LF pulse observations over a one-hop propagation path yield information more indicative of the ionospheric changes occurring at the mid-point of the path, rather than over the entire path. LF phase observations, reported in degrees, represent an increase in sensitivity over VLF observations. The phase sensitivity is directly proportional to the ratio of the frequencies for identical paths. However, since the height of energy deposition is related to the type of flare x-rays emitted, the LF measurements in conjunction with the VLF measurements will tend to indicate the x-ray intensity range. Since the LF signal can apparently be reflected from either of two layers within the D-region [Doherty, R. H., Radio Science, 2, 645-651, 1967] phase retardations as well as phase advances may occur during an SID at LF. The amplitude of the low frequency pulse observations made at Loran stations normally changes during an SID. This change is usually, but not always, in the direction of a signal enhancement (SES). The height of signal absorption is below the height of signal reflection. LF amplitude observations along with the LF and VLF phase observations for any one event tend to indicate the x-ray intensities associated with that event. Amplitude changes are reported in dB to the nearest dB of voltage change. Since 6 dB represents doubling of the received signal and 20 dB represents a ten fold change in amplitude, it is obvious that many SIDs produce large effects in LF propagation. $\underline{\sf SFA}$ -- On LF amplitude recordings on paths about $1000~{\rm km}$ long, sudden phase anomalies of the type known as SFA can be detected. These are events recognized by indirect phase measurements made evident by the one-hop sky wave interfering with the ground wave. SFD -- A sudden frequency deviation (SFD) is an event where the received frequency of an HF radio wave reflected from the ionosphere increases suddenly, peaks, and then decays back to the transmitted frequency. Sometimes several peaks occur and usually the frequency deviation takes on negative values during the decaying portion of an SFD. The peak frequency deviation for most SFDs is less than 0.5 Hz. The start-to-maximum time is typically about 1 minute. SFDs are caused by sudden enhancements of ionization at E and F1 region heights produced by impulsive flare radiation at wavelengths from 10 - 1030Å. A more complete discussion of SFDs can be found in Report UAG-36, An Atlas of Extreme Ultraviolet Flashes of Solar Flares Observed via Sudden Frequency Deviations During the ATM-SKYLAB Missions, 1974. #### STATION LIST FOR SUDDEN IONOSPHERIC DISTURBANCES TABLE | 0007 | SWF | SCNA | SEA | SES | SFD | SPA | |---|-------|----------|-------|----------|------|-----| | CODE STATION LOCATION | SML | SUNA | 2EH | 353 | 21.7 | 3,4 | | | | | | | | | | AQ = AREQUIPA, PERU | | | | | | x | | BY = BEARLEY, ENGLAND |] x | | : | | | | | DA = DARMSTADT, GFR | X | | | | | | | DE = DEBRE ZEIT, ETHIOPIA | | | | | 1 | X | | HA = HAWAII, USA | | Х | Х | | x | 1 | | HC = HERSTMONCEAUX, ENGLAND | | | х | | | | | HI = HIRAISO, JAPAN | Х | | | | | | | HS = HERMANUS, SOUTH AFRICA | 1 | | Х | 1 | 1 |] | | HU = HUANCAYO. PERU | l x | | | | | | | IN = INUBO, JAPAN | | | ļ | | | X | | KA = KASUAGI, JAPAN | 1 | | | | | X | | KU =
KUHLUNGSBORN, GOR | | | X | | | X . | | LO = PRESTON, ENGLAND | | | X | | | | | MA = MANILA, PHILIPPINE ISLANDS | X | X | | | | X | | MC = MCMATH-HULBERT OBS., MICHIGAN, USA | X | X | | 1 | 1 | | | MN = MAYNOOTH, COUNTY KILDARE, IRELAND | - | | | X | | | | NU = NEUSTRELITZ, GDR | X | X | | | | | | PO = POITIERS, FRANCE | | | X | | | 1 | | PU = PRAGUE, CZECHOSLOVAKIA | X | | X | X | | | | SC = ST. CLOUD, MINNESOTA, USA | | 1 | | X | | | | SF = SOFIA, BULGARIA | | | | X | | | | SO = SOMERTON, ENGLAND | X | | ١., | | 1 | 1 | | TA = HOBART, TASMANIA | | | X | | | , | | TM = TABLE MOUNTAIN (BOULDER, COLO, USA) | X | ' | | | | X | | TN = TORINO, ITALY | | | | 1 | 1 | ^ | | UI = UPICE, CZECHOSLOVAKIA | 1 | | X | U | | x | | UM = SAO PAULO, BRAZIL | | | | X | | ^ | | AMERICAN ASSOCIATION OF VARIABL | ESTAF | OBSE | RVERS | CAAV | (03 | | | A4 - MALLEY COTTACE NEW YORK, USA | | | l x | l x | 1 | | | A1 = VALLEY COTTAGE, NEW YORK, USA A4 = COLUMBUS, OHIO, USA | 1 | | l â | ^ | | | | A19 = LATROBE, PENNSYLVANIA, USA | | | l x | | | | | A21 = LITTLETON, COLORADO, USA | | | ^ | l x | | | | A26 = LOUISVILLE, KENTUCKY, USA | | | l x | " | | | | A28 = MAYFIELD VILLAGE, OHIO, USA | | | " | l x | | 1 | | A29 = LEXINGTON, MASSACHUSETTS, USA | 1 | | l x | 1 | | | | A30 = SUNNYVALE, CALIFORNIA, USA | | | | X | | | | A31 = MISSOULA, MONTANA, USA | X | | | x | | | | A32 = POMPTON PLAINS, NEW JERSEY, USA | | | X | 1 | | | | A34 = PAEONIAN SPRINGS, VIRGINIA, USA | - | | X | | 1 | | | A35 = BROOKLYN PARK, MINNESOTA, USA | | | | X | | | | A36 = WORTHINGTON, OHIO, USA | | | | X | | | | A37 = YAKIMA, WASHINGTON, USA | | | | X | | | | A38 = ORMOND BEACH, FLORIDA, USA | Х | | 1 | X | | | | A39 = MANGROVE BAY, SOMERSET, BERMUDA | | 1 | X | | 1 | | | A40 = LA CRESCENTA, CALIFORNIA, USA | | | | X | | | | A41 = HAMILTON, NEW YORK, USA | | | | X | | | | | | | 1 | <u> </u> | | | MERIDIONAL POSITION OF SID STATIONS, BY TYPE | Sunrise(UT) 0100 0335
Sunset (UT) 0100 2228 | GED | In | <u> 최</u> | 200 | NI NI | Arich
Arich | NA OI VIII | <i>(</i> | NO | | NU N | 11111 | 0 20 40 | |--|-----|------|---|------|----------------|----------------|--------------------|----------|---|-----|--|-------|---------| | 1045
0018 | | | | | | | | | | | | | 09 | | 1032
0032 | | | | | | | 1 | | | | | | 001 08 | | 1408
0355 | | | | | <u>M</u> _ | 1 | | | MA | | MA | | 120 | | 1321
0443 | | | | 4 | KA
IN
KL | 7777 | TA | | | | — ! — | -4 | 140 160 | | 1300
1203 | | | | 4 | | 7 | | | *************************************** | | | | 180 | | 1300 | HA | -4-4 | *************************************** | | | 7 7 | HA | | HA | | | | 160 140 | | 2131
1232 | | | A30 A31
A37 | A40> | M | | | | | | A3I TM | 4 | 150 (1 | | 2317
1447 | | A357 | SC A38 A41
A36 A28 | | | 4
4
4 | A26 A19 A3 | | MC | | A38
MC <u>HU</u> | 7 7 | 00 80 | | 0035
1629 | | | -A41 UM | -48 | ≅] | | -A32
1
29 | | | , m | | | 60 4 | | 0000
2203 | | | | | | | | | | | | | 40 20 | | 0010 | | | | | | | - ^ე ც - | | | | SO
SO | | 0 | Presently active SID stations are shown above. The numbers across the top at 30° intervals indicate the earliest sunrise (top) and latest sunset (bottom) times in UT for the stations within ± 15° longitude. The times are based on the summer solstice (June 22). The small triangles throughout the chart indicate the midpoint of transmitting paths for SMF, SPA, SES, and SFD for only those stations that are underlined. The boxes around the 4 SCNA-SEA stations indicate similar equipment. --- LONGITUDE # SOLAR RADIO WAVES SPECTRAL OBSERVATIONS (C.4) Solar spectral events from Fort Davis (Texas), Culgoora (Australia), Sagamore Hill (Massachusetts), Manila Observatory (Philippines), Weissenau (GFR), Dürnten (Switzerland) and Dwingeloo (Netherlands) are presented in a combined table. The contents of the table are described below: Universal (Greenwich) date Observing periods during day (UT) -- aligned with first burst from observatory Station -- HARV = Fort Davis, CULG = Culgoora, MANI = Manila, SGMR = Sagamore Hill, WEIS = Weissenau, DURN = Dürnten and DWIN = Dwingeloo. Burst indicated in wavelength band by beginning and ending times in UT together with an indication of intensity on a 1 to 3 scale, 3 the most important. Symbol "E" is used for an event in progress before the time given and "D" for one that ends after the given time. Spectral type -- I = storm bursts II = slow drift bursts III = fast drift bursts IV = prolonged continuum V = brief continuum (normally following type III bursts) CONT = continuum in close association with type III burst storms, often with reverse drift bursts and often, but not always, associated with noise storms on metric wavelengths (used by SGMR) DCIM = decimetric burst defined by very fast drift spike or group of spikes with very high degree of polarization extending usually less than one octave in or close to decimeter range UNCLF = unclassified activity See J. P. Wild, S. F. Smerd and A. A. Weiss, Annual Review of Astronomy and Astrophysics, 1, 291, 1963 for description of types I through V. The schematic diagram above illustrates a typical dynamic spectrum which might be produced by a large flare (Importance 2B and larger). Various flares produce many variations to this "typ- ical spectrum". Microwave continuum will no longer be listed here except as special comments in the Remarks column. Symbols appended to spectral type: B = Single burst G = Small group (<10) of bursts GG = Large group (>10) of bursts S = Storm in the sense of intermittent but apparently connected activity N = Intermittent activity in this period U = U-shaped burst of Type III RS = Reverse slope burst DP = Drifting pairs DC = Drifting chains H = Herringbone W = Weak activity P = Pulsations MOV = Moving (Type IV) STA = Stationary (Type IV) Z = Zebra patterns (parallel drifting bands) F = Fiber bursts (intermediate drift bursts) The bursts are divided into dekameter, meter, and decimeter wavelength ranges. For the reporting stations listed below, these ranges cover approximately the frequency bands 10-30, 30-300, and 300-3000 MHz. There has been little uniformity among observatories in interpreting the intensity levels. The reason for this stems from the fact that equipment and antenna systems at different stations are different, having different gains, different dynamic ranges and saturate at different levels. The Instruction Manual for reporting solar radio emission prepared by World Data Center-C2, Toyokawa Observatory, 1975, recommends that spectral observations be given a uniform intensity classification by all observatories. These are: | Intensity
Classes | Flux Density in 10 ⁻²² Wm ⁻² Hz ⁻¹ | |----------------------|---| | 1 | <50 | | 2 | 50-500 | | 3 | >500 | Because of equipment and antenna differences this recommendation has not been followed at most observatories as is seen in the following observatory discussions: Weissenau Radio Astronomy Observatory, Astronomical Institute of Tübingen University -This research work is supported by the University of Tübingen, Baden-Wurttemberg, GFR. Instrumental descriptions are given by Urbarz [Solar Phys., 7, 147-152, 1969], Urbarz [Information Bulletin of Solar Radio Observations, No. 25, 8-10, 1969], Kraemer [Kleinheubacher Berichte, 13, FTZ Darmstadt, 165-168], Urbarz [Z. Astrophys., 67, 321-338, 1967]. A 35 mm film is used with a 0.2 mm/s feed, the sweep rate is 4 per sec. The number of resolution elements of recorded events is about 100 per octave on film. Since May 27, 1970, the attenuation on channels 3, 4, and 5 is considerably lower than before, due to feeder replacement. The minimum detectable flux has decreased on channels 1, 3, 4, 5, and 6 from about 100 to 50 flux units $(10^{-22} \text{Wm}^{-2} \text{Hz}^{-1})$ and on channel 2 from 600 to 200 flux units. The saturation flux is also greater on channel 2 than on the other channels. In 1971 the ratios of the numbers of type III bursts reported at Weissenau to those reported at Ft. Davis and Culgoora, respectively, were 1:2.5 and 1:3.5. It was concluded that the same ratios hold for the average minimum detectable flux on the film recordings. Harvard Radio Astronomy Station, Fort Davis, Texas -- Summaries are presented of solar radio bursts recorded in the frequency range 25-320 MHz.) (During periods of considerable solar activity the range is increased to 25-2000 MHz.) The equipment used at the Station has been described by Thompson [Astrophys. J., 133, 643, 1961] and by Maxwell [Solar Physics, 16, 224, 1971]. At 100 MHz the intensity ranges listed as 1, 2, and 3 correspond approximately to 5-50, 50-500, and >500 x 10⁻²² Wm⁻² Hz⁻¹. Culgoora Solar Observatory, Australia -- The observations at C.S.I.R.O. Solar Observatory, Culgoora, N.S.W., Australia are made by the C.S.I.R.O. Division of Radiophysics, Epping, N.S.W. Summaries are presented of solar radio bursts in the frequency range 8-8000 MHz. For a description of the equipment see K. V. Sheridan [Proc. Astron. Soc. Australia, 1, 58, 1967]. The intensity scale is qualitative. Sagamore Hill Radio Observatory -- Spectral measurements of dekameter wavelength Type II, III, IV and V radio emission are made at Sagamore Hill on a patrol basis. A special purpose radiometer sweeps the 25-75 MHz frequency range at a rate of 1 sweep per second. Two semi-bicone stationary antennas, spaced 300 meters apart on an E-W line to form the interferometer, are used with the spectral receiver. With this array, positive identification of any solar event is enhanced by the resultant fringe pattern on the spectrogram. (The bicone anténnas are a D. Gaunt design.) All raw data are recorded on a Varian Statos-V x, y, z Electrostatic Recorder
(Model 500) for real time readout. An improved solid state sweep frequency radiometer whose basic component is a H.P. Spectrum Analyzer provides up to 10 dB greater sensitivity than the original instrument and is now in routine operation at Sagamore Hill. On 12 July 1970 the frequency interval of the dekameter spectral observations was changed from 19-41 MHz to 24-48 MHz. This observed frequency interval was changed to 25-75 MHz on 12 August 1975 to provide a better representation of the burst phenomena observed at these wavelengths. Sagamore Hill now uses the recommended intensity classification listed above from the 1975 Instruction Manual. Manila Observatory -- The Manila Observatory observes in the spectral range 24-48 MHz and coordinates its observations with the observers at Sagamore Hill. Dürnten Spectrograph, Switzerland -- The Dürnten spectrograph was constructed under support of the Swiss National Science Foundation. It is located at Dürnten near Zürich, Switzerland. The film registration now covers a frequency range from 100-1000 MHz in one continuous sweep. The sweep rate is normally set at 4 Hz. The treshold intensity I_{th} amounts to about 110±30 flux units between 140 and 200 MHz and 70±30 flux units between 200 and 1000 MHz. Saturation occurs roughly at I = 3 I_{th} . Intensities are indicated according to the following intensity levels: Intensity 1 = not saturated Intensity 2 = nearly saturated Intensity 3 = clearly saturated For more detailed description of the instrument see: Tarnstrom, G. L., Astr. Mitt. Eidgen. Sternwarte Zürich, No. 317, 1973. Dwingeloo Radio Spectrograph, Netherlands --The radiospectrograph at Dwingeloo is operated by the Netherlands Foundation for Radio Astronomy, which is financed by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). It is a 60-channel receiver measuring intensity and circular polarization. The intensity is displayed in two ways: one sensitive for fluctuations, which has a dynamical range of ± 1.7 dB, and one with a logarithmic measuring range of about 15 dB over quiet sun level (q.s.l.). Saturation occurs about 20 dB over q.s.l. The threshold sensitivity is 0.2 dB. The time resolution is 0.01 sec. The bandwidth of the channels is 0.9 MHz. The outputs are routinely recorded on 35 mm cinefilm. In addition, for particularly interesting events, they are recorded on digital magnetic tape. The receiver is regularly calibrated against Cassiopeia-A. Intensities of bursts are reported as estimated from the film in ranges approximately as: - 1: 1 50 flux units $(10^{-22} \text{Wm}^{-2} \text{Hz}^{-1})$ - 2: 50 200 flux units. - 3: > 200 flux units. From September 1975 to July 1976 the spectrograph was tuned between 260-227 MHz and 177-160 MHz. Bursts observed between 160 and 177 MHz are reported as metric, those between 227 and 260 MHz as decimetric. Since July 1976 the resolution and tuning of the channels have been changed. A block of 20 channels of 0.9 MHz width, is tuned as before between 160 and 177 MHz. A block of 40 channels of 0.17 MHz width, spaced at 0.34 MHz with a total coverage of 13.3 MHz, is tunable in steps of 13.3 MHz between 200 and 320 MHz. Generally the option 240-213.3 MHz is used, but retuning is easy and is done according to the prevailing activity. A number of single frequency recordings are derived from the spectrograph channels. These recordings are reported as "Distinctive Events". For detailed descriptions of the spectrograph see: [De Groot, T. and J. Van Nieuwkoop, Solar Phys., 4, 332, 1968] and [Van Nieuwkoop, J., A Multi-channel Solar Radio-Spectrograph, Thesis, Utrecht, 1971]. Culgoora Radioheliograph at 43.25, 80 or 160 MHz -- The radioheliograph at the CSIRO Solar Observatiory, Culgoora (Australia) is a circular array of 96 paraboloid reflector antennas equally spaced around a circle of 3 km diameter. It records 2 two-dimensional pictures of the Sun each second: one in the left-handed, the other in the right-handed sense of circular polarization [J. P. Wild, editor, *Proc. IREE* (Aust.), 28, 277, 1967]. Originally the heliograph operated at 80 MHz; it has been converted to time-sharing operation at 43.25, 80 and 160 MHz covering fields of view of 2° x 1.6°, 2° x 1.6° and 1° x 0.8° with half-power beamwidths at zenith of 7.4', 3.7' and 1.9', respectively [K. V. Sheridan, N. R. Labrum and W. J. Payten, Proc. IEEE, 61, 1312, 1973]. For the 43.25 MHz frequency an array of 48 corner reflector antennas set on a circle of 2.77 km diameter has been built just inside the main radioheliograph array. At this frequency only one sense of linear polarization is received. The heliograph pencil beam can track the Sun for 6 hours and 40 minutes centered on local noon. The mechanical movement of the antennas is limited to 4 hours and 48 minutes (slightly less near the summer and winter solstices) so that the Sun drifts into and out of the broad antenna beams during the first and the last hour of observation. The normal observing hours are approximately 2300 to 0500 UT. The necessity to provide time for maintenance and development has limited observations to about 2/3 of all days since the end of 1967. The events selected for listing in the Table may be: small, isolated events during periods of little activity; daily samples during prolonged storms; or outstanding events during active periods. Source postions are given by their central distance in units of the Sun's optical radius, R_{Θ} and their position angle; the latter is the angle of 0° to 360° measured eastward from the north point of the solar disk (i.e., from celestial north). The apparent projected positions and the polarization listed here are taken from the visual analog display of the taped, digital heliograph data; the expected relative accuracy is about 0.1 Ro in distance and 10° in PA. The polarization is described qualitatively as weak [l or r] or strong [L or R] circular polarization. The intensity is given on a scale 1 to 3, with the corresponding flux densities, S, very approximately in the range: - 1 : $S < 2 \times 10^{-21} \text{Wm}^{-2} \text{Hz}^{-1}$ - 2 : $2 \times 10^{-21} < S < 2 \times 10^{-20} \text{Wm}^{-2} \text{Hz}^{-1}$ - 3: $S > 2 \times 10^{-20} \text{Wm}^{-2} \text{Hz}^{-1}$ Storms which are mostly of intensity 1 will not normally be listed. The positions may be affected by unknown amounts of ionospheric refraction; this effect is more pronounced the lower the frequency. If refraction errors are suspected this will be noted in the "remarks" column of the Table. #### COSMIC RAYS (F.1) Tabulated Observations -- The table presents the daily (UT) average counting rates per hour (scaled) for eight high counting rate neutron monitors: Thule, Alert, Deep River, Calgary, Sulphur Mountain, Kiel, Climax, and Tokyo. The characteristics of the eight stations are given below; the data have been corrected applying the barometric coefficients to the listed mean station pressures. | Station | <u>Thule</u> | Alert | Deep River | Calgary | Sulphur Mt. | <u>Kiel</u> | <u>Climax</u> | <u>Tokyo</u> | |--------------------------|--------------|---------|------------|---------|-------------|-------------|---------------|--------------| | Geog. Lat., N. | 76°35' | 82°31' | 46°06' | 51°05' | 51°12' | 54°18¹ | 39°221 | 35°45' | | Geog. Long., E. | 291°35' | 297°401 | 282°30' | 245°52 | 244°24 | 10°06' | 253°49 | 139°43' | | Cutoff, GV | 0.00 | 0.00 | 1.02 | 1.09 | 1.14 | 2.28 | 3.03 | 11.61 | | Altitude, m | 260 | 66 | 145 | 1128 | 2283 | 54 | 3400 | 20 | | Detector type | NM 64 | IGY | NM 64 | | Scaling factor | 100 | 100 | 300 | 100 | 100 | 100 | 100* | 128 | | Baro. coeff.,
% mm Hg | 1.00 | . 987 | . 987 | 1.0155 | 1.0085 | .961 | .943 | .844 | | Mean press. mm Hg | 730 | 752 | 747 | 671 | 582 | 755 | 504 | 760.5 | ^{*} From January 1, 1966. The Climax, Colorado, U.S.A., neutron monitor data are communicated by J. A. Simpson and G. Lentz of the Enrico Fermi Institute for Nuclear Studies, University of Chicago. The instrument is a standard Chicago type neutron monitor, utilizing 12 BF3 counter tubes. The station has a mean barometric pressure of 504.0 mm Hg. For a more detailed description of the neutron intensity monitor and its associated electronics see J. A. Simpson, Annals of the IGY, Vol. IV, Part VII, 351-373, 1957. The publication on these data in this monthly series began September 1960. Earlier data, beginning January 1953, are available in hourly form at the World Data Center A for Solar-Terrestrial Physics. The Deep River, Ontario, Canada, neutron monitor, follows the IQSY design [IQSY Instruction Manual No. 7]. Publication of the daily rates in this series began in January 1966 but a chart of hourly values from Deep River, described below has been published herein since January 1959. Until December 31, 1972 the station was operated and maintained by Atomic Energy of Canada Ltd., but on January 1, 1973 the National Research Council of Canada took over the responsibility for maintenance of the station. The data are now provided by Margaret D. Wilson of the National Research Council of Canada. The original data can be obtained from National Research Council of Canada, Ontario, Canada, K1A OR6, or from any of the World Data Centers. The 18-NM-64 neutron monitor located at Alert, North West Territories, Canada, is unique because its asymptotic cone of acceptance in space is less than 10° wide and is aligned within 7° of the spin axis of the earth. Hence, unlike the stations whose cones of acceptance rotate with the earth approximately in the plane of the ecliptic, Alert always "looks" into a fixed cone directed northwards. It experiences negligible periodic diurnal intensity variation. The monitor at Alert was provided by Atomic Energy of Canada, Ltd., and housed in a building provided by National Research Council of Canada. It is the responsibility of the National Research Council, and day-to-day operation is by courtesy of the
Canadian Meteorological Service. The two high counting rate neutron monitors at Sulphur Mountain and Calgary have values for magnetic cutoff rigidity comparable to the Deep River monitor. Their asymptotic cones of acceptance "look" approximately in the equatorial plane in essentially the same direction in space. The data, beginning January 1971, from Sulphur Mountain and Calgary super neutron monitors are communicated by D. Venkatesan and T. Mathews of the Department of Physics, University of Calgary, Calgary 44, Alberta, Canada. The stations have mean barometric pressures of 766 mb, and 883 mb., respectively. The barometric coefficients used to correct the data are 0.7665%/mb and 0.7718%/mb, respectively. Hourly mean data from both installations are routinely distributed to the scientific community and the World Data Center A for Solar-Terrestrial Physics, Boulder, Colorado. The data began March 1963 for Sulphur Mountain and January 1964 for Calgary, and are available at the World Data Center as stated. The stations were set up by B. G. Wilson (now at Simon Fraser University, Burnaby, British Columbia). The Thule nucleonic intensity detector, of standard IQSY design, was originally located at the Geopole Station Greenland: latitute 76°36'N, longitude 68°48'W, altitude 260m, geomagnetic threshold rigidity essentially zero. At the end of 1976, it was moved to a new site on Thule Air Base. The coordinates are essentially unchanged except that the altitude is now close to sea level. The data are communicated by Martin A. Pomerantz, Bartol Research Foundation, Swarthmore, Pa. 19081. Any changes in either the atmospheric attenuation length or in the sensitivity arising from long term drifts are applied retrospectively before the final hourly mean data are routinely distributed to the World Data Centers and to the scientific community. Two other monitors, at Kiel and Tokyo, have asymptotic cones of acceptance much different from those given above. Therefore, they can be used to distinguish between UT-dependent and LT-dependent time variations. Higher cutoff rigidities also aid further estimation of rigidity dependence. The publication of these data began with the December 1973 data. The data from both 18-NM-64 neutron monitors are routinely submitted to the World Data Centers A, B, C1 and C2 for Cosmic Rays as well as to listed researchers. Kiel data has been available since September 1964 and Tokyo (or Tokyo-Itabashi) data since January 1970. The data are communicated to Solar-Geophysical Data by M. Wada after receiving the Kiel data from O. Binder. <u>Charts</u> -- Variations of cosmic ray intensity are depicted in chart form for the above stations. The vertical scale lines mark the days of the month in Universal Time. The horizontal scale lines are in intervals of 5% deviation from an arbitrarily chosen 100% reference level for each station. The 100% reference levels are based upon (after barometric correction) 1.846x10⁶ counts per hours for Deep River; 0.6678x10⁶ for Alert; 0.8827x10⁶ for Sulphur Mountain; and 1.1767x10⁶ for Calgary. For Thule, Kiel, Climax, and Tokyo, the plots represent percentage deviation from the monthly mean intensity which is taken to be the 100% level. ### GEOMAGNETIC ACTIVITY (D.1) Kp, Kn, Ks, Km, Cp, Ap, aa, and Selected Quiet and Disturbed Days -- The data in the table are: ten quietest days (Q), and five most disturbed days of the month (D); three-hourly indices Kp, Kn, Ks, Km; character figure, Cp; daily "equivalent amplitude", Ap; and aa indices with quiet day figures K and C. The data are made available by the International Service of Geomagnetic Indices under the auspices of the International Association of Geomagnetism and Aeronomy through Division V: Observatories, Instruments, Indices and Data. The Institute für Geophysik, Göttingen University, computes the planetary and equivalent amplitude indices and determines the "international quiet and disturbed days", Q and D. The aa-indices and Kn, Ks, Km are provided by the Institut de Physique du Globe, Paris, France. Many of the activity indices are described by J. Bartels in Annals of the IGY, Vol IV, 227-236, London, Pergamon Press, 1957. \underline{Kp} is the mean standardized K-index from 13 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e. g., 5- is 4 and 2/3, 50 is 5 and 0/3, and 5+ is 5 and 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the other geophysical fields. A full description of the indices <u>Kn, Ks, Km</u> is given in a monograph, *Indices Kn, Ks et Km*, *1964-1967*, edited in 1968 by the Centre National de la Recherche Scientifique, 15 quai Anatole, France, 75007 PARIS, which contains these indices for 1964-1967. Yearly compilations of these data are published in the series of *IAGA Bulletins No.* 32. Indices for 1959-1963 will be published in a special number of the IAGA Bulletin. All of them are available at the appropriate World Data Centers. Briefly, the three-hourly indices Kn and Ks for the Northern and Southern hemispheres respectively are derived from the K indices of observatories approximately well distributed in latitude and in longitude. The indices are standardized according to the distances of the stations to the auroral zones. The stations are arranged in groups representing a longitude sector in one of the hemispheres (5 in the Northern hemisphere, 3 in the Southern). The observatories currently in use are: Magadan Newport Petropavlovsk Tucson Memambetsu Amberley Sverdlovsk Toolangi Gnangara Tunguska Niemegk Kerguelen Witteveen Hermanus Hartland Port Alfred Ottawa Argentine Island Fredericksburg South Georgia Victoria Trelew The mean standardized K of each sector is converted into an equivalent amplitude and the weighted (in longitude) averages an and as of these amplitudes are converted back into Kn and Ks, Km is derived in the same way from am, the average of an and as. Indices an, as, and am are expressed in gammas (one gamma equals one nano-tesla) and correspond to the magnetic activity level (as it can be inferred from K indices) at an invariant magnetic latitude of 50°. Indices Kn, Ks, and Km are expressed in the same units as Kp. Values published in these reports are only provisional because in some months all observatories used in each longitude sector have not sent K indices at the right time and because K indices of Antarctic stations have to be rescaled at the end of each wintering. The $\underline{\text{Cp-figure}}$ is a standardized version of the Ci-figure formerly published and is derived from the indices Kp by converting the daily sum of ap into the range 0.0 to 2.5. Ap is a daily index of magnetic activity on a linear scale rather than on the quasi-logarithmic scale of the K-indices. It is the average of the eight values of an intermediate 3-hourly index ap, defined as approximately one-half the average gamma range of the most disturbed of the three force components, in the three-hour interval at standard stations; in practice, ap is computed from the Kp for the 3-hour interval. The extreme range of the scale of Ap is 0 to 400. Values of Ap (like Kp and Cp) have been published for 1932 to 1961 in IAGA-Bulletin No. 18 by J. Bartels. Yearly compilations of these data, as well as the selected days, are published in the series of IAGA-Bulletin No. 32 (the continuation of IAGA Bulletin No. 12). These Bulletins are available from the IUGG Publications Office 39, Rue Gay Lussac, Paris (V). These indices are also available at the appropriate World Data Centers. The \underline{aa} indices are the continuation of the series beginning in the year 1868. A full description of these indices is given in the IAGA Bulletin 33, which contains them for the years 1868-1967. Descriptions are also given (especially comparisons with am, ap, or Ci indices) in two short papers [Ann. Geoph. 27, 62-70, 1971, and J. Geophys. Res., 77, 6870-6874, 1972]. aa values for 1968-1974 will soon be published in IAGA Bulletin 32 series. A graph of these values through 1976 is published in the February 1977 issue of Solar-Geophysical Data. Briefly, such three-hourly indices, computed from K indices of two antipodal observatories (invariant magnetic latitude 50°), provide a quantitative characterization of the magnetic activity, which is homogeneous through the whole series. Halfdaily and daily values give an estimation of the activity level very close to that obtained with am indices. Values are in gammas and correspond to the activity level at an invariant magnetic latitude of 50°. The aa indices are computed for: - N = daily values for the Northern hemisphere, - S = daily values for the Southern hemisphere, - M = half-daily values of aa indices for the Greenwich day. Letters <u>C</u> and <u>K</u> refer to a classification of the quiet days of the month (C = really quiet, K = quiet but with slightly disturbed three-hourly intervals). The letters on the left refer to the 24 hour Greenwich day, on the right to a period of 48 hours centered on the Greenwich noon. The three-hourly indices aa are available from the appropriate World Data Centers on magnetic tape using the format described in IAGA Bulletin 33. The <u>magnetically quiet</u> and <u>disturbed days</u> (D & Q) are selected in accordance with the general outline in *Terr. Mag.* (Predecessor to *J. Geophys. Res.) 48*, 219-227, 1943. The method in current use calls for ranking the days of a month by their geomagnetic activity as determined from the following three criteria with equal weight: (1) the sum of the eight Kp's; (2) the sum of the squares of the eight Kp's and (3) the greatest Kp. Beginning with the data for December 1976 numbers appear with the Qs and Ds to rank them in order from the most quiet or most disturbed, respectively. Day number 10
is given as "0". Also a selected "quiet day" considered "not really quiet" is marked by the letter A if Ap > 6 for that day, or marked by the letter K if Ap \leq 6 but one Kp \geq 30 or two Kp values are \geq 3-. A selected "disturbed day" considered "not really disturbed" is marked by an asterisk (*) if Ap < 20. This ranking method has been used since the responsibility for issuing these selected days was transferred from De Bilt to Göttingen in July 1976. The rankings may be obtained for the months of July - November 1976 by request to WDC-A for Solar-Terrestrial Physics. A table of Ap indices for the last 12 months is presented so that trends in magnetic activity can be easily followed. Chart of Kp by Solar Rotations -- Monthly a graph of Kp is given for several solar rotations, furnished through the courtesy of the Geophysikalisches Institut of the University of Göttingen. Annually a graph of the whole year by solar rotations is included. From time to time another 27-day rotation chart depicting the daily geomagnetic character figure, C9, is presented. C9 is obtained from Cp by reducing the Cp-values to integers between 0 and 9 according to the key given in the charts. Chart of Dst by Solar Rotations -- A plot of Dst values which has been given regularly following the table of Dst, described below, will also be presented on a Bartels Rotation basis corresponding to the Kp presentation. The purpose in making this presentation is to enable conformity with recommendations concerning scale lengths made for the years of International Magnetospheric Study (IMS). Since the vertical scale varies with each month the 100y interval is illustrated at the end of each month. Provisional Hourly Values of the Equatorial Dst Index -- The equatorial Dst index at given UT represents magnetic field variations at the dipole equator on the earth's surface, averaged over local time, that are caused mainly by the magnetospheric equatorial currents including the cross-tail current. The reference level of Dst is such that Dst is statistically zero on the days internationally designated as quiet days. Provisional hourly Dst data are based on hourly values of the horizontal component from four magnetic observatories: San Juan, Honolulu, Kakioka, and Hermanus. These provisional hourly values are replaced by a more definitive annual set of the Dst index at the end of each year. The provisional hourly values are calculated and forwarded for publication by M. Sugiura, NASA-Goddard Space Flight Center, Greenbelt, Maryland 20771 and D. J. Poros, Computer Sciences Corporation, Silver Spring, Maryland. Principal Magnetic Storms -- Finally a table presents the principal magnetic storms for the month as reported by several observatories through cooperation with the International Association of Geomagnetism and Aeronomy. These are the data formerly published in the Journal of Geophysical Research. They are now, however, grouped by the storm rather than by station. The geomagnetic latitude of the station is indicated. The beginning time is given to the hour and minute in UT. The type of sudden commencement, if any, together with its magnitude in each element D, H or Z is next in the table: sc = sudden commencement; sc* = small initial impluse followed by main impulse (in this case the amplitude is that of the main pulse only, neglecting the initial brief pulse); dots in these columns represent a storm with gradual commencement; dashes indicate no data entries. Signs of amplitudes of D and Z are taken algebraically; D reckoned positive if toward the east and Z reckoned positive if vertically downward. In the next columns the day and the three-hour periods on that day when the K index reached its maximum are given followed by the K-index value. In the next three columns the maximum ranges in D, H and Z during the storm are given. The ending time is given only to the nearest hour. This is the time of cessation of reasonably marked disturbance movements in the trace. More specifically, it is the time when the K-index measure has diminished to 2 or less for a reasonable period. For each date the data are listed in north-to-south geomagnetic latitude order. The observatories reporting are listed below the table each month. The abbreviations used for the observatory names are as follows: ### GEOMAGNETIC OBSERVATORIES | Code | <u>Station</u> | Geomag.
Latitude | |------|----------------|---------------------| | AA | Addis Ababa | 5.3N | | AL | Alibag | 9.5N | | AM | Amberley | 47.7S | | AN | Annamalainagar | 1.5N | | AP | Apia | 16.0S | | BD | Boulder | 48.9N | | CO | College | 64.6N | | EB | Ebro | 43.9N | | FR | Fredericksburg | 49.6N | | GN | Gnangara | 43.2S | | GU | Guam | 4.0N | | HR | Hermanus | 33.7S | | HO | Honolulu | 21.1N | | HU | Huancayo | 0.6S | | HD | Hyderabad | 7.6N | |----|--------------|-------| | IR | Irkutsk | 41.0N | | JP | Jaipur | 17.3N | | KG | Kerguelen | 56.5S | | MB | M'Bour | 21.3N | | NE | Newport | 55.1N | | PM | Port Moresby | 18.6S | | SH | Shillong | 14.7N | | SJ | San Juan | 29.9N | | SI | Sitka | 60.0N | | TO | Toolangi | 46.7S | | TV | Trivandrum | 1.1S | | TU | Tucson | 40.4N | | UJ | Ujjain | 13.5N | | WI | Witteveen | 54.2N | Sudden Commencements and Solar Flare Effects --These reports are provided by A. Romana for the International Service of Geomagnetic Indices, International Association of Geomagnetism and Aeronomy, Division V: Observatories, Instruments, Indices and Data. The sudden commencements (s.s.c.) and solar flare effects (s.f.e.) are from magnetograms of the world-wide network of magnetic observatories. The stations, together with their abbreviations, are given in IAGA Bulletin No. 20 of the International Union of Geodesy and Geophysics as well as the series IAGA Bulletin No. 32 which contain the yearly compilations of these data. Before January 1966 these reports were published periodically in Journal of Geophysical Research. From then until December 1970 they were published quarterly in Solar-Geophysical Data. Beginning with December 1970 these data are published monthly and, thus, are based on fewer reports and differ slightly in detail from the similar data published previously. The decision to publish this less complete report was made in order to make the data available more rapidly. The table gives date and UT time of event with stations by two letter abbreviations grouped by quality A, B or C. ### RADIO PROPAGATION QUALITY INDICES (B.52, B.53) Transmission Frequency Ranges -- The North Atlantic path (Lüchow (53.0°N, 11.2°E) - Norfolk) is represented by six frequencies, 3.357, 4.975, 8.080, 10.865, 16.410, and 20.015 Mhz, recorded continuously. They are shown in a series of diagrams one for each day. The heavy solid lines represent field strength \geq -12 dB above 1 $\mu\text{V/m}$ (transmitter power reduced to 1 kW). Observed field strengths between -12 dB and -40 dB above 1 $\mu\text{V/m}$ are shown by the fine line. These diagrams are based on data reported by the German Post Office through the Fernmeldetechnisches Zentralamt, Darmstadt, Federal Republic of Germany. Radio Propagation Quality Indices are calculated from the records on five circuits received at Lüchow Federal Republic of Germany, with highly directive rhombic antennas (except the short-haul paths Bracknell-Lüchow and Moscow-Lüchow which are received with non-directional vertical antennas). The quality figures are calculated for a twenty-four hour period (0600 - 0600 UT) using transmissions from Tokyo, Japan; Norfolk, USA; Moscow, USSR; Canberra, Australia; and Bracknell, England. The following frequencies are currently in use: | Tokyo | Norfolk | Moscow | |--|---|---------------------------------------| | 22.770 MHz
18.220
13.597
9.970
3.622 | 20.015 MHz
16.410
10.865
8.080
4.975
3.357 | 15.9 MHz
11.0
7.7
5.4
3.9 | | Canberra | Bracknell | | | 19.690 MHz
13.920
11.030
5.100 | 22.384 MHz
16.938
12.844
9.203
6.435
3.289 | | The index 0.0 corresponds to a median field strength of -30 dB above 1 $\mu\text{V/m}$ (converted to 1 kW and referred to an omnidirectional antenna). The figures are in steps of 5 dB (index 10.0 = +20 dB above 1 $\mu\text{V/m}$). The field strength of the frequency with the highest value for each hour is used in place of a mean of all recorded frequencies. This is done on the assumption that the optimum frequency would be used for communication. ## $\underline{\mathsf{DATA}} \ \ \underline{\mathsf{FOR}} \ \ \underline{\mathsf{SIX}} \ \ \underline{\mathsf{MONTHS}} \ \ \underline{\mathsf{BEFORE}} \ \ \underline{\mathsf{MONTH}} \ \ \underline{\mathsf{OF}} \ \ \underline{\mathsf{PUBLICATION}}$ ### TABLE OF CONTENTS | | | Page | |--------------------------|--|----------------| | Active Region Sum | mary | 40 | | Solar Flares | | | | C.1ba
C.1e
C.1d | Standardized Data and Individual Reports
Flare Index
No-Flare-Patrol Graph | 40
42
43 | | <u>Solar Radio Waves</u> | | | | C.3 | Outstanding Occurrences at Fixed Frequencies | 43 | | Energetic Solar P | articles and Plasma (A.12e and A.13e) | 49 | | Solar X-ray Radia | tion (A.11i and C.5f) | 52 | | Magnetograms of G | eomagnetic Storms (D.1e) | 53 | ### ACTIVE REGION SUMMARY (A.6b) These documents are a preliminary version of the maps of filaments and active regions published biennially by the Paris Observatory. They are prepared from the daily spectroheliograms of the Meudon Observatory (H α , K $_{1V}$ and K $_{3}$) and from filtergrams of the Haute Provence Observatory (H α). When there are gaps in these observations, they are filled by the complementary H α and K $_{2-3}$ images from the Kodaikanal (India), Athens (Greece) and Madrid (Spain) Observatories. <u>I.
Map.</u> -- On the map solar meridian and parallels appear as a rectangular grid so that a phenomenon appearing at latitude ϕ has its longitudinal size enlarged proportional to sec ϕ . Choice of the 0° meridian and numbering follows Carrington. A rotation begins at the moment when the 0° meridian coincides with the central meridian. The longitude of the central meridian of the visible hemisphere at Oh is shown for every day of the rotation by short heavy bars. Some dates are shown for convenience. The longer bars show the longitude of the central meridian at the time of the observations used. The map presents a synopsis of chromospheric filaments and of active regions with or without sunspots. The schematic line which locates the filaments is obtained by superposition of daily observations. The solid areas inside the double lines correspond to the part of the filament which was observed on more than eight days whether successive days or not. The hatched parts were observed between 4 and 8 days and the parts left blank correspond to a visibility of less than four days. Small size filaments visible only by a single observation are not shown. Sunspots are shown by small circles with diameters proportional to their size. The adopted diameter corresponds approximately to a maximum diameter observed while the sunspot crosses the visible hemisphere of the sun, measured on the Meudon plates $K_{1\nu}$ and reduced to the scale of the maps. Facular plages are shown at the moment of the maximum development of the sunspots that they contain, or on the day when the brightness was maximum. This brightness is indicated by four kinds of hatching, the darkest corresponds to the most intense plages, the clearest to highly scattered faculae. - II. Table of Active Regions -- The columns of the table are explained as follows: - 1) Identification numbers by rotation. This identification has been used in *IAU Quarterly Bulletin* since 1959 with the lists of published flares to indicate the responsible active regions. - 2) Mean co-ordinates for each active region. - 3) Age, given in days in relation to central meridian passage. Example: A center is >6 days old when it was born before appearing at East limb. The number of days is preceded by + if it was born before passage at central meridian, by if it was born between the central meridian and the West limb. - 4) Importance on a scale of 1 to 10. The value given takes into account the persistence, the number and the size of sunspots and the size of the facular plage. Ephemeral plages or the very scattered ones are outlines on the maps but are not mentioned in the table. - 5) Indication (x) that no visible sunspots on $K_{1\nu}$ Spectroheliograms have been observed in this center during the passage. - 6) Identification of the center in the preceding rotation if the active region is a return one. - 7) State of activity in the center during the passage at the West limb. ## $\frac{\text{H}\alpha \quad \text{S O L A R F L A R E S}}{\text{(C.1ba, C.1e, C.1d)}}$ From January 1968 the flare reports published six months after observation were divided into two tables labeled "confirmed" and "unconfirmed". This separation was felt desirable in 1968 to present the most homogeneous and reliable flare data for use by the scientific community. However, it has become apparent that for small events, which currently constitute the majority of reports, such discrimination is questionable. Therefore, beginning with the January 1975 data, all reported ${\rm H}\alpha$ flares are published in one chronological list. The listing is prepared in cooperation with DASOP (Department d'Astronomie Solaire et Plane- taire), Observatoire de Paris, 92190 Meudon, France. For each event there is a "group report" line more closely resembling the presentation of the flares as they will be published in the IAU Quarterly Bulletin on Solar Activity (QBSA). In Solar-Geo-physical Data the flares as reported by the individual observatories follow the "group report" line. In QBSA only the summary of the observatory contributions is included. The "group report" line is intended as a summary of all individual reports. The principal criteria for grouping reports together are flare position and times. The following new rules have been adopted to determine times, areas and importances of grouped events: - -- The beginning time is the time of first observation of an event by an observatory. If there is uncertainty in the beginning time, it is indicated by a "+" sign followed by the difference in minutes between the time of the first observation and the time of the latest observed beginning. More than 9 minutes difference appears as >9. The same applies for times of maximum. When only one observatory has reported the flare the uncertainty in time cannot be determined. When two or more maxima are identified, their times are reported with the same group line. The ending time is an average time of the reported ends. - -- With near agreement among observatories an average of the areas is used in determining importance. - With widely varying area measurements reported by several observatories the average area is not computed. The importance is estimated from the reported importances. An importance 1 or more is assigned only when reported by several observers or when only a single observatory is operating at the time of observing such a flare. - When only one observatory has reported a flare the measured and corrected areas must be considered somewhat questionable. There is no way to confirm their accuracy and it has been noted that measurements vary considerably from one observatory to another. - A question mark (?) as a flare importance may result from a questionable report of importance 1 or more when one of the following conditions exists. - (1) The reported importances show too much scatter. - Disagreement exists on the classification of the event. An event reported as a flare by one observer may be identified by another observer as a different type of event (e.g. Bright Surge at Limb) - (3) Only one observatory reports the event even though several are observing at that time. No confirmation of the event was obtained from queries sent to those with cinematographic patrols. These observatories are listed followed by "2" when a second look at their film was made or by "1" when there was no second evaluation. The individual flare reports serve to show the detail of the times, areas, and importances as summarized in the grouped events. The columns in the table are as follows: - Group Number and Reporting Observatories using IAU abbreviation (see p.42). - The Universal date. - Beginning time in UT. - Time of maximum phase in UT. (more than one maxima may be listed) - Ending time in UT. - The heliographic coordinates in degrees for the "center of gravity" of the emission region, corresponding to the time of maximum intensity. - The distance from the center of disk in units of disk radius. - McMath serial number of the associated plage region. - The time of central meridian passage of the position of the flare in tenths of the Universal date. - Duration in minutes. - The flare importance on the IAU scale of Sf* to 4b. (In summary line for the group a "?" will be used when there has been too much discrepancy among individual reports to determine accurately the probable importance of the event). - Observing conditions where 1 means poor, 2 fair, and 3 good. (Observatories at Ramey, Palehua, Athenes and Tehran use a scale of 1-5). - Nature and completeness of available observations where - C = a complete, or quasi-complete sequence of photographs was obtained, - P = one or a few photographs of the event were obtained resulting in incomplete time coverage, - V = all (or most of) the development of the flare was visually observed or, - S = flare was seen visually for a small part of its probable duration. - Time of measurement for tabulated areas. - Apparent (i.e., projected area at time of maximum brightness in millionths of solar disk -- this is not necessarily the maximum area. (Prior to January 1975 this measured area in millionths was divided by 97 and was indicated as heliographic square degrees, hence the tabular heading was incorrect and should have been millionths/97). - Corrected area in square degrees. - -- Remarks in the IAU system of notes where - A = Eruptive prominence whose base is less than - 90° from central meridian. B = Probably the end of a more important flare. C = Invisible 10 minutes before. - D = Brilliant Point. - E = Two or more brilliant points. ^{*} For easier visual selection of the more important flares a minus sign, "-", is used to indicate subflares instead of "S". F = Several eruptive centers. G = No visible spots in the neighborhood. G = AO Visible Spots in the neighborhood. H = Flare accompanied by a high speed dark filament. I = Active region very extended. J = Distinct variations of plage intensity before or after the flare. K = Several intensity maxima. L = Existing filaments show signs of sudden activity. M = White-light flare. R = Continuous spectrum shows effects of polarization. 0 = Observations have been made in the calcium II lines H or K. Thes H or K. P = Flare shows helium D₃ in emission. Q = Flare shows the Balmer continuum in emission. R = Marked asymmetry in Hα line suggests ejection of high velocity material. S = Brightness follows disappearance of filament (same position). T = Region active all day. Two bright branches, parallel (11) or converging (Y). Occurrence of an explosive phase: important and abrupt expansion in about a minute with or without important intensity increase. W = Great increase in area after time of maximum intensity. X = Unusually wide Hα line. Y = System of loop-type prominences. Z = Major sunspot umbra covered by flare. Intervals when no observatory reported times of patrol observation are listed chronologically in the table. The dual importance scheme used,
which was adopted January 1, 1966 by IAU Commission 10, is summarized in the following table: | "Corrected" area
in square degrees | Relativ
Faint(f) | e Intensity
Normal(n) | Evaluation
Brilliant(b) | |---------------------------------------|---------------------|--------------------------|----------------------------| | ≤2.0
2.1 - 5.1 | Sf
1f | Sn
1n | Sb
1b | | 5.2 - 12.4 | 2f | 2n | 2b | | 12.5 - 24.7 | 3f | 3n | 3b | | >24.7 | 4f | 4n | 4Ь | The area to be used in assigning the first figure of the dual importance is the area of the flaring region at the time of maximum brightness. The observatory measures apparent area in millionths of the solar disk. For flares less than 65° the center of the solar disk, the formula relating apparent and corrected area is "corrected" area = $\frac{\text{apparent area}}{97} \times \sec \Theta$ where apparent area is in millionths of the disk and corrected area is in heliographic square degrees. For flares more than 65° from the center, the "sec ⊖ law" becomes unsatisfactory. The first importance figure can be estimated from the table below where areas are given in millionths of the disk. | Angle | Limit S-1 | Limit 1-2 | Limit 2-3 | |-------|-----------|-----------|-----------| | 0° | 200 | 500 | 1200 | | | sec ⊖ law | sec ⊖ law | sec Θ law | | 65° | 90 | 280 | 600 | | 70° | 75 | 240 | 500 | | 80° | 50 | 180 | 350 | | 90° | 45 | 170 | 300 | The intensity scale shown as the second importance figure is only a qualitative one where each observatory uses its experience to decide if a flare is rather faint (f), normal (n), or rather bright (b). SOLAR FLARE OBSERVATORIES | COMPUTER | 08S. | I.A.U. | | |----------|------|---------|---| | CODE | | | NAME, PLACE AND COUNTRY | | NO. | TYPE | ABBREV. | | | 824 | С | ABST | ABASTUMANI, GEORGIAN SSR | | 512 | ٧P | ARCE | ARCETRI, FLORENCE, ITALY | | 508 | VC | ATHN | NATE OBSATHEMS.GREECE(USAF) | | 560 | ΛC | BUCA | NATE GOS., BUCHAREST, ROMANIA | | 570 | VC | CATA | CATANIA, ITALY | | 402 | C | CULG | CULGCGRA, AUSTRALIA | | 478 | C | HALE | HALEAKALA-MAUI, HAWAII, USA | | 537 | VP | HERS | R.GREENWICH OBS., HERSTMONCEUX, ENGLAND | | 563 | C | HTPK | HAUTE-PROVENCE, FRANCE | | 718 | C | HUAN | GEOPHYSICAL INST., HUANCAYO, PERU | | 517 | ٧ | HURB | HURBANDVO+CZECHOŚLOVAKIA | | 358 | V | ISTA | UNIV.GBS.,ISTANBOUL,TURKEY | | 827 | ٧P | KHAR | KHARKOV,UKRANIAN SSR | | 828 | Ç | KIEV | | | 309 | ٧ | KODA | KCDAIKANAL,INDIA | | 522 | ٧P | LOÇA | LOCARNO,SWITZERLAND | | 876 | С | LVOV | LVOV.UKRANIAN SSR | | 468 | VC | MANI | MANILA, PHILIPPIKES | | 642 | Ç | HCHA | MCMATH-HULBERT, PONTIAC, MICHIGAN, USA | | 505 | C | MEUD | MEUDON, FRANCE | | 314 | C | MITK | MITAKA, TOKYO, JAPAN | | 555 | Ç | TKOM | | | 476 | VC | PALE | PALEHUA, HAHAII, USA | | 648 | VC | RAMY | RAKEY SOLAR OBSERVATORY, RAMEY AFS, PUERTO RICO | | 533 | VC. | TACH | | | 341 | VΡ | TEHR | | | 5.4 | C | UPIC | UPICE.GZECHESLAVAKIA | | 834 | VC | VORC | VCROSHILOV+USSR | | 546 | ٧p | MENO | HE NOELSTEIN . GFR | | 523 | PC | ZURI | EIDGENOSSISCHE STERNHARTE, ZURICH, SWITZERLAND | The above table gives the solar flare observatories presently cooperating in international data interchange through the World Data Centers as originally established during the International Geophysical Year. For each observatory are given the code numbers used on the punched cards at NOAA; the four letter IAU abbreviations; name, place and country; and type of patrol where C, V and P have the meanings explained above. > Note: All the flare data are recorded on punched cards. Copies of tabulations from them or magnetic tapes of the data are available at cost through the World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado U.S.A. 80302. Flare Index -- The daily flare index is defined as $$I_{\mathbf{f}} = \frac{.76}{I^*} \sum_{\mathbf{d}} A_{\mathbf{d}}^2$$ where individual flare areas ${\rm A}_d$ are measured in millionths of solar disk. T* is the effective observing time in minutes. ${\rm I}_f$ corresponds closely to the flare index developed at the High Altitude Observatory to measure the integrated intensity of flare radiation. The flare areas are not corrected for geometric foreshortening, so the definition of I_f places great weight on large flares located near the center of the sun's disk. Characteristics of the index I_f are discussed in more detail in the paper by C. Sawyer "Daily Index of Solar Flare Activity" [*J. Geophys. Res.*, 72, 385, 1967]. The table lists the date, index and actual hours of observation included in the calculation and follows the table of Solar Flares. Beginning with the January 1975 data, this index is calculated using all flares. Previously it had been calculated using only those confirmed flares of greater than 1 square degree in area, as then included in the IAU Quarterly Bulletin on Solar Activity. A regional flare index is described in the text for the data for seven months before month of publication on page 57. <u>Patrols</u> -- Following the tables a graph of the intervals of no flare patrol observation for all the observatories included in the total patrol is given. The graph is divided into visual and cinematographic patrols. (See page 10 for more detail.) ### SOLAR RADIO WAVES (C.3) Outstanding Occurrences -- Solar radio emission bursts at fixed frequencies are reported by the worldwide network of observing stations. By the sixth month following observation, it is expected that all reports have been received and the data are published in table form in Solar-Geophysical Data. From time to time selected solar bursts are illustrated. The code name used in this publication to identify the station, its alternate station names, if appropriate, the geographic coordinates, and frequencies in MHz on which the station reports are presented in the table on page 49. In the data presentation, bursts reported from different observing stations are joined by brackets when they occur near the same time. Each set of brackets may not always include all of the solar event. The frequency in MHz precedes the abbreviated station name. Following the name is given the type of event. The Type consists of two columns. The first column is the morphological SGD numerical code which has been used in Solar-Geophysical Data, and the second column is the letter symbol for easier recognition of type. The use of the letter symbol began with the January 1975 data. In the case of OTTA and PENT observations, letters are sometimes appended to the SGD numerical code. See page 47 for explanations. For each event start and maximum phase in UT, duration in minutes, and peak and mean flux densities in $10^{-22} \text{Wm}^{-2} \text{Hz}^{-1}$ are listed. Information on polarization, positions and other remarks are included in the final column. Both the tables and illustrations prepared by H. Tanaka, as a part of the *Instruction Manual for Monthly Report*, and a table of definitions with a page of illustrations prepared by A. Covington are included here. It is felt that though the meanings are essentially the same, the two viewpoints may aid experimenters in interpreting how the symbols are assigned to bursts by the various observatories. Two possibly confusing items seem to remain. Covington feels those GRF bursts with obvious flat tops are a new type of burst best listed under 27(RF) rather than with the GRF symbol since it is also defined as more or less regular rise and fall of continuum with long duration. The illustration of the 10 cm wavelength "Group" with the letter code "SER" may also prove confusing as Covington feels it should rightfully be listed with the SGD number code 41 rather than 42(SER). The modifications appended to the SGD numerical code for Ottawa and Penticton observations are given here as explained by A. E. Covington, National Research Council, Canada. The letter A added to a Simple event recognizes the longest duration event superimposed upon a long duration event. The use of A enables a marginal line to be placed against the entry for the start and extended to include the superimposed events. The presence of unlisted fluctuations or variations which slightly modify the basic form are denoted by the letter F added to the SGD numerical code for the event so modified. Records observed simultaneously at widely separated stations have led to the recognition of unique variations of small intensity such as the Rise Only event (which can sometimes be regarded as a discontinuity in the daily level), the absorption only event, the GRF of great duration, isolated events of short duration or spikes, and the single cycle of a sinusoid. Clarification of some of the profiles follows. To identify Rise Only encode as 240, and to identify the Post Rise enhanced level following the rise encode as either 24P or 25P. Typical profiles based upon the new IAU letter symbols and the modifications suggested are shown in idealized form in the Figure on page 48, identified by the *SGD* numerical code and underlined letters. The various systems are related as indicated by the key to the figures. At Sagamore Hill an automated data correcttion and handling system was integrated into the patrol operation in June 1974. After being subjected to an extended period of evaluation, it is currently functioning as a regular part of the patrol operation. This automated data system provides real time burst integrated flux densities, a quantity which has been found to be of great value in predicting the occurrence and magnitude of PCA phenomena. In the Descriptive Texts published before 1975 details were given concerning equipment used at Western Hemisphere Observatories. Although these are no longer included in the text, information concerning equipment and data reduction may be obtained from the World Data Center A for Solar-Terrestrial Physics or from the observatories. # Event Types According to the $Instruction\
Manual\ for\ Monthly\ Report$ (prepared by H. Tanaka for ICSU-STP-IAU) The key for identifying types of event by numerical SGD code and letter symbol. | SGD
Code | New
Letter
Symbol | Morphological
Classification | URANO
Code | Remarks | |-------------|-------------------------|---------------------------------|---------------|---| | 1 | S | Simple 1 | 1 | | | 2 | S/F | Simple 1F | 1 | S + F | | 3 | S | Simple 2 | 1 | | | 4 | S/F | Simple 2F | 1 | S + F | | 5 | S | Simple | 1 | | | 6 | S | Minor | 0 | Defined as simple rise and fall of minor burst with duration 1 or 2 min. | | 7 | С | Minor+ | 0 | Defined as minor burst with second part. | | 8 | S | Spike | 1 | Self-evident by duration. | | 20 | GRF | Simple 3 | 1 | | | 21 | GRF | Simple 3A | 1 | A means underlying. Clearly superposed burst it to be listed separately, but separation is some times difficult and arbitrary. In such cases list as C. | | 22 | GRF | Simple 3F | | Fluctuations of short periods be listed separately. | | 23 | GRF | Simple 3AF | 1 | | | 24 | R | Rise | 8 | | | 25 | R | Rise A | 8 | | | 26 | FAL | Fall | | | | 27 | RF | | | | | 28 | PRE | Precursor | | | | 29 | PBI | Post Burst Increase | 2 | | | 30 | PBI | Post Burst Increase A | 2 | | | 31 | ABS | Post Burst Decrease | | | | 32 | ABS | Absorption | | | | 40 | F | Fluctuations | 4 | | | 41 | F | Group of Bursts | 4 | A group of minor bursts close to each other. | | 42 | SER | Series of Bursts | 4 | A series of bursts occur intermittently from base level with considerable time intervals between bursts. | | 43 | NS | Onset of Noise Storm | 7 | To be listed with starting time, and duration with symbol D. | | 44 | NS | Noise Storm in Progress | 7 | Starting time with symbol E, and duration with symbol D. | | 45 | С | Complex | 3 | | | 46 | C | Complex F | 3 | | | 47 | GB | Great Burst | 3 | | | 48 | С | Major | 5 | Defined as complex variation of intensity with large amplitude | | 49 | GB | Major+ | 6 | Major increase of flux with duration greater than 10 min. | Explanation of letter symbols. Basically, microwave bursts can be classified into the following types: - S = Simple : Mostly nonthermal 'microwave impulsive burst' or 'decimetric burst' (see p. 31). - C = Complex : Combination of a few or many simple bursts. - F = Fluctuation : Minor C sometimes superposed in the main burst. - GB = Great Burst : Major C of special importance. - PRE = Precursor : Preburst activity connected to the main burst. - PBI = Post Burst Increase : Tail of the main burst which may be regarded as enhancement of S-component. - GRF = Gradual Rise and Fall: Temporal enhancement of S-component or similar activation in the flaring region. It may sometimes start with relatively sharp rise like a simple burst. If this sharp rise can be clearly recognized as simple burst, GRF becomes PBI. Note that both have similar characteristics. - ABS = Absorption: Absorption due to surgelike material mainly appears after the burst and is sometimes called postburst decrease. This phenomenon may occur frequently, but it can only be recognized when the flux comes down to preburst level. Temporal fall of flux which is sometimes called negative burst may be listed as ABS, but it may simply be the temporal fall of emission. The following three symbols are simply morphological, which may be necessary due to limited observation time, or for the simplicity of tabulation: R = Rise : This may also occur as the onset of long-enduring enhancement of S-component associated with other solar events. FAL = Fall SER = Series of Bursts On dm-m-Dm wavelength range, most of the events may be C with F, GB, and PRE as more specific descriptions. The following two symbols were prepared for this range: NS = Noise Storm - RF = Rise and Fall : Defined as more or less irregular rise and fall of continuum with duration of the order of minutes to an hour. - S, FAL and SER may also be used. These types are illustrated in tables beginning on the following page in which samples from different sources are compared. Polarization information is denoted by the letters R (right-handed) or L (left-handed). The degree of polarization in percent is shown in two digits. When precise values are not available, the degree of polarization is expressed in symbols, W = weak, M = moderate or S = strong. For example, 83R means 83% right-hand polarization, and SL means strong left-hand polarization. Positional information is indicated by the letters F (fan-beam) or P(pencil-beam). Position angle is shown in the first three digits, and radial distance is shown by the following three digits. For example, 135120F means -- position angle = 135°, radial distance = 120% of solar radius observed by fan beam. A Selected Bibliography with Comments Related to Evolution of Burst Profiles at 2700-2800 MHz has been compiled by A. E. Covington. A copy can be made available, on request, from the World Data Center A for Solar-Terrestrial Physics. Covington Additions to Tanaka's Proposed IAU Key | SGD
Code | New
Letter
Symbol | Morphological
Classification | Remarks | |--|----------------------------------|--|--| | 1A
3A
21A | S
S
GRF | Simple 1A
Simple 2A
Simple 3A GRF | Single simple burst any duration and intensity. Event separable from other superimposed bursts. | | 2A
4A | S/F
S/F | Simple 1AF Simple 2AF | Single simple burst any duration and intensity. Event separable from other superimposed bursts. Unlisted minor departures and fluctuations. | | 240 | R | Rise only | Discontinuity in daily level without observed restora- | | 240F
24P
24PF
26A
260
26F | R
R
R
FAL
FAL
FAL | Rise only F
Post Rise
Post Rise F
Fall A
Fall Only
Fall F | tion, any cause. With unlisted fluctuations. Post Rise enhanced level. Post Rise enhanced level with unlisted fluctuations. Fall with listed superimposed event. Fall only as discontinuity in daily level. Fall with unlisted minor fluctuations. | | 27F | RF | Rise and Fall F | Rise and Fall with unlisted minor variations and fluctuations. | | 27AF | RF | Rise and Fall AF | Rise and Fall with listed superimposed events and unlisted minor variations and fluctuations. | | 31A
32A
46F | ABS
ABS
C | P.B. Decrease A
Absorption A
Complex F | Post Burst Decrease with listed superimposed event.
Absorption with listed superimposed emissive event.
Complex event with fluctuations. | ### 2800-2700 MHz SOLAR BURST PROFILES ## Solar Radio Observatories (Fixed Frequency Observations) | CODE
NAME | STATION | ALTERNATE
NAME | GEOGI
LAT | RAPHIC
LONG | FREQUENCIES REPORTED (MHz) | |--------------|-------------------|-------------------|--------------|----------------|---------------------------------| | ABST | Abastumani | | 42N | 43E | 221 | | ARCE | Arcetri | | 44N | 11E | 9240, 2830, 1420 | | ATHN | Athens | | 38N | 24E | 8800, 4995, 2695, 1415 | | BERN | Berne | | 47N | 07E | 10500 | | BORD | Bordeaux | Floriac | 44N | 01W | 930 | | BOUL | Boulder | | 40N | 105W | 4995, 2695, 1420 | | CRIM | Simferopol | Crimea | 44N | 34E | 3100 | | DWIN | Dwingeloo | 74 | 53N | 06E | 250, 160 | | GORK | Gorky | Zimenki | 56N | 44E | 9100, 2950, 950, 650, 200, 100 | | HARS | Harestua | Blindern | 60N | 10E | 228 | | HIRA | Hiraiso | | 36N | 140E | 500, 200, 100 | | HUAN | Huancayo | | 12S | 75W | 9400 | | IRKU | Irkutsk | Siberian IZMIR | 52N | 104E | 9650 | | IZMI | Moscow IZMIRAN | Krasnaja Pakhra | 55N | 37E | 207 | | KIEL | Kie] | | 54N | 10E | 1420, 1030, 800, 602, 405, 240 | | KIEV | Kiev | | 50N | 30E | 550, 188 | | KISV | Kislovodsk | | 43N | 42E | 15000, 6100 | | MANI | Manila | | 14N | 121E | 8800, 4995, 2695, 1415, 606, | | MCMA | McMath-Hulbert | | 42N | 83W | 18 | | ONDR | Ondrejov | | 49N | 14E | 808, 536, 260 | | OTTA | Ottawa ARO | Algonquin | 45N | 78W | 2800 | | PALE | Palehua | 304 | 21N | 158W | 8800, 1415 | | PENN | Penn. State Univ. | | 41N | 78W | 10700, 2700, 960 | | PENT | Penticton | | 49N | 119W | 2695 | | POTS | Potsdam | Tremsdorf | 52N | 13E | 510, 234, 113, 1470, 3000, 9500 | | SAOP | Sao Paulo | r r cilisdor r | 225 | 46W | 7000 | | SGMR | Sagamore Hill | | 42N | 71W | 35000, 15400, 8800, 4995, | | Julia | Sagamore 1777 | | -7-11 | 7.41 | 2695, 1415, 606, 410, 245 | | SLOU | Slough | | 51N | 00E | 71000, 37000, 19000, 9400, 2800 | | SYDN | Sydney | | 345 | 151E | 1420, 720 | | TORN | Torun | | 53N | 19E | 127 | | TRST | Trieste | | 46N | 14E | 408, 237 | | TYKW | Toyokawa | | 34N | 137E | 9400, 3750, 2000, 1000 | | UCCL | Uccle | Humain | 50N | 04E | 600 | | UPIC | Upice | | 50N | 16E | 29, 33 | | VORO | Voroshilov | Ussurisk | 43N | 132E | 2930, 207 | # ENERGETIC SOLAR PARTICLES AND PLASMA (A.12e, A.13e) A series of data plots are presented using data obtained on the NASA spacecraft IMP 7 and IMP 8. The purpose of the plots is to convey on as near continuous a basis as possible the state of the interplanetary particle environment. The plots consist of hourly averaged solar wind plasma parameters and representative fluxes of energetic electrons, protons, and alpha particles. Plasma plots are generated at MIT. Energetic particle flux plots are generated at the National Space Science Data Center (Code 601, Goddard Space Flight Center, Greenbelt, Maryland 20772) from machine sensible hourly averaged fluxes given in (cm² ster sec MeV/n)⁻¹ provided by several experimental groups. Updated composite magnetic tapes are available at NSSDC, as are
35 mm microfilm flux plots with standard International Magnetospheric Study scalings. IMP 7 (Explorer 47, IMP H) was launched into a near-circular geocentric, \sim 12 day, orbit at 30-40 RE on September 23, 1972. IMP 8 (Explorer 50, IMP J) was launched on October 26, 1973 into a similar orbit. The two spacecraft were instrumented to measure the plasmas, fields, and energetic particle fluxes found in the interplanetary medium and in the distant magnetosheath and magnetotail. The relative orbital phase of the two spacecraft evolved such that the percent of each 12-day period during which at least one spacecraft was in the interplanetary medium was 100% until mid-1975, decreased to a minimum of about 65% near January 1976, and returned to 100% in late 1976. Due to the relatively large number of flux plots, multiple traces are graphed on individual frames. Accordingly, the statistical error bar associated with each data point is omitted in order to maximize cleanliness of plot. To compensate for this, only data points with statistical uncertainties of about 20% or less are plotted. As this corresponds to 25 counts (1/ $\sqrt{25}$ = 20%), averages of hourly fluxes are taken over a sufficient number of hours to assure that the longer term averaged flux corresponds to at least 25 incident particles. In this process it is assumed that during each hour for which a flux is given, the instrument was counting for a full 60 minutes. This assumption is rarely significantly in error, and, after the first two months of data submission. only data for hours during which at least 30 minutes of counting occurred were provided to NSSDC. Such >1-hour - averaged fluxes are plotted as a series of apparent hourly fluxes of the common value. The reader is cautioned against interpreting such a series of apparently constant flux values as representing a physically real timeindependence in the flux level. In order to preserve particle event onsettime information low flux averages are terminated whenever the flux for a single hour exceeds that associated with 50 counts. Data gaps in the data are distinguished by the lack of connecting lines between data points. The purpose of the IMP data plots is to convey on as near continuous a basis as possible the state of the interplanetary particle environment. As such, IMP 7 and IMP 8 data have been interspersed for the Caltech and JHU/APL modes. Such an interspersal is not feasible for the U. of Maryland mode due to a disparity in energy windows, and is not required for the U. of Chicago and GSFC modes due to the negligible magnetotail modulation of the high rigidity particles involved in these modes. Plasma plots contain data only for hours during which the appropriate spacecraft was beyond the earth's bow shock. These interplanetary identifications are made by a visual inspection of preliminary data plots at MIT. On the two lowest energy proton plots, fluxes obtained in the magnetotail during hours when no interplanetary values are available are distinguishable. For only the 0.16 - 0.22 MeV protons is there a significant probability that the fluxes so plotted will be significantly different than the interplanetary fluxes. Predicted times of model bow shock crossings are used for these energetic proton plots. Plasma Data -- Hourly averaged plasma parameters (bulk speed, proton number density, most probable thermal speed), determined from the MIT plasma experiments on IMP's 7 and 8, are provided by H. Bridge, A. Lazarus and J. Sullivan of the Massachusetts Institute of Technology. The instrument is a split-collector, modulated-grid Faraday cup designed to measure the positive ion component of the solar wind. Particle fluxes in 24 contiguous energy channels and in 14 angular sectors are measured every 15 seconds (IMP 7) or 30 seconds (IMP 8). The hourly averages are based on preliminary plasma parameters computed by fitting the observations to a convected, isotropic Maxwellian distribution function. The error bars on each plotted data point indicate the standard deviation of the data contributing to the hourly average. Note that the thermal speed plot has scales for both thermal speed (left side) and temperature (right side). Energetic Particle Data -- The sources and some characteristics of the energetic particle data are summarized in Table 1. The geometric factors are in some cases average values over the indicated energy ranges. Neglect of energy dependence in geometric factors leads to an error whose magnitude depends on sensor geometry and ambient particle spectrum. Thus for the highest energy proton mode which uses a non-curved, relatively thick sensor, a flux ~5% too high is found for an E"+ spectrum. Typically, smaller errors are made for other modes. TABLE 1 | SPECIES | ENERGY
(Mev/n) | GEOMETRIC FACTOR
(cm² ster) | MULTI-PARAMETER
ANALYSIS? | SOURCE | |-----------|-------------------|--------------------------------|------------------------------|------------| | Electrons | 1-5 | 0.07 to 1.6
(see text) | yes | Caltech. | | Protons | 0.16-0.22 | 0.03 | no | U. of Md. | | Protons | 0.97-1.85 | 1.51 | по | JHU/APL | | Protons | 4.0-12.5 | 0.07 or 0.23
(see text) | yes | Caltech. | | Protons | 13.7-25.2 | 0.32 | yes | JHU/APL | | Protons | 19.8-40.1 | 3.13 | yes | GSFC | | Protons | 40.1-81.8 | 2.68 | yes | GSFC | | Alphas | 11-20 | 2.05 | yes | U. Chicago | | Alphas | 20-25 | 2.05 | yes | U. Chicago | | Alphas | 25~90 | 2.05 | yes | U. Chicago | The "Multi-Parameter Analysis?" column indicates whether multi-parameter analysis (typically dE/dx vs. E) is used in flux determination. Such analysis permits unambiguous identification of particle species [see, for example, discussion in Garcia-Munoz et al., Astrophys. J., 184, 967, 1973] but is generally not feasible for particles which have insufficient energy to penetrate one sensor and reach a second sensor. As discussed below, however, an attempt has been made to remove the non-proton component from the 0.97 - 1.85 MeV proton fluxes. Fluxes in units of (cm² ster sec)⁻¹ have been obtained by folding together count rates, geometric factors, and, where appropriate, pulse height analysis data. These fluxes are then divided by the width of the energy window to yield the differential fluxes plotted. The ratio of these average differential fluxes, to the "true" differential flux at the midpoint of the energy range E_1 to E_2 , is indicated in Table 2 for E^{-n} spectra and for $R = E_2/E_1$. Alternatively, one can ask at what energy within the E_1 to E_2 interval is the true differential flux equal to the average differential flux. The ratio of this energy $[(n-1) (E_2-E_1)/(E_1^{1-n}-E_2^{1-n})]$ to the midpoint energy $(\frac{1}{2}(E_1+E_2))$ is given in Table 3. It is clear from these tables that great care must be used when obtaining spectral parameters from fluxes resulting from wide energy windows at times of steep spectra. RATIO OF AVERAGE TO TRUE DIFFERENTIAL FLUX AT MIDPOINT OF ENERGY INTERVAL TABLE 2 | n R | 1.3 | 1.6 | 2 | 3 | |-----|--------|--------|--------|--------| | 0.5 | 1.0021 | 1.0068 | 1.0146 | 1.0353 | | 2 | 1.0173 | 1.0563 | 1.1250 | 1.3333 | | 5 | 1.0893 | 1.3110 | 1.7798 | 3.9506 | RATIO OF ENERGY AT WHICH TRUE FLUX = AVERAGE FLUX TO MIDPOINT ENERGY TABLE 3 | n R | 1.3 | 1.6 | 2 | 3 | |-----|-------|-------|-------|-------| | 0.5 | .9957 | .9865 | .9714 | .9330 | | 2 | .9914 | .9730 | .9428 | .8660 | | 5 | .9830 | .9473 | .8912 | .7598 | The 1-5 MeV electron data and 4.0-12.5 MeV proton data are obtained from telescopes consisting of eleven fully depleted silicon detectors surrounded by a plastic scintillator anti-coincidence cup. These data are provided by E. C. Stone, R. E. Vogt, R. A. Mewaldt, and co-workers at the California Institute of Technology. During most times, the electron fluxes result from a "wide geometry" mode (effective geometric factor = 1.6 cm² ster for IMP 7, 1.5 cm² ster for IMP 8), although for times of large solar particle fluxes, a "narrow geometry" mode is used (effective geo- metric factor = 0.07 cm² ster for IMP 7, 0.23 cm² ster for IMP 8). Electron fluxes have been corrected for secondary electrons produced by the interaction of gamma rays in the detector stack. (This background flux is separately monitored by the instrument.) Periods during which magnetospheric electrons seriously contaminate the observed 1-5 MeV electron fluxes have been identified and eliminated by analysis of 0.2-1.0 MeV electron fluxes and by a comparison of the IMP 7 and IMP 8 counting rates. Plotted proton fluxes result from a mode having geometric factors of 0.07 cm² ster on IMP 7 and 0.23 cm² ster on IMP 8. Illustrations and further descriptions of the instruments can be found in Hurford et al., [Ap. J., 192, 541, 1974], and in Mewaldt et al., [Ap. J., 205, 931, 1976]. The 0.16-0.22 MeV proton fluxes are provided from a University of Maryland experiment flown on IMP 8. They are obtained from an electrostatic analyzer in which incident particles are deflected by an applied electric field by an amount dependent on their energy/charge ratio. The deflected particles are then counted by a series of surface-barrier detectors positioned to measure particles having experienced various amount of deflection. The flux as plotted results from the counting rate of one of these sensors and consists of: - (1) 0.16-0.22 MeV ambient protons,(2) ambient Helium and heavier ions which generally do not exceed 10% of the proton component. - (3) a background flux level of ∿90 particles per cm² ster sec MeV caused by interactions of galactic cosmic rays in the spacecraft, and - (4) during times of intense fluxes of high energy particles, a complicated timevariable background. This last component may be particularly important in the onset phase of solar flare particle events. For further details on the instrument, see Tums et αl ., [IEEE Trans. Nuc. Sci., NS-21, 1, 210, 1974]. The University of Maryland data
are provided by G. Gloeckler, C. Y. Fan (University of Arizona), D. Hovestadt (Max-Planck Institute), F. Ipavich and co-workers. The 0.97-1.85 MeV and 13.7-25.2 MeV proton fluxes are provided from an experiment of the Johns Hopkins University/Applied Physics Laboratory. They are obtained from a telescope consisting of three colinear sensors (two surface-barrier totally depleted detectors followed by a lithium-drifted detector) surrounded by a plastic scintillator anti-coincidence cup. The 0.97-1.85 MeV proton fluxes correspond to particles stopping in the first sensor; hence standard dE/dx - E analysis is not possible. However, ratios of proton to alpha particle fluxes and alpha particle to medium nuclei fluxes measured at slightly higher energies have been used to estimate the magnitude of, and to eliminate, the non-proton component of this 0.97-1.85 MeV proton mode. In the 13.7-25.2 MeV channels, background effects are significant for ambient fluxes below $10^{-3}\ (\text{cm}^2\ \text{ster sec MeV})^{-1}$. As such, only fluxes above this amplitude are plotted. These data are provided by S. M. Krimigis and T. P. Armstrong (University of Kansas). Further details on the instrument and on data analysis techniques may be found in Sarris et αl ., ["Observations of Magnetospheric Bursts of High Energy Protons and Electrons at $\sim 35~R_E$ with IMP 7", J. Geophys, Res., 81, 2341, 1976]. The 19.8 - 40.1 MeV and 40.1 - 81.8 MeV proton fluxes are obtained from a telescope consisting of two CsI (Na) scintillators viewed by phototubes and surrounded by an active anti-coincidence detector. These fluxes are obtained on IMP 8 only and are provided by F. B. McDonald and T. T. von Rosenvinge of NASA, Goddard Space Flight Center. The dE/dx element is 1 mm x 5 cm diameter whereas the E element is 2.01 cm x 5 cm diameter. The finite thickness of the E element yields a geometric factor which decreases nearly linearly with increasing energy, being 3.25 cm² ster at 19.8 MeV and 2.35 cm² ster at 81.8 MeV. In computing fluxes, the average geometric factors in each of the two energy intervals is used. No correction is made for the resultant error which ranges from zero for a flat spectrum to 5% (computed flux too high) for an E^{-4} spectrum Corrections for slow gain shifts in the scintillator/phototube output are made. of Chicago. They are obtained from a telescope consisting of three lithium-drifter silicon detectors, a CsI (Tl) scintillator viewed by four photodiodes and a sapphire scintillator/Cerenkov radiator, all surrounded by a plastic anti-coincidence scintillator. The three fluxes correspond to alpha particles stopping in the second, third, and fourth sensors of the telescope. Background contamination of these fluxes is less than 10%. Care should be taken when proton and electron fluxes above 0.5 MeV are $\ge 3x10^3$ particles/cm² ster sec, since these high rates may interfere with the proper operation of the instrument logic and analysis. The quoted fluxes include He³ and He⁴. During quiet periods, He³ may contribute up to 10% of the total 25-90 MeV/n flux, and considerable less for the two lower energy fluxes. The instrument is further described in Garcia-Munoz et al., [Astrophys. J. Lett., 201, 145, 1975]. ### SOLAR X-RAY RADIATION (A.111, C.5f) The Columbia University solar x-ray spectrometer, mounted in the wheel section of the OSO-8 satellite, makes use of Bragg reflection to obtain high resolution solar x-ray spectra in the 1.5 -6.7 Å range. A complete spectrum is obtained every ten seconds, and the data are superposed to yield time averaged fluxes. Particularly prominent emission lines found in these spectra include Si XII (5.82Å), Si XIV (6.18 Å) and Si XIII (6.64Å). Corrections for satellite orientation, instrument sensitivity, and exposure time are applied to the ray data to obtain absolute line fluxes in ergs (cm²-sec)⁻¹. The results for these selected lines are reported as hourly averages in the tables. The statistical accuracy of the measurements is generally very good as the background rate is low. At limiting sensitivity $(10^{-8} \text{ergs } (\text{cm}^2 - \text{sec})^{-1})$, the statistical accuracy is 5%, comparable to uncertainties in the instrument parameters. The spectrometer utilizes Bragg reflection from mosiac graphite crystals to disperse the incident x-ray flux and proportional counters to detect the photons which satisfy the Bragg condition and are reflected from the crystal panel. The properties of the crystals, the detectors, and other relevant parameters are listed in the table. Since the 0.8° rocking curve width of the crystal is greater than the solar angular diameter, specific regions of the sun cannot be resolved. The spectra obtained are an average of the total solar emission. (In practice, one or two active regions on the disk usually dominate the x-ray emission in the wavelength range of the spectrometer). The spectral scan of the instrument is accomplished by utilizing rotation of the spacecraft. The spectrometer entrance aperture is located in the perimeter of the satellite wheel, which rotates uniformly at 6 RPM. The rotation axis is orthogonal to the Earth-Sun line, so that each rotation yields a complete x-ray spectrum. The spectrometer itself contains no moving parts. Masking collimators are included to avoid direct illumination of the detectors by the solar x-ray flux. | Parameter | Description | |--|--| | Field of view | Whole sun,±3° perpendicular to dispersion plane | | Time resolution | One spectrum in 10s | | Crystal material | Pyrolytic graphite, grade ZYC, - Union Carbide Corp. | | Crystal area | 1221 cm ² | | 2d | 6.7Å | | Rocking curve width | 0.8° | | Wavelength range | 1.5 - 6.7Å | | Resolving power, $\frac{\lambda}{\Delta\lambda}$ | | | 1.5Å
6.7Å | 17
2500 | | Detectors | Proportional counters | | Windows | Be, 0.002 inches | | Gas filling | Ar(90%), CO ₂ (10%) | The raw data for each revolution is encoded in azimuth bins, recorded, and telemetered each orbit. The ten second time resolution is maintained, but to improve statistical precision the data are superposed, and for the purposes of this report, ultimately presented as hourly averages. Conversion of the raw data as azimuth counts per revolution to line fluxes is accomplished by utilizing the spacecraft aspect solution and the spectrometer response function. The azimuth code is translated to Bragg angle and the data is binned in 0.16° intervals between 10° and 90°. The results for each revolution are then corrected for instrument response and combined to obtain the time averaged spectrum. The fluxes in the particular lines are obtained by integrating to obtain the total intensity: line emission, continuum, and non-x-ray background. The continuum and non-x-ray contribution is determined from adjacent regions of the spectrum where no known lines are found, and the net flux obtained by subtraction. The estimated systematic uncertainty in this procedure, combined with uncertainties in the instrumental calibration, is 5%. When the solar x-ray emission is weak, the statistical error in an hourly average of data becomes comparable to the systematic error at an equivalent line intensity of 10-8 ergs (cm2-sec)-1. This is taken as the limiting sensitivity, and flux measurements falling below this level are reported as "B" in the table. Missing data, corresponding to hour long intervals when no relevant solar observations were made, are indicated by "!". The reported times are in UT, and the interval corresponding to a particular hour "H" extends from H - $30^{\rm m}$ to H + $30^{\rm m}$. The dynamic range of the spectrometer is approximately 105, and dead time corrections at peak intensity can be reliably made for line fluxes equivalent to $10^{-3} \mathrm{ergs}$ (cm2- sec)-1. Saturated data are not included in the hourly averages, and are indicated by "X". Such events are rare, and the temporal evolution of x-ray bursts will be presented separately. Data have been obtained continuously since June 30, 1975. ### MAGNETOGRAMS OF GEOMAGNETIC STORMS (D.1e) In the past the Kp and other indices have provided some information on geomagnetic disturbances. However, during the last few years there has been an increasing demand for more quantitative indices with finer time resolution and based upon records from a more suitable distribution of observatories. The indices Kn, Ks, and Km have been developed and continue to satisfy the requirement for 3-hourly indices of activity as observed at mid-latitude locations. Both the Dst and AE indices have been devised to fulfill the need for quantitative indices having finer time resolution. Dst provides an estimate of the field of the ring current although ignoring its asymmetry. AE provides an estimate of the field of the auroral electrojets. Recent progress in magnetospheric physics has made it clear that a comprehensive study of the asymmetric growth of the ring current belt is essential in understanding the mechanism of its formation and generating mechanism of magnetospheric storms as well. For this purpose, Dst is not necessarily the most suitable index. Auroral electrojets have a lifetime of order one to three hours and the increasing availability of 2.5-min AE(11)* provides indices having excellent time resolution for the study of these high-latitude magnetic variations. However, the delay inherent in acquisition and processing of all magnetograms used in deriving AE(11) and the desirability of including a record of magnetic variations at mid- latitude and equatorial locations suggest that no combination of indices is completely self-sufficient. For these reasons, actual records of magnetic variations at a number of observatories are still very useful. In this publication, one or two interesting geomagnetic events may be chosen for each month and are illustrated
by reconstructed H-component magnetograms. The magnetograms are reduced from the original records to display the same amplitude scale and time base. Such common scale magnetograms are included from about 10 of the 16 observatories listed in the table page 54 although delays in receipt of some magnetograms may necessitate using records from substitute stations. If an adequate coverage of auroral zone observatories is available, preliminary AU and AL graphs are also prepared for each event duced magnetograms are prepared for months having activity of only minimal interest. These common scale magnetograms and index graphs are now produced under the direction of J. H. Allen and W. Paulishak of the National Geophysical and Solar-Terrestrial Data Center from magnetograms furnished by the World Data Center A for Solar-Terrestrial Physics. For the interval January 1967 through September 1973, the common scale magnetograms were provided by Dr. S. -I. Akasofu. ^{*}The AE indices have been published as UAG reports. A list is given on the following page. #### Table of Observatories | Leirvogur 64.18 338.30 70.12 71.51
Fort Churchill 58.80 265.90 68.74 323.46
Barrow 71.30 203.25 68.64 241.55
Great Whale River 55.27 282.22 66.57 348.05
Cape Chelyuskin 77.72 104.28 66.28 176.70 | | Geog.
Lat. | Coord.
Long. | Geomag.
Lat. | Coord.
Long. | |---|--|--|---|--|---| | College 64.87 212.17 64.73 256.99 Dixon Island 73.55 80.57 63.01 161.84 Tixie Bay 71.58 129.00 60.48 191.72 Tashkent 41.33 69.62 32.30 144.43 San Juan 18.12 293.85 29.57 3.63 Kakioka 36.23 140.18 26.09 106.38 Honolulu 21.32 202.00 21.17 266.99 Davao 07.08 125.58 -4.00 194.93 | Leirvogur Fort Churchill Barrow Great Whale River Cape Chelyuskin Abisko College Dixon Island Tixie Bay Tashkent San Juan Kakioka Honolulu Davao | 64.18
58.80
71.30
55.27
77.72
68.36
64.87
73.55
71.58
41.33
18.12
36.23
21.32
07.08 | 338.30
265.90
203.25
282.22
104.28
18.82
212.17
80.57
129.00
69.62
293.85
140.18
202.00
125.58 | 70.12
68.74
68.64
66.57
66.28
65.94
64.73
63.01
60.48
32.30
29.57
26.09
21.17
-4.00 | 37.42E
71.51
323.46
241.55
348.05
176.70
115.28
256.99
161.84
191.72
144.43
3.63
106.38
266.99
194.97
175.93 | - UAG-37 "Auroral Electrojet Magnetic Activity Indices AE(10) for 1966", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, December 1974, 142 pages, price 75 cents. - UAG-33 "Auroral Electrojet Magnetic Activity Indices AE(10) for 1967", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, May 1974, 142 pages, price 75 cents. - UAG-29 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1968", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, October 1973, 148 pages, price 75 cents. - UAG-31 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1969", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, February 1974, 142 pages, price 75 cents. - UAG-22 "Auroral Electrojet Magnetic Activity Indices (AE) for 1970", by Joe Haskell Allen, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, November 1972, 146 pages, price 75 cents. - UAG-39 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1971", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, February 1975, 144 pages, price \$2.05. - UAG-45 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1972", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, May 1975, 144 pages, price \$2.10. - UAG-47 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1973", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, June 1975, 144 pages, price \$2.10. - UAG-59 "Auroral Electrojet Magnetic Activity Indices AE(11) for 1974", by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Environmental Data Service, December 1976, 144 pages, price \$2.16. # DATA FOR SEVEN MONTHS BEFORE MONTH OF PUBLICATION TABLE OF CONTENTS | | | Page | |------|-----------------------------|------| | H.62 | Abbreviated Calendar Record | 56 | | C.1f | Flare Index (by Region) | 57 | The Abbreviated Calendar Record is a monthly summary chronological account of solar and geophysical activity and events published in the seventh month after observation. It is intended to give a background for the early interpretation of solar-geophysical results. It continues the series published in *IQSY NOTES* beginning with data for January 1964 in No. 7, through data for December 1966 in No. 21, and for January 1967 through November 1968 in STP NOTES No. 1-3, 5, and 7. A Condensed Calendar Record has continued in STP NOTES. Data for December 1968 through March 1975 are published in Nos. 7-14.) It is similar to the Calendar Record compiled for the IGY and IGC-1959 [Annals of the IGY, Vol. 16] and compiled for 1960-1965 [Annals of the IQSY, Vol.2]. It is prepared from data reports available at the World Data Center A for Solar-Terrestrial Physics. However, it is compiled rapidly, including some provisional data, and should not be relied on for details of solar and geophysical events in preference to standard publications. ### The format is as follows: The period covered on each date is 0000 to 2400 UT (Universal Time). At the beginning of each month a chart of the sun for the month locates the calcium plages, as reported by the McMath-Hulbert Observatory, at the latitude and longitude of their Central Meridian passage by the last two digits of the plage serial number. The general activity of the region is approximately evaluated, mainly from area and intensity of plage and associated sunspots, by use of the symbols: G = great activity, M = moderate activity and S = small activity. This chart is superimposed on the most recent revision of the H α synoptic chart for the same month which was originally published at the beginning of the second section of Part I (Prompt Reports). See page 21. For each date a series of time lines are presented. In the first block the duration of flares of importance ≥ 1f is shown by a horizontal line, followed by the importance with a slant line separating the last two digits of the serial number of the calcium plage region in which the flare occur-red. These are selected from the grouped flare reports as published in these Solar-Geophysical Data reports. Fixed frequency solar noise bursts are indicated by vertical tick marks by wavelength range at the time of beginning of the burst. The ranges are defined as dekameter = <40 MHz, meter = 40-400 MHz, decimeter = 400-1500 MHz, and centimeter = >1500 MHz. Spectral events of types II and IV are shown at the time of beginning by the appropriate Roman numeral. Noise storms at meter wavelength are indicated by horizontal lines. On the next two lines are vertical tick marks at the time of beginning to show sudden ionospheric disturbances and solar x-ray bursts from SMS/GOES (.5-4A; 1-8A). The Ap for the day is given in the left-hand portion of the next two lines which give the eight Kp centered in the appropriate three-hour time blocks, and the time of storm sudden commencements, if any, by a triangle. The daily planetary Ap index is derived from the 3-hourly Kp indices, which are based on reports from a selected standard group of geomagnetic observatories. The Ap index increases with increasing magnetic activity to a maximum of 400. The data are provided by the International Service of Geomagnetic Indices (Göttingen) of IAGA [Annals of the IGI, Vol. 4, pp. 227-236]. Beside the Ap value appears, when appropriate, D1 to D5 or Q1 to Q10 for disturbed or quiet days respectively. The numbers indicate order from most disturbed or quietest. See page 36 for interpretation of attached letters or symbol (A, K, *). Adjacent to the sc triangle the exact time of the sc is given with the number of observatories reporting it in the parentheses. Auroral displays are usually mentioned only if the southern limit reached φ (geomagnetic latitude) less
than 60°. The φ given is that of overhead occurrence in the USSR. The time and type of auroral follows this. N. V. Pushkov provides descriptions of aurora summarizing reports from a network of about 130 stations between 30° and 140° E longitude. After December 1975 the Western Europe sector data are no longer available. The following Codes to describe the aurora, as defined by F. Jacka and J. Paton in the *IQSY* Instruction Manual No. 3 Aurora, are used: - 1. Auroral Forms: A (arc); B (band); P (patch); V (veil); R (rays); G (glow); N (not identifiable). - 2. Structure: H (homogeneous); S (striated); R (rayed); short rays; medium - length rays; long rays. 3. Qualifying Symbols: m (multiple); f (fragmentary); c (coronal). - 4. Condition: q (quiet); a (active); p (pulsing); p₂ (flaming); p₃ (flickering); p₄ (streaming). - b. Brightness: 1. weak, comparable with the Milky Way. - 2. comparable with moonlit cirrus clouds. - 3. comparable with moonlit cumulus clouds. - much brighter than 3; if extensive, aurora may cast discernible shadows. On the next line is given the Forbush cosmic ray decreases from the Deep River or Sulphur Mountain charts limited to those of 3% or greater. Outstanding green corona as published in Solar-Geophysical Data Part I are mentioned by limb quadrant on date the peak would be at CMP. The indices on the next line are as follows: - -- The provisional daily Zürich relative sunspot number, R_Z , as communicated by Prof. M. Waldmeier of the Swiss Federal Observatory. It is based on observations at Zürich, Arosa and Locarno only. Final values of R_Z , issued after the end of each calendar year, usually differ slightly from the provisional ones. If available at time of publication these final values are used. - -- The $10~\rm cm$ solar radio flux at 2800 MHz is observed at the Algonquin Radio Observatory by the National Research Council, Canada, at about 1700 UT daily. It is expressed in units of $10^{-22} \rm km^{-2} Hz^{-1}$. The observed flux should be used for most solar-terrestrial studies. The values adjusted for the varying Sun-Earth distance are published elsewhere in Solar-Geophysical Data. - -- The <u>flare index</u> gives the daily flare index with the hours of flare patrol on which the index was based (see p. 42 of this text). - -- The <u>daily Ca plage index</u> is given next (see p. 27 of this text). - -- The ionospheric indices, I_p and I_a , are computed by the method of Y. Hakura, Y. Takenoshita, and K. Matsuoka in "Influence of Solar Activity on the Ionosphere Blackout Index", $[J. Radio\ Res.\ Labs.,\ Japan,\ 14$, No. 73, 1967]. If "-" is entered, it signifies less than 12 hours of data, so no value has been computed. The index I_p is for polar cap blackout, and the index I_a is for auroral zone blackout. The indices are on a scale from "0" representing 0.4 hours or less of blackout per day increasing to "9" representing 20.1 to 24 hours of blackout per day. Ionospheric f-min data from selected stations are used. The indices differ from Hakura et $\alpha \textit{l.}$ in that Kiruna and Fort Churchill data have been substituted for Point Barrow for I_a , and only Resolute Bay data is usually available for I_p . Next are given the McMath calcium plage region numbers on their date of CMP together with their latitude and number of rotations, if more than one, in the parentheses. The Mt. Wilson sunspot region numbers, together with their latitude, magnetic classification by $\alpha,\;\beta,\;\gamma$ or δ and largest spot (preceding "p" or following "f") and a digit encoding field strength are listed under the calcium plage region in which they appeared. The digits used to encode field strength are as follows: | 1 : | = | 100 | - | 500 | gauss | 6 | = | 2600 | _ | 3000 | gauss | |-----|---|------|---|------|-------|----|---|------|-----|------|-------| | 2 : | = | 600 | - | 1000 | ~ | 7 | = | 3100 | - | 3500 | • | | 3 : | = | 1100 | - | 1500 | | 8 | = | 3600 | - | 4000 | | | 4 : | = | 1600 | - | 2000 | | 9 | = | 4100 | - | 4500 | | | 5 : | = | 2100 | - | 2500 | | 10 | = | >49 | 500 |) | | If the Mt. Wilson sunspot is at CMP on a different date than the center of the calcium plage was, this date is given in parentheses following the sunspot information. If the calcium or sunspot region numbers are in parentheses, this signifies the regions were never actually at the Central Meridian; these had either died while on the Eastern Hemisphere or were born on the Western Hemisphere. When necessary, written remarks may appear at the end of the day. $\label{eq:constraint}$ #### FLARE INDEX BY REGION (C.1f) An index that characterized the flare productivity of McMath calcium plage regions integrated over a disk passage has been developed by Constance Sawyer and Catherine Candelaria. The scale is consistent with the HAO flare index, and with the NOAA whole-disk index which is briefly described on page 42. The same formula, $$I_f = \frac{.76}{T^*} \sum_{d} A_d^2$$, is used where A_d is the <u>measured</u> (apparent) area in millionths of solar disk, but the sum is taken for each region separately over all the days of its disk passage. The total number of flares is also given and the dates on which the first and last flares were observed in the region. The "flare-index mean" is the flare-index sum divided by the interval in days from the first flare to the last flare. # <u>DATA FOR</u> MISCELLANEOUS TIME PERIODS ### RETROSPECTIVE WORLD INTERVALS (H.63) Retrospective World Intervals selected by the Monitoring of Sun Earth Environment (MONSEE) program of the ICSU Special Committee on Solar- Terrestrial Physics will be presented as appropriate. ### OTHER DATA Information available either annually or on a non-routine publication basis will be given. The descriptive material necessary to understand the data will be included in the issue presenting the data. Data received too late for publication in the normal section may also appear here. ### PARTIAL LIST OF CONTRIBUTORS These monthly reports would not be possible without the continuing support and cooperation of scientists throughout the world. Much of the data included have been obtained through either the International Ursigram and World Days Service program or the international exchange of geophysical observations between World Data Centers in accordance with the principles set forth in recommenda- tions of relevant organizations of the International Council of Scientific Unions. (See *Guide to International Data Exchange*, issued in 1973 by the ICSU Panel on World Data Centres). | | יטינון אן רפכטווווופוועמ- | | |--|---|--| | Name | <u>Organization</u> | <u>Data Type</u> | | C. H. Hossfield | American Association of Variable
Star Observers
Solar Division
540 N. Central Avenue
Ramsey, New Jersey 07446 | Sunspots | | P. S. McIntosh | Space Environment Laboratory
NOAA
Boulder, Colorado 80302 | Sunspots, Hα photographs,
Hα synoptic charts | | M. J. Martres | Section de Physique
Observatoire de Paris
92190 Meudon, France | Active regions | | M. Waldmeier | Eidgen. Sternwarte
Schmelzbergstrasse 25
8006 Zürich, Switzerland | Sunspots | | Helen W. Dodson | McMath-Hulbert Observatory
University of Michigan
895 Lake Angeles Rd. North
Pontiac, Michigan 48055 | Calcium plages, flares, SID | | | Osservatorio Astrofisico
Citta Universitaria
Viale A. Doria
95123 Catania, Italy | Calcium plages, flares | | R. Howard
J. M. Adkins | Mount Wilson Observatory
813 Santa Barbara Street
Pasadena, California 91101 | Magnetic classifications of sunspots, solar magnetograms | | J. W. Harvey
W. Livingstone
F. Receley | Kitt Peak National Observatory
P. O. Box 26732
Tucson, Arizona 85726 | Solar magnetograms
Helium 10830 Å synoptic chart | | R. C. Altrock | Sacramento Peak Observatory
Sunspot, New Mexico 88349 | Corona | | A. A. Giesecke
M. Ishitsuka | Observatorio de Huancayo
Instituto Geofisico del Peru
Apartado 46
Huancayo, Peru | SID, solar radio emission flares | | V. Badillo
F. J. Heyden | Manila Observatory
P.O. Box 1231
Manila, Philippines | Flares, SID, solar radio emission, sunspots | | M. Bernot
P. Simon | Observatoire de Meudon
92190 Meudon, France | Flares | | H. Tanaka
S. Enome | Toyokawa Observatory
The Research Institute of Atmospherics
Nagoya University
Toyokawa, 442 Japan | Solar radio emission | | Name | <u>Organization</u> | Data Type | |--|--|----------------------| | J. P. Castelli
Wm. R. Barron | Air Force Geophysics Laboratory
L. G. Hanscom Field Code LIR
Bedford, Massachusetts 01730 | Solar radio emission | | W. N. Christiansen
Arthur Watkinson | School of Electrical Engineering
University of Sydney
Sydney, N.S.W. 2006, Australia | Solar radio emission | | A. E. Covington
M. B. Bell | Astrophysics Branch
National Research Council
Ottawa, Ontario, Canada K1A OR6 | Solar radio emission | | A. Maxwell | Harvard Radio Astronomy Station
Fort Davis, Texas 79734 | Solar radio emission | | H. Urbarz | Aussenstelle Astronomie Institut
der Universitaet Tübingen
7981 Weissenau
Federal Republic of Germany | Solar radio emission | | A. O. Benz
H. K. Asper | Microwave Laboratory
Gloriastrasse 35
CH-8006 Zürich, Switzerland | Solar radio emission | | C. Slottje | Solar Radio Observatory
Netherlands Foundation for
Radio Astronomy
Dwingeloo, Netherlands 7514 | Solar radio emission | | M. Pick | Observatoire de Meudon
92190 Meudon, France | Solar radio emission | | J. P. Wild
S.
F. Smerd | CSIRO Division of Radio Physics
P.O. Box 76 Epping
N.S.W. 2121 Australia | Solar radio emission | | M. P. Bleiweiss | NELC La Posta
Rt. 1, Box 591
Campo, California 92006 | Solar radio maps | | H. Zirin
K. A. Marsh | Big Bear Solar Observatory
California Institute of Technology
North Shore Drive
Big Bear City, California 92314 | Coronal holes | | B. J. Rickett | University of California, San Diego
Dept. of Applied Physics
and Information Science
La Jolla, California 92037 | Solar wind | | J. H. Wolfe | NASA
Mail Code 245-11
Electrodynamics Branch
Ames Research Center
Moffett Field, California 94035 | Solar wind | | D. S. Colburn
C. P. Sonett | NASA/ARC
Moffett Field, California 94035 | IP Electric Field | | F. L. Scarf | Space Science Department
TRW Systems
One Space Park
Bldg. R-5, Rm. 1280
Redondo Beach, California 90278 | IP Electric Field | | N. F. Ness | Laboratory for Extraterrestrial Physics
NASA/GSFC, Code 690
Greenbelt, Maryland 20771 | IP Magnetic Field | | Name | <u>Organization</u> | Data Type | |-------------------------------------|---|--| | F. Mariani | Instituto Fisica Universita
Piazza Annunziata
67100 L'Aquila, Italy | IP Magnetic Field | | J. H. King | NSSDC
NASA/GSFC
Code 601
Greenbelt, MD 20771 | Solar particles, plasmas | | W. R. Webber
J. A. Lezniak | Physics Department
University of New Hampshire
Demerritt Hall
Durham, New Hampshire 03824 | Solar cosmic ray protons | | A. Frosolone | Space Weather Consultants
P.O. Box 213
Moffett Field, California 94035 | Pioneer spacecraft | | G. Heckman | Space Environment Services Center
NOAA
Boulder, Colorado 80302 | Solar proton events
Inferred IP Magnetic Fields | | S. Mansurov | IZMIRAN
P.O. Akademogorodok
Moscow Region, 142092, USSR | Inferred IP Magnetic Fields | | J. M. Wilcox
P. H. Sherrer | Institute for Plasma Research
Stanford University
Via Crespi, Stanford, Calif. 94305 | Solar Mean Magnetic Fields | | R. B. Ammons (AAVSO) | P.O. Box 1441
Missoula, Montana 59801 | SES, SWF | | C. Hornback | Table Mountain Geophysical
Monitoring Station
Space Environment Laboratory
NOAA
Boulder, Colorado 80302 | SID,
Solar radio emission | | S. Katahara | Ionospheric Sounding Station
P.O. Box 578
Puunene, Maui, Hawaii 96784 | SPA | | P. C. Yuen
Kazutoshi Najitu | Department of Electrical Engineering
University of Hawaii
Honolulu, Hawaii 96822 | SFD | | R. F. Donnelly | Space Environment Laboratory
NOAA
Boulder, Colorado 80302 | Solar x-rays | | L. W. Acton
C. J. Wolfson | Lockheed Research Laboratory
Div. 52/10, Bldg. 202
3251 Hanover Street
Palo Alto, California 94304 | X-ray maps | | R. S. Wolf | Columbia Astrophysics Laboratory
Columbia University
538 West 120th St.
New York, N.Y. 10027 | Solar x-ray | | J. P. Delaboudiniere | Centre National de la Recherche Scientifiq
Laboratoire de Physique Stellaire et Plane
Boite Postale No. 10
91 Verrieres-le-Buisson, France | ue XUV
taire | | M. Bercovitch
Margaret D. Wilson | National Research Council of Canada
Division of Physics
Ottawa, Ontario, Canada K1A OR6
61 | Cosmic rays | | | Name | <u>Organization</u> | <u>Data Type</u> | |----|---------------------|---|---| | | Venkatesan
Tjoei | Department of Physics
University of Calgary
Calgary, Alberta, Canada T2N, 1N4 | Cosmic rays | | | A. Simpson
Lentz | LASR Enrico Fermi Institute
University of Chicago
933 E. 56th Street
Chicago, Illinois 60637 | Cosmic rays
Solar cosmic ray protons | | М. | A. Pomerantz | Bartol Research Foundation
Swarthmore, Pennsylvania 19081 | Cosmic rays | | М. | Wada | Institute of Physical and Chemical Research
7-13 Kaga-1, Itabashi
Tokyo, Japan 173 | Cosmic rays | | 0. | Binder | Institut für Reine und Angewandte Kernphysik
Olshausenstr. 40/60, Gebäude N20a
23 Kiel, German Federal Republic | Cosmic rays | | М. | Siebert | Institut für Geophysik
Herzberger Landstrasse 180
34 Göttingen, G.F.R. | Magnetic indices | | D. | Van Sabben | Kon. Nederlands Meteorlogisch
Instituut
DeBilt, The Netherlands | Magnetic indices | | М. | Sugiura | Magnetic and Electric Fields Branch
NASA/GSFC, Code 625
Greenbelt, Maryland 20771 | Magnetic indices | | D. | J. Poros | Computer Sciences Corporation
Silver Spring, Maryland 20910 | Magnetic indices | | Ρ. | N. Mayaud | Institut de Physique du Globe
4, Place Jussieu - Tour 14
75230 Paris, France | Magnetic indices | | Α. | Romaña | Observatorio del Ebro
Roqueta (Tarragona)
Spain | ssc, sfe | | W. | Paulishak | NGSDC/EDS/NOAA
Boulder, Colorado 80302 | Magnetograms | | Τ. | Damboldt | Forschungsinstitut der Deutschen Bundespost
61 Darmstadt, Postfach 800
German Federal Republic | Radio quality figures | # INDEX FOR SOLAR-GEOPHYSICAL DATA An index to <code>Solar-Geophysical Data</code> beginning with the data for the year 1957 can be found on pages 64-81. The serial number of the report in which data for a given year and month were publisted is listed in the index according to type of data. The types are keyed according to ICSU recommendations; and this key, expanded for the data published in <code>Solar-Geophysical Data</code>, precedes the index. Listed with the kinds of data received are the periods during which they were available for publication. Beginning with 1969, when Solar-Geophysical Data was divided into Part I and Part II, the index gives pages on which the data appear in addition to the serial number. A "B" appears between the serial number and the page number when the data were published in Part II. ### STONYHURST DISKS Two transparencies provide Stonyhurst disks in days from CMP in the size of most of the maps or drawings presented in the second section of these monthly reports. A second set of transparencies with meridian calibrated in degrees from CMP are included to fit the Mount Wilson and Kitt Peak magnetograms. The two sizes as calibrated in degrees or days from CMP are reversed from those published in the last Explanatory Text which may also be used with these maps. The dates shown were for 1969 but are within 1 day of appropriate date for 1977. See any Ephemeris. ## KEY TO INDEX OF SOLAR GEOPHYSICAL DATA | | | Mo/Yr | Mo/Yr | |----------------|--|---------|--------------------| | A. Solar a | and Interplanetary Phenomena | | | | A.1 | Sunspot Drawings | 1/67 - | present | | A. 1a | Sunspot Data (see A.5a) | | present | | A. 2a | Zürich Provisional Relative Sunspot numbers, R _Z | | present | | A.2b | Zürich Final Sunspot numbers, R _Z | | present | | A.2c | American Relative Sunspot numbers, RA' | | present | | A.2d | 27-day Plot of Relative Sunspot numbers (see D.1c) | | present | | A.2e | Sunspot Cycle (Smoothed numbers) Graphs - in each issue | | present
present | | A.2f | Table of Observed and Predicted Smoothed Sunspot numbers | | present | | A.3a
A.3b | Mt. Wilson Magnetograms
Mt. Wilson Sunspot Magnetic Field Classifications | | present | | A.3c | Kitt Peak Magnetograms | | present | | A. 3d | Mean Solar Magnetic Field (Stanford) | | present | | A.4 | Hα Spectroheliograms | | present | | A.5 | Calcium Plage Drawings - McMath (or Catania) | | present | | A. 5a | Calcium Plage (McMath) and Sunspot Regions | | present | | A.5b
A.6 | Daily Calcium Plage Index
Hα Synotic Charts | | present
present | | A.6b | Synoptic Chart and Active Regions | | present | | A. 7a | Coronal Line Emission Indices (Provisional) | | 5/66 | | A. 7b | Coronal Line Emission Indices (Final) | | present | | A.7c | White-Light Corona (NRL OSO-7, 1971-083A) | 2/72 - | 6/74 | | A.11ja | Solar EUV Spectroheliograms FeXV 284 Å (GSFC OSO-7, 1971-083A) | 5/72 - | 3/74 | | A.7e | Solar XUV Coronagrams (NRL OSO-7, 1971-083A) | 10/72 - | | | A.7f | Coronal Holes (Helium D3) | | present | | A.7g
A.7h | Helium Synoptic Maps (Kitt Peak) | | present | | | Coronal Intensities (Sacramento Peak) | | present | | A.8aa
A.8ab | 2800 MHz (ARO-Ottawa) Daily Observed Values of Solar Flux
2800 MHz (Ottawa) Final - Daily Observed Values of Solar Flux | 1/62 - | present
12/66 | | A.8ac | 2800 MHz (ARO-Ottawa) Daily Values Solar Flux Adjusted to 1 A.U. | | present | | A.8ad | 2800 MHz (Ottawa) Final - Daily Values of Solar Flux Adjusted | -, - , | J | | | to A.U. | 1/64 - | 12/66 | | A.8b | 470 MHz (Boulder) Daily 3-hourly Averages | 7/57 - | 3/58 | | A.8c | 167 MHz (Boulder) Daily 3-hourly Averages | 7/57 - | 12/58 | | A.8d
A.8e | 200 MHz (Cornell) Daily 3-hourly Averages | | 12/58
4/59 | | A.8f | 9530 MHz (USNRL) Daily Averages
3200 MHz (USNRL) Daily Averages | | 4/59 | | A.8g | 15400, 8800, 4995, 2695, 1415, 606, 410, 245 MHz (AFCRL) Solar | 2,00 | ., 00 | | ~ | Flux Adjusted to 1 A.U. | 1/67 - | present | | | (15400 MHz began 6/69 and 245 MHz began 1/70) | | | | A.9a | 9.1 cm (Stanford) Radio Maps of the Sun | | 8/73 | | A.9aa
A.9b | 9.1 cm Spectroheliogram tabulated Data (Stanford) | 1/69 - | 8/73 | | A.9c | 21 cm (Fleurs) Radio Maps of the Sun
8.6 mm (Prospect Hill) Radio Maps of the Sun | | 2/74 | | A. 9cb | 8.6 mm (NELC) Radio Maps of the Sun | | present | | A.9d | 2 cm (NELC) Radio Maps of the Sun | 6/74 - | present | | A.10a | 169 MHz (Nançay) Interferometric Observations | | present | | A.10b | 408 MHz (Nancay) Interferometric Observations | 11/65 - | | | A.10c
A.10d | 21 cm (Fleurš) East-West Solar Scans
43 cm
(Fleurs) East-West Solar Scans | | present
present | | A. 10d | 10.7 cm (Ottawa-ARO) East-West Solar Scans | | present | | A.11aa | Solar X-ray Background Levels (NRL) satellites, see below | | 4/74 | | A.11ab | Solar X-ray Background Levels (NRL Graphs) " " " | | 4/74 | | A.11ac | Solar X-ray Background Levels (Boulder) " " " | 12/65 - | | | A.11ad | Solar A-ray background Levels (France) | | - 5/66 | | A.11ae | Solar V-lay packground revers (whendeen, 3. 5.) | 1/00 - | 11/68 | | | Popular Name Satellite Designation | | | | | SOLRAD 7A 1964-1D | | - 10/64 | | | SOLRAD 7B 1965-16D
SOLRAD 8 1965-93A | 3/05 - | - 12/65 | | | (Explorer 30) | 1/66 - | 12/67 | | | 0G0-4 1967-73A | | | | | OSO-4 1967-100A | 1/68 - | • | | | SOLRAD 9 1968-17A | 3/68 - | • | | | (Explorer 37) | 6/73 - | - 4/74 | | | (Beginning 12/68 daily/hourly averages presented) SOLRAD-10 1971-58A | 8/72 - | - 6/73 | | | (Explorer 44) | 5,,, | -, | | | | | | | Α. | <u>Solar</u> a | and Interplanetary Phenomena (continued) | | | |-----|----------------------------|---|--------------------------------|-----------------------------------| | ļ | \. 11b | Solar X-ray Background Levels, 0-20Å
Injun 1/SOLRAD-3, 1961-02 | 6/61 - | 12/61 | | | N.11c
N.11d | Solar X-ray Background Levels (Vela 1,2; 1963-39A,C)
Solar X-ray Background Levels (McMath)
(0S0-3; 1967-20A), 8-12Å | (10/63)
3/67 - | 8/67 | | | \.11e | Solar X-ray (OSO-5; 1969-6A) Spectroheliograms (University College London, Leicester Univ.) | 7/69 -
7/74 -
12/72 - | 6/75 | | | \.11f
∖.11g | Solar X-ray (GSFC OSO-7, 1971-083A) Spectroheliograms Solar X-ray Background Levels (SMS-1/GOES, 1974-033A; SMS-2/GOES, 1975-011A) | | present | | - 1 | \.11h
\.11i | Solar X-ray (OSO-8, 1975-O57A) 2-14 keV (Lockheed)
Solar X-ray (OSO-8, 1975-O57A) (Columbia University) | 8/75 <i>-</i>
2/76 <i>-</i> | present | | , | 4.11jb
4.12aa
4.12ab | FeXV - 284Å Spectroheliograms Solar Protons, Daily-hourly Values, JPL/GSFC (satellites, see below Solar Protons, Graphs, JPL/GSFC " " " |) 5/67 - | | | | | Popular Name Satellite Designation Explorer 34 1967-51A, Ep >10, >30, >60 Mev Explorer 41 1969-53A, Ep >10, >30, >60 Mev Explorer 43 1971-19A, Ep >10, >30, >60 Mev | 5/67 -
6/69 -
11/71 - | 12/72 | | | A. 12ba | Cosmic Ray Protons, Ep 0.6-13, 13-1/5, >1/5 Mev, Univ. of Chicago (Pioneer 6; 1965-105A and Pioneer 7; 1966-75A) | | present | | | A.12bb
A.12c | Cosmic Ray Protons, Ep >13.9, >64 or >40 Mev, Univ.of New Hampshire (Pioneer 8; 1967-123A and Pioneer 9; 1968-100A) Cosmic Ray Protons, Ep 5-21, 21-70 Mev, Aerospace | | present | | | A.12d | (ATS-1; 1966-110A)
Low Energy Protons (NOAA satellites 1972-082A, 1973-086A, | 1/70 -
7/74 - | 8/72
11/74 | | | A.12e
A.13a | 1974-089A) Energetic Solar Particles (IMP H, 1972-073A and IMP J, 1973-078A) Solar Wind (Pioneer 6, 1965-105A; and Pioneer 7, 1966-75A) | 8/75 - | present | | | A.13ab | NASA Ames
Solar Wind (Pioneer 8, 1967-123A; Pioneer 9, 1968-100A) NASA Ames | | present
present | | • | A.13b | Solar Wind, M.I.T. Pioneer 6, 1965-105A | 12/73 - | 2/70
present | | , | 4.13c | Pioneer 7, 1966-75A
Solar Wind (Vela 3, 1964-40A; Vela 5, 1965-58A) | | · 12/69
· 6/72 | | | A.13d
A.13e
A.17 | Solar Wind from IPS Measurements (UCSD)
Solar Plasma Data (IMP H, 1972-073A and IMP J, 1973-078A)
Interplanetary Magnetic Field | 1/75 - | present
present | | | n 17. | Pioneer 8, 1967-123A
Pioneer 9, 1968-100A | 4/72 - | present
present | | | 4.17c
4.18 | Inferred Interplanetary Magnetic Field Interplanetary Electric Field Pioneer 8, 1967-123A | 5/72 - | present
present | | | | Pioneer 9, 1968-100A | 4/72 - | present | | В. | | eric (and Radio Wave Propagation) Phenomena | | | | | B. 10 | Radar Meteor Indices, perpetual, based upon 1958-1962
data for N45 latitude see issues 246, 251 | | | | | B.51aa
B.51ab | NARWS Quality Figures and Forecasts (NBS/ESSA) NARWS Comparison Graphs (NBS/ESSA) | | · 12/65
· 12/65 | | | B.51ba | NPRWS Quality Figures and Forecasts (NBS) | 7/57 ~ | · 12/65 | | | B.51bb
B.51ca | NPRWS Comparison Graphs (NBS) High Latitude Quality Figures and Forecasts (ESSA/OT) | //5/ -
11/64 - | · 10/64
· 9/76 | | | B.51cb
B.52
B.53 | High Latitude Comparison Graphs (ESSA/OT)
North Atlantic Graphs of Useful Frequency Ranges (German PTT)
Quality Figures Based Upon Frequency Ranges (German PTT) | | · 11/73
· present
· present | | c. | Flare-A | ssociated Events | | | | | C.1a
C.1ba | H- α Solar Flares (Preliminary)
H- α Solar Flares (including Standardized Data) | | present present | | | C.1c
C.1d | (Divided into Confirmed and Unconfirmed Flares from $1/68-12/74$) H- α Subflares (included in C.1a and C.1b after $1/62$) H- α Flare Patrol (The most recent issue listed for a month | | - present
- present | | | C.1e
C.1f
C.1g | contains the comprehensive flare patrol.) H-α Flare Index (Daily) H-α Flare Index (by Region) Frequency of Occurrence of Confirmed Solar Flares | | - present
- present | | | 9 | requestly of occurrence of confirmed point fines | 1/00 - | 0/00 | #### C. Flare-Associated Events (continued) C.3a 2800 MHz (Ottawa) Outstanding Occurrences 7/57 - present 2800 MHz (Ottawa) Hours of Observation 7/57 - 12/65 C.3aa 470 MHz (Boulder) Outstanding Occurrences 7/57 - 3/58 C.3b 7/57 - 10/60 1/59 - 12/59 C.3c 167 MHz (Boulder) Outstanding Occurrences 167 MHz (Boulder) Hours of Observation 200 MHz (Cornell) Outstanding Occurrences C.3ca 7/57 - 12/58 C.3d C.3e 9530 MHz (USNRL) Outstanding Occurrences 2/58 - 4/59 3200 MHz (USNRL) Outstanding Occurrences 2/58 - 4/59 C.3f 200 MHz (Hawaii) Outstanding Occurrences 108 MHz (Boulder) Outstanding Occurrences 108 MHz (Boulder) Hours of Observation 221 MHz (Boeing-Seattle) Outstanding Occurrences (Interfero-6/59 - 8/59 C.3g 1/60 - 6/66 1/60 - 12/65 C.3h C.3ha C.3i metric) - Changed to 223 MHz in May 1963 4/62 - 7/63 5/65 - 11/65 6/65 - 3/66 C.3j 107 MHz (Haleakala) Outstanding Occurrences C.3k 10700, 2700, 960 MHz (Pennsylvania State Univ.) 7/64 - 5/75 Outstanding Occurrences C.31 486 MHz (Washington State Univ.) Outstanding Occurrences 7/66 - 4/69 18 MHz Bursts (Boulder) (reported with C.6 1/63 - 11/66, C.3m C.6ab prior to 1/63) 11/67 - present 35000, 15400, 8800, 4995, 2695, 1415, 606, 410, 245 MHz (AFCRL - Sagamore Hill) Outstanding Occurrences (15400 MHz began 11/67, C.3n 1/66 - present 35000 and 245 MHz began early 1969, 410 MHz began 1971) 184 MHz (Boulder) Outstanding Occurrences 3/67 - 7/72 11/67 - present C.3q 7000 MHz (Sao Paulo) Outstanding Occurrences 408 MHz (San Miquel) Outstanding Occurrences 10/67 - 4/72 C.3r C.3s 18 MHz (McMath-Hulbert) Bursts 1/68 - present C.3t 43.25, 80 and 160 MHz (Culgoora) Selected Bursts 12/72 - present Note: Beginning with the data for April 1966, in CRPL-FB-261, the C.3 entries on Solar Radio Outstanding Occurrences for the western hemisphere observatories and frequencies were combined into a single table "Solar Radio Emission Outstanding Occurrences, C.3." Beginning with June 1969 data, the table was expanded to worldwide coverage, and the various observatories are no longer indexed separately. C.4aa Solar Radio Spectrograms of Events (Fort Davis) 7/57 - 12/58 100 - 580 MHz 7/57 - 12/58 25 -580 MHz 1/59 - 12/62 1/63 - 3/65 4/65 - 12/66 50 -320 MHz 25 -320 MHz 10 - 580 MHz 1/67 - 2/703/70 - 4/70 10 - 1000 MHz 10 - 2000 MHz 5/70 - 5/73 10 - 4000 MHz 5/73 - 3/74 4/74 - present 1/60 - 12/61 25 - 320 MHz C.4ab 2100-3900 MHz Solar Radio Spectrograms of Events (Fort Davis) C.4b Solar Radio Spectrograms of Events (Boulder) 7.6 - 41 MHz 7.6 - 80 MHz 3/61 - 8/68 9/68 - 6/76 C.4c 450-1000 MHz Solar Radio Spectrograms of Events (Owens Valley) 11/60 - 10/61 C.4d Solar Radio Spectrograms of Events (Culgoora) 10 - 210 MHz 8 - 2000 MHz 1/67 - 7/69 8/69 - 2/70 8 - 4000 MHz 3/70 - 10/708 - 8000 MHz 11/70 - present 30-1000 MHz Solar Radio Spectrograms of Events (Weissenau, GFR) 3/68 - present C.4e C.4f Solar Radio Spectrograms of Events (AFCRL - Sagamore Hill) 1/68 - 7/70 7/70 - 7/75 19 - 41 MHz 24 - 48 MHz 25 - 75 MHz 8/75 - present 20-60 MHz Solar Radio Spectrograms of Events (Clark Lake) C.4g 4/70 - 9/70 160-320 MHz Solar Radio Spectrograms of Events (Dwingeloo) 100-1000 MHz Solar Radio Spectrograms of Events (Dürnten) 24-48 MHz Solar Radio Spectrogram of Events (Manila) 1/74 - present 1/74 - present 4/74 - present C.4h C.4i C.4j ## C. Flare-Associated Events (continued) | C.5a
C.5b | Solar X-ray Events (Vela 1,2; 1963-39A,C)
Solar X-ray Events (Univ. of Iowa) | (10/63) | |------------------|---|----------------------------------| | 0.05 | Explorer 33; 1966-58A (2-12Å) Explorer 35; 1967-70A (2-12Å) | 7/66 - 10/71 | | C.5c | Solar X-ray Events (NRL Tabulation) | 12/67 - 7/72
1/64 - 10/64 | | C.5d | Solar X-ray Events (McMath-Hulbert) OSO-3; 1967-20A (8-12A) | 3/65 - present
3/67 - 8/67 | | C.5e
C.5f | Solar X-ray Events (SMS-1/GOES, 1974-033A; SMS-2/GOES, 1975-011A)
Solar X-ray Events (OSO-8, 1975-057A) (Columbia University) | 11/74 - present | | C.6
C.6aa | Sudden Ionospheric Disturbances (SID) Sudden Ionospheric Disturbances (SWF) (included with C.6 after 12/ | 1/63 - present | | C.6ab | Sudden Ionospheric Disturbances (SCNA, SEA, bursts) " | 1/58 - present | | C.6ac
C.7 | Solar Proton Events - Direct Measurement - same as A.12 | 6/61 - present
5/67 - present | | C.8 | Solar Proton Events - Riometer Confirmed Polar Cap Absorption Events (ESSA) | 1/67 - 6/67 | | C.8ba
C.8bc | Solar Protons, 26 MHz Riometer Events (South Pole) Provisional Solar Protons, 30
MHz Riometer Events (Frobisher Bay) | 9/63 - 11/67
1/65 - 5/65 | | C.8be | Solar Protons, 30 MHz Riometer Events (Great Whale River) | 6/65 - 2/67 | | D. Geomagn | netic and Magnetospheric Phenomena | | | D. 1a | Geomagnetic Indices Ci, Ks, Kn, Km, Cp, Kp, Ap, aa, Selected Days (aa first published 1/74; Ks, Kn, Km first published 12/75; Ci discontinued 8/75) | 7/57 - present | | D.1b
D.1ba | 27-day Chart of Kp for Year
27-day Chart of Kp Indices | 7/57 - present
7/57 - present | | D.1c | 27-day Chart of C9 for Year | 7/57 - present | | D.1d
D.1e | Principal Magnetic Storms
Reduced Magnetograms | 7/66 - present
1/67 - present | | D.1f | Sudden Commencements and Solar Flare Effects | 1/66 - present | | D.1g | Equatorial Indices Dst | 5/73 - present | | F. Cosmic | Rays | | | F.1a | Cosmic Ray Daily Averages Neutron Monitors (Deep River - | 1/50 | | F.1b | graph of hourly values, daily averages begin 11/65)
Cosmic Ray Daily Averages Neutron Monitors (Climax) | 1/59 - present
9/60 - 3/72 | | F 1. | Daily Averages and Graph of hourly values | 12/74 - present | | F.1c
F.1d | Cosmic Ray Daily Averages Neutron Monitors (Dallas) Cosmic Ray Daily Averages Neutron Monitors (Churchill) | 1/64 - 3/74
5/64 - 6/72 | | F.1e | Cosmic Ray Daily Averages Neutron Monitors (Alert) | 3/74 - present | | F.1f | Graph of hourly values (Alert) Cosmic Ray Daily Averages Neutron Monitors (Calgary - | 7/66 - present | | 1 • 11 | also graph of hourly values) | 1/71 - present | | F.1g | Cosmic Ray Daily Averages Neutron Monitors (Sulphur Mountain - | • | | F.1h | also graph of hourly values)
Cosmic Ray Daily Averages Neutron Monitors (Thule - | 1/71 - present | | F.1i | also graph of hourly values)
Cosmic Ray Daily Averages Neutron Monitors (Tokyo - | 4/73 - present | | F.1j | also graph of hourly values) | 12/73 - present | | r.1J | Cosmic Ray Daily Averages Neutron Monitors (Kiel - also graph of hourly values) | 12/73 - present | | H. <u>Miscel</u> | <u>laneous</u> | | | Н.60 | Alert and Special World Interval Decisions (IUWDS Geophysical Alerts) | 7/57 | | H.61 | International Geophysical Calendar | 7/57 - present
1/62 - 12/62 | | Н.62
Н.63 | Abbreviated Calendar Record | 12/68 - present | | 11.00 | Retrospective World Intervals | 1/66 - 12/67 | INDEX TO "SOLAR-GEOPHYSICAL DATA" | 1 | 1957 | | | | | | 1958 | | | | | | | | | | | | |------------------------|------------|------------|------------|-------------------|------------|------------|------------|-------------------|------------|------------|-------------------|------------|------------|------------|-------------------|------------|------------|--------------| | Key * | Jul | Aug | Sep | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | | В О- | 150 | 157 | 150 | 100 | 1.00 | 1.01 | 1.00 | 1.00 | 1.01 | 1.05 | 1.00 | 1.67 | 1.50 | 1.00 | 170 | | 170 | | | A.2a
A.2b | 156
166 | 157
166 | 158
166 | 159
166 | 160
166 | 161
166 | 162
175 | 163
175 | 164
175 | 165
175 | 166 | 167 | 168 | 169 | 170
175 | 171
175 | 172 | 173 | | A.2c | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 175
167 | 175
168 | 175
169 | 175
170 | 175 | 175 | 175
173 | 175
174 | | A.20
A.5a | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 174 | | A.7 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 166 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | | | | 165 | 165 | 165 | 165 | 165 | 171 | 171 | 171 | 171 | 171 | 171 | | | | | | | | | | | | | | 171 | | | | | | | | | | | | | A.8aa | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | A.8b | 156 | 157 | 158 | 159 | 161 | 162 | 163 | 164 | 165 | 1.67 | 1.00 | 100 | 170 | 170 | 170 | 171 | 170 | 176 | | A.8c
A.8d | 156
156 | 157
157 | 158
158 | 159
159 | 162
160 | 162
161 | 163
163 | 164
163 | 165
164 | 167
165 | 168
167 | 169
167 | 170
168 | 172
169 | 173
170 | 174
171 | 175
172 | 176
173 | | A.8e | 130 | 137 | 130 | 139 | 100 | 101 | 103 | 176 | 175 | 174 | 172 | 170 | 170 | 170 | 170 | 171 | 172 | 173 | | A.8f | | | | | | | | 176 | 175 | 174 | 172 | 170 | 170 | 170 | 170 | 171 | 172 | 173 | | A.10a | 171 | 171 | 171 | 171 | 171 | 171 | 171 | 171 | 171 | 17 i | 171 | 171 | 171 | 171 | 171 | 171 | 172 | 173 | | B.51aa | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | B.51ab | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | B.51ba | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | 8.51bb | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | B.52 | 157 | 159 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | C.1a | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | | 166
169 | 167
174 | 168
174 | 168
174 | 169
161 | 169
174 | 170
174 | 170 | 171
174 | 171
174 | 172
174 | 172 | 173 | 173 | 174 | 174
176 | 175 | 175 | | | 174 | 1/4 | 175 | 1/4 | 174 | 1/4 | 1/4 | | 1/4 | 1/4 | 1/4 | | | | | 1/0 | | | | C.1c | 156 | 157 | 158 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | C.1d | 158 | 158 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | | 166 | 167 | 168 | 168 | 169 | 169 | 170 | 170 | 171 | 171 | 172 | 172 | 173 | 173 | 174 | 174 | 175 | 175 | | | 176 | 176 | 176 | 176 | 176 | 176 | 176 | 176 | 176 | 176 | | | | | | | | | | C.3a | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | - <u>C.3aa</u>
C.3b | 158
156 | 158
157 | 158
159 | <u>161</u>
159 | 161
161 | 161
162 | 164
163 | <u>164</u>
164 | 164
165 | 167 | 167 | 167 | 170 | 170 | 170 | 173 | 173 | <u> 173</u> | | C.3c | 156 | 157 | 159 | 159 | 162 | 162 | 163 | 164 | 165 | 168 | 169 | 169 | 170 | 172 | 173 | 174 | 175 | 176 | | C.3d | 156 | 157 | 158 | 159 | 160 | 161 | 163 | 163 | 164 | 165 | 167 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | | C.3e | | | | | | | | 176 | 175 | 174 | 172 | 170 | 170 | 170 | 170 | 171 | 172 | 173 | | C.3f | | | | | | | 1 | 176 | 175 | 174 | 172 | 170 | 170 | 170 | 170 | 171 | 172 | 173 | | C.4aa | | | | | | | 1 | | | | | 174 | 168 | 169 | 170 | 171 | 172 | 174 | | C.6aa | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | | C.6ab
D.1a | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 171
165 | 172
166 | <u>173</u>
167 | 174
168 | 175
169 | 176
170 | <u>177</u>
171 | 178
172 | 178
173 | 179
174 | | D.1a | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 107
174 | 174 | 174 | 170 | 174 | 172
174 | 174 | 174
174 | | D.lc | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | 190 | | H.60 | 158 | 158 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 165 | 167 | 168 | 168 | 170 | 171 | 172 | 173 | | | | | | | | | " • - | | | 166 | 166 | , | | 169 | | | | - | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | Key * | 1959
Jan | Feb | Mar | Apr | Mav | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | 1960
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | |---|--|---|---|---|---|---|--|--|--|---|---|---|---|--|---|--|--|--|--|---|--|---|---|---| | A.2a
A.2b
A.2c
A.5a
A.7a | 174
187
175
174
174 | 175
187
176
175
175 | 176
187
177
176
176 | 177
187
178
178
177
177 | 178
187
179
178
178 | 179
187
180
179
179 | 180
187
181
180
180 | 181
187
182
181
181 | 182
187
183
182
183 | 183
187
184
183
183
185 | 184
187
185
184
184
185 | 185
187
186
185
185 | 186
199
187
186
186 | 187
199
188
187
187 | 188
199
189
188
188 | 189
199
190
189
189 | 190
199
191
190
190 |
191
199
192
191
191 | 192
199
193
192
192 | 193
199
194
193
193 | 194
199
195
194
195 | 195
199
196
195
196 | 196
199
197
196
196 | 197
199
198
197
197 | | A.7b
A.8aa
A.8e
A.8f
A.9a | 174
174
174 | 175
175
175 | 176
176
176 | 177
177
177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 189
186 | 189
187 | 189
188 | 193
189
196 | 193
190
197 | 193
191
199 | 196
192
210 | 196
193
211 | 196
194
212 | 199
195
212 | 199
196
212 | 199
197 | | A.10a
B.51aa
B.51ab
B.51ba
B.51bb
B.52
C.1a | 174
175
175
175
175
175
174
176
178
185 | 175
176
176
176
176
176
175
178
185 | 176
177
177
177
177
177
176
179
185 | 177
178
178
178
178
178
177
180
185 | 178
179
179
179
179
179
178
181
185 | 179
180
180
180
180
180
179
182
185 | 180
181
181
181
181
180
183
185 | 181
182
182
182
182
182
182
181
184
185 | 182
183
183
183
183
183
182
185 | 183
184
184
184
184
183
186 | 184
185
185
185
185
185
184
187
191 | 185
186
186
186
186
185
188
189
191 | 186
187
187
187
187
187
186
189
191 | 187
188
188
188
188
187
190
191
194
196 | 188
189
189
189
189
190
188
191
194 | 189
190
190
190
190
190
190
189
192
194 | 190
191
191
191
191
191
191
190
193
201 | | 192
193
193
193
193
193
193
192
195
201 | 193
194
194
194
194
194
193
196
201 | 194
195
195
195
195
195
195
194
197
201 | 195
196
196
196
196
196
196
195
198
199
201 | 196
197
197
197
197
197
196
199
201 | 197
198
198
198
198
198
197
200
201 | | C.1c
C.1d | 175
174
176
178
185 | 176
175
178
185 | 177
176
179
185 | 178
177
180
185 | 179
178
181
185 | 180
179
182
185
200 | 181
180
183
185 | 182
181
184
185 | 183
182
185 | 184
183
186 | 185
184
187
191 | 186
185
188
191 | 187
186
189
191 | 188
187
190
191 | 189
188
191 | 190
189
192 | 191
190
193
202 | 192
191
194
202 | 193
192
195
202 | 194
193
196
202 | 195
194
197
202 | 196
195
198
202 | 197
196
199
202 | 198
197
200
202 | | C.3a
C.3aa
C.3c
C.3ca
C.3e | 174
176
176
182
174 | 175
176
177
182
175 | 176
176
178
182
176 | 177
179
178
182
177 | 178
179
179
182 | 179
179
180
182 | 180
182
180
182 | 181
182
181
182 | 182
182
182
182 | 183
185
183
183 | 184
185
184
184 | 185
185
185
185 | 186
188
195 | 187
188
195 | 188
188
195 | 189
191
195 | 190
191
195 | 191
191
195 | 192
194
195 | 193
194
195 | 194
194
195 | 195
197
195 | 196
197 | 197
197 | | C.3f
C.3g
C.3h
C.4aa
C.4ab
C.4c | 174 | 175 | 176 | 177 | 184 | 180
184 | 182
188 | 185
188 | 188 | 192 | 192 | 192 | 186
197
197 | 187
197
197 | 188
197
197 | 189
198
198 | 190
198
198 | 191
198
198 | 192
199
199 | 193
199
199 | 194
199
199 | 195
200
200 | 196
200
200 | 197
200
200 | | C.6aa
C.6ab
D.1a
D.1b
D.1c
F.1a | 175
180
175
186
190
195 | 176
181
176
186
190
195 | 177
182
177
186
190
195 | 178
183
178
186
190
195 | 179
184
179
186
190
195 | 180
184
180
186
190
195 | 181
184
181
186
190 | 182
185
182
186
190
195 | 183
186
183
186
190
195 | 184
187
184
186
190
195 | 185
187
185
186
190
195 | 186
188
186
186
190 | 187
188
187
198
190
195 | 188
189
188
198
190
195 | 189
189
189
198
190 | 190
190
190+
198
190 | 191
191
191
198
226
195
205 | 192
192
192
198
226
195 | 193
193
193
198
226
195 | 194
194
194
198
226 | 195
195
195
198
226
195 | 196
196
196
198
226
196 | 197
197
197
198
226
197 | 198
198
198
198
226
198 | | F.1b
H.60 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 195
194 | 196
195 | 197
196 | 198
197 | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | 1 | 1961 | | | | | | | | | | | 1 | 1962 | | | | | | | | | | | | |------------------| | Key * | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | | | 000 | 001 | 000 | 000 | 004 | 005 | 000 | 007 | 200 | 200 | 010 | 011 | 010 | 010 | 014 | 015 | 216 | 217 | 210 | 210 | 220 | 201 | | A.2a | 198 | 199 | 200 | 201 | 202 | 203 | 204
211 | 205
211 | 206
211 | 207
211 | 208
211 | 209 | 210
223 | 211
223 | 212
223 | 213
223 | 214
223 | 215
223 | 216
223 | 217
223 | 218
223 | 219
223 | 220
223 | 221
223 | | A.2b | 211
199 | 211
200 | 211
201 | 211
202 | 211
203 | 211
204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | | A.2c
A.3b | 139 | 200 | 201 | 202 | 203 | 204 | 203 | 200 | 207 | 200 | 209 | 210 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | A.5a
_A.5a | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | A.7a | 198 | 199 | 200 | 201 | 202 | 203 | 205 | 205 | 207 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | A.7b | 204 | 204 | 204 | 205 | 205 | 205 | 208 | 208 | 208 | 212 | 212 | 212 | 213 | 213 | 213 | 216 | 216 | 216 | 220 | 220 | 220 | 226 | 226 | 226 | | A.8aa | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | A.8ab | | | | | | | | | | | | | 223 | 223 | 223 | 223 | 223 | 223 | 223 | 223 | 223 | 223 | 223 | 223 | | A.9a | | 213 | 213 | | | | | | | | | | | | | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | A.10a | 198 | 200 | 201 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 219 | 219 | 220 | 221 | | A.11b | 1 200 | 000 | | - 000 | | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 200 | ~~~ | 010 | 01.4 | 015 | 216 | 017 | 218 | 219 | 220 | 221 | 222 | | B.51aa | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 222 | 212 | 213 | 214
214 | 215 | 216 | 217
217 | 218 | 219 | 220 | 221 | 222 | | B.51ab
B.51ba | 199
199 | 200
200 | 201
201 | 202
202 | 203
203 | 204
204 | 205
205 | 206
206 | 207
207 | 208
208 | 209
209 | 210
210 | 211
211 | 212
212 | 213
213 | 214 | 215
215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | | B.51bb | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | | B.5100 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | | C.1a | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | 0.14 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 210- | | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | | | 208 | 208 | 208 | 208 | 208 | 200 | 208 | 200 | LIO | | | | -10 | | | | , | -10 | | | | | | , | | C.lc | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | incl | uded | in C. | la af | ter J | an. 1 | 962 | | | | | | C.1a | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 210 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | | | 208 | 208 | 208 | 208 | 208 | | 208 | | | | | | | | | | | | | | | | | | | C.3a | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | 0.0 | | | 500 | 000 | | | 206 | 205 | 209 | | 209 | | 010 | | 010 | 015 | 015 | 03.5 | | 010 | 010 | 001 | 001 | | | C.3aa | 200 | 200 | 200 | 203 | 203 | 203 | 206 | 206 | 206 | 209 | 209 | 209 | 212 | 212 | 212 | 215 | 215 | 215 | 218 | 218 | 218 | 221 | 221 | 221 | | C.3h
C.3ha | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210
210 | 211
211 | 212
212 | 213
213 | 214
214 | 215
215 | 216
216 | 217
217 | 218
218 | 219
219 | 220
220 | 221
221 | | C.311a | | | | | | | | | | | | | 210 | 211 | 212 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | |
C.4aa | 203 | 203 | 203 | 204 | 204 | 204 | 208 | 208 | 208 | 209 | 209 | 209 | 213 | 213 | 213 | 216 | 216 | 216 | 219 | 219 | 219 | 222 | 222 | 222 | | C.4ab | 203 | 203 | 203 | 204 | 204 | 204 | 208 | 208 | 208 | 209 | 209 | 209 | 2,10 | LIU | 213 | 210 | 210 | 210 | 213 | 213 | LIJ | | LLL | | | C.4b | 200 | 200 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | 0.4c | 198 | 201 | 202 | 202 | 202 | 203 | 207 | 207 | 207 | 207 | 207 | | | | | | | | | | | | | | | C.6aa | 199 | 200 | 201 | 202 | 203 | 204 | 207 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 219 | 219 | 219 | 220 | 221 | 222 | | Ç.6ab | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 219 | 219 | 219 | 220 | 221 | 222 | | C.6ac | 1 | 200 | | 200 | 200 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 219 | 219 | 219 | 220 | 221 | 222 | | D.la | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | | D.1b | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | 221 | | D.lc | 226 | 226 | 226 | 226 | 226 | 226 | 226 | 226 | 226 | 226 | 226 | 226 | 226 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | 233 | | F.la | 199 | 200 | 201 | 202 | 203 | 204 | 204
205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 223 | 223 | 223 | 223 | 223 | 223 | 233 | 222 | | F.1b | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 210 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | | H.60 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | | H.61 | 1 | | | | | | | | | | | | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | 207 | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | Key | 1963
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | 1964
Jan | Feb | Mar | Apr | May | Jun | Ju] | Aug | Sep | 0ct | Nov | Dec | |---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|--| | A.2a
A.2b
A.2c
A.3b
A.5a | 222
235
223
222
222 | 223
235
224
223
223 | 224
235
225
224
224 | 225
235
226
225
225 | 226
235
227
none
226 | 227
235
228
227
227 | 228
235
229
228
228 | 229
235
230
229
229 | 230
235
231
230
230 | 231
235
232
231
231 | 232
235
233
232
232 | 233
235
234
233
233 | 234
247
235
234
234 | 235
247
236
235
235 | 236
247
237
236
236 | 237
247
238
237
237 | 238
247
239
238
238 | 239
247
240
239
239 | 240
247
241
240
240 | 241
247
242
241
241 | 242
247
243
242
242 | 243
247
244
243
243 | 244
247
245
244
244 | 245
247
246
245
245 | | A.7a
A.7b
A.8aa
A.8ab
A.8ac | 222
226
222
233 | 223
226
223
233 | 224
226
224
233 | 225
228
225
233 | 226
228
226
233 | 227
228
227
233 | 228
231
228
233 | 229
231
229
233 | 230
231
230
233 | 231
234
231
233 | 232
234
232
232
233 | 233
234
233
233
233 | 234
237
234
245
240 | 235
237
235
245
240 | 236
237
236
245
240 | 237
240
237
245
245
240 | 238
240
238
245
240 | 239
240
239
245
240 | 240
243
240
245
240 | 241
243
241
245
241 | 242
243
242
245
245
242 | 243
248
243
245
243 | 244
248
244
245
244 | 245
248
245
245
245
245 | | A.8ad
A.9a
A.9b | 222 | - | - | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 245
234 | 245
235 | 245
236 | 245
237 | 245
238 | 245
239 | 245
240 | 245
241 | 245
242 | 245
243 | 245
244 | 245
245
250 | | A.10a
A.11aa
A.11c | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234
243 | 235
247 | 236
247 | 237
241
249 | 238
241
255 | 239
241
264 | 240
244
266 | 241
244
266 | 242
245 | 243
245 | 244 | 245 | | B.51aa
B.51ab
B.51ba
B.51bb | 223
223
223
223
223 | 224
224
224
224 | 225
225
225
225
225 | 226
226
226
226 | 227
227
227
227
227 | 228
228
228
228 | 229
229
229
229 | 230
230
230
230 | 231
231
231
231 | 232
232
232
232
232 | 233
233
233
233 | 234
234
234
234 | 235
235
235
235
235 | 236
236
236
236 | 237
237
237
237 | 238
238
238
238 | 239
239
239
239 | 240
240
240
240
240 | 241
241
241
241 | 242
242
242
242 | 243
243
243
243 | 244
244
244
244 | 245
245 | 246
246 | | B.51ca
B.51cb
B.52 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245
245
245 | 246
246
246 | | C.la | 222
225 | 223
226 | 224
227 | 225
228 | 226
229 | 227
230 | 228
231 | 229
232 | 230
233 | 231
234 | 232
235 | 233
236 | 234
237
240 | 235
238
240 | 236
239
240 | 237
240 | 238
241 | 239
242 | 240
243 | 241
244 | 242
245 | 243
246 | 244
248 | 245
248 | | C.1d
C.3a | 222
225
222 | 223
226
223 | 224
227
224 | 225
228
225 | 226
229
226 | 227
230
227 | 228
231
228 | 229
232
229 | 230
233
230 | 231
234
231 | 232
235
232 | 233
236
233 | 234
237
234 | 235
238
235 | 236
239
236 | 237
240
237 | 238
241 | 239
242
239 | 240
243 | 241
244 | 242
245 | 243
246 | 244
248 | 245
248 | | C.3aa
C.3h
C.3ha
C.3i | 224
222
222
222 | 224
223
223
223 | 224
224
224
224
224 | 227
225
225
225
225 | 227
226
226
229 | 227
227
227
227
229 | 230
228
228
229 | 230
229
229 | 230
230
230
230 | 233
231
231 | 233
232
232 | 233
233
233 | 236
234
234 | 236
235
235 | 236
236
236 | 239
237
237 | 238
239
238
238 | 239
239
239
239 | 240
242
240
240 | 241
242
241
241 | 242
242
242
242 | 243
245
243
243 | 244
245
244
244 | 245
245
245
245 | | C.3k
C.4aa
C.4b
C.5a | 225
222 | 225
223 | 225
224 | 228
225 | 228
226 | 228
227 | 230
228 | 230
229 | 230
230 | 234
231
249 | 234
232 | 234
233 | 237
234 | 237
235 | 237
236 | 240
237 | 240
238 | 240
239 | 252
243
240 | 252
243
241 | 252
243
242 | 252
246
243 | 252
246
244 | 252
246
245 | | C.6 | 223
231 | 224
231 | 225
231 | 226 | 227
231 | 228
231 | 229
230
231 | 230
231 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | | 0.8ba
0.1a
0.1b
0.1c | 223
233
233 | 224
233
233 | 225
233
233 | 226
233
233 | 227
233
233 | 228
233
233 | 229
233
233 | 230
233
233 | 231
231
233
233 | 232
232
233
233 | 233
233
233
233 | 234
234
233
233 | 235
235
245
245 | 236
236
245
245 | 237
237
245
245 | 238
238
245
245 | 239
239
245
245 | 240
240
245
245 | 241
241
245
245 | 242
242
245
245 | 243
243
245
245 | 244
244
245
245 | 245
245
245
245 | 246
246
245
245 | | F.1a
F.1b | 223
223 | 224
224 | 225
225 | 226
226 | 227
227 | 228
228 | 229
229 | 230
230 | 231
231
234 | 232
232 | 233
233 | 234
234 | 235
235 | 236
236 | 237
237 | 238
238 | 239
239 | 240
240 | 241
241 | 242
242 | 243
243 | 244
244 | 245
245 | 246
246 | | F.1c
_F.1d
H.60 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 243
234 | 243 | 243 | 243 | 243
243
238 | 243
243
239 | 243
243
240 | 243
243
241 | 243
243
242 | 244
244 | 245
245 | 246
246 | | | | LLU | 7 | 660 | 220 | £41 | 660 | 223 | LJU | 231 | LJL | ر دد، | 234 | 233 | 430 | 63/ | 230 | 239 | 24U | ፈ ቶ ጀ | 446 | 243 | 244 | 245 | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | | | | | | | | | HND | EA I | U J(| JLAN | OLO | 11110 | IVAL | UA 17 | • | | | | | | | | | |------------------------------|-------------------|-------------------|-------------------|-------------------
-------------------| | Key * | 1965
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | 1966
Jan | Feb | Mar | Apr | May | Jun | Jul | , Aug | Sep | 0ct | Nov | Dec | | A.2a
A.2b | 246
258 | 247
258 | 248
258 | 249
258 | 250
258 | 251
258 | 252
258 | 253
258 | 254
258 | 255
258 | 256
258 | 257
258 | 258
271 | 259
271 | 260
271 | 261
271 | 262
271 | 263
271 | 264
271 | 265
271 | 266
271 | 267
271 | 268
271 | 269
271 | | A.2c
A.3a | 247
246 | 248
247 | 249
248 | 250
249 | 251 | 252
251 | 253
252 | 254
253 | 255
254 | 256
255 | 257
256 | 257
257 | 258
258 | 259
259 | 260
260 | 261
261 | 262
262 | 263
263 | 264
264 | 265
265 | 266
269
266 | 267
269
267 | 268
269
268 | 269
270
269 | | A.3b
A.5a
A.7a | 246
247 | 247
248 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 | 253
253 | 254 | 255
256 | 256
257 | 257
257 | 258
258 | 259
259 | 260
260 | 261
261 | 262
262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | | A.7b
A.8aa | 249
246
257 | 249
247
257 | 249
248
257 | 252
249
257 | 252
250
257 | 252
251
257 | 256
252
257 | 256
253
257 | 256
254
257 | 258
255
257 | 258
256
257 | 258
257
257 | 261
258
269 | 261
259
269 | 261
260
269 | 264
261
269 | 264
262
269 | 264
263
269 | 267
264
269 | 267
265
269 | 267
266
269 | 270
267
269 | 270
268
269 | 270
269
269 | | A.8ab
A.8ac
A.8ad | 246
257 | 247
257 | 248
257 | 249
257 | 250
257 | 251
257 | 252
257 | 253
257 | 254
257 | 255
257 | 256
257 | 257
257 | 258
269 | 259
269 | 260
269 | 261
269 | 262
269 | 263
269 | 264
269 | 265
269 | 266
269 | 267
269 | 268
269 | 269
269 | | A.9a
A.9b | 246
250
246 | 247
250 | 248
254 | 249
254 | 250
257 | 251
257 | 252
257 | 253
259
253 | 254
260
254 | 255
263
255 | 256
263
257 | 257
263
257 | 258
263
258 | 259
263
259 | 260
263
260 | 261
266
261 | 262
266
262 | 263
266
264 | 264
267
264 | 265
267
265 | 266
267
266 | 267
268
267 | 268

268 | 269
269
269 | | A.10a
A.10b
A.10c | 240 | | | | | | | | | 255 | 257
256 | 257
257 | 258
258 | 259
259 | 260
260 | 261
261 | 262
262 | 264
263 | 264
264 | 265
265 | 266
266 | 267
267 | 268
268 | 269
269 | | A.10d
A.11aa
A.11ab | | | 279
286 276 | 276 | 276 | 276 | 264 | 261
276 | 262
276 | 263
264 | 264
265 | 265
267
279 | 266
267 | 267
269
272 | 268
269
273 | 269
269
274 | | A.11ac
A.11ad | | | 200 | 200 | | | | | | | | 270 | 270 | 270 | 270 | 270
267 | 271
267 | 271 | 271 | 271 | 271 | 271 | 271 | 271 | | A.11ae
A.13a | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 306
258 | 261
306 | 261
306 | 261
306 | 261
306 | 262
306 | 263
306 | 264
306 | 265
306 | 266
306 | 306 | 272
306 | 306 | | B.51aa
B.51ab
B.51ba | 247
247 | 248
248 | 249
249 | 250
250 | 251
251 | 252
252 | 253
253 | 254
254 | 255
255 | 256
256 | 257
257 | 258
258 | 050 | 000 | 0.01 | 060 | 060 | 054 | 065 | 000 | 220 | 050 | 050 | 070 | | B.51ca
B.51cb
B.52 | 247
247
247 | 248
248
248 | 249
249
249 | 250
250
250 | 251
251
251 | 252
252
252 | 253
253
253 | 254
254
254 | 255
255
255 | 256
256
256 | 257
257
257 | 258
258
258 | 259
259
259 | 260
260
260 | 261
261
261 | 262
262
262 | 263
263
263 | 264
264
264 | 265
265
265 | 266
266
266 | 267
267
267 | 268
268
268 | 269
269
269 | 270
270
270 | | C.1a | 246
249 | 247
250 | 248
251 | 249
252 | 250
253 | 251
255 | 252
255 | 253
256 | 254
257 | 255
258 | 256
259 | 257
260 | 258
261 | 259
262 | 260
263 | 261
264 | 262
265 | 263
266 | 264
267 | 265
268 | 266 | 267 | 268 | 269 | | C.1ba | | | | | | | | | | | | | | 266 | | 266
268 | 266 | | | 270 | 269 | 272 | 273 | 274 | | C.1d | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260
263 | 261
264 | 262
265 | 263
266 | 264
267 | 265
268 | 271
266
269 | 267
272 | 268
273 | 269
274 | | C.3a | 249 | 250
247 | 251
248 | 252
249 | 253
250 | 255
251 | 255
252 | 256
253 | 257
254 | 258
255 | 259
256 | 260
257 | 261 | 262
259 | 260 | 261 | 262 | 263 | 264 | 270
265 | 271
266 | 267 | 268 | 269 | | <u>C.3</u> aa
C.3h | 248
246 | 248
247 | 248
248 | 251
249 | 251
250 | 251
251 | 254
252 | 254
253 | 254
254 | 257
255 | 257
256 | 257
257 | 258 | 259 | 260 | 261 | 262 | 263 | | | | | | | | C.3ha
C.3i
C.3j | 246 | 247 | 248 | 249 | 250
251 | 251
252
252 | 252
253
253 | 253
253
253 | 254
254
254 | 255
255
255 | 256
256
256 | 257
257 | 258 | | 261 | | | - | | | | | | | | <u>C.3k</u>
C.31 | 252 | 252 | 252 | 256 | 256 | 256 | 263 | 263 | 263 | 263 | 263 | 263 | 258 | 259 | 260 | 261 | 262 | 263
263 | 264
264
264 | 265
265
265 | 266
266
266 | 267
267
267 | 268
268
268 | 269
269
269 | | C.3n
C.4aa
C.4b | 249
246 | 249
247 | 249
248 | 252
249 | 252
250 | 252
251 | 255
252 | 255
253 | 255
254 | 258
255 | 258
256 | 258
257 | 260
261
258 | 260
261
259 | 260
261
260 | 261
264
261 | 262
264
262 | 264
263 | 267
264 | 267
265 | 267
266 | 270
267 | 270
268 | 270
269 | | C.5b
C.5c | 247 | 240 | 279 | 279
250 | 279
251 | 279
252 | 279
253 | 279
254 | 279
255 | 279
256 | 276
257 | 276
258 | 276
259 | 276
260 | 264
261 | 276
262 | 276
263 | 264
264 | 275
265
265 | 275
267
266 | 275
267
267 | 275
269
268 | 275
269
269 | 277
269
270 | | C.6
C.8bc
<u>C.8be</u> | 247 | 248
248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257
257 | 258
258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | | D.1a
D.1b | 247
258
258 | 248
258 | 249
258 | 250
258
258 | 251
258 | 252
258
258 | 253
258
258 | 254
258 | 255
258
258 | 256
258
258 | 258 | 258
258
258 | 259
270
270 | 260
270
270 | 261
270
270 | 262
270
270 | 263
270
270 | 264
270
270 | 265
270
270 | 266
270
270 | 267
270
270 | 268
270
270 | 269
270
270 | 270
270
270 | | D.1c
D.1d
D.1f | | | | | | | | | | | | | 270 | 270 | 270 | 270 | 270 | 270 | 270
270 | 270
270 | 270
270 | 270
273 | 270
273 | 270
273 | | F.1a
F.1b | 247
247
247 | 248
248
248 | 249
249
249 | 250
250
250 | 251
251
251 | 252
252
252 | | 254
254
254 | 255
255
255 | 256
256
256 | 257
257
257 | 258
258
258 | 259
259
259 | 260
260
260 | 261
261
261 | | 263
263
275 | 264
264
275 | 265
265
275 | 266
266
275 | 267
267
275 | 268
268 | 269
269 | 270
270 | | F.1c
F.1d
F.1e | 247 | | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 274 | 274 | 274 | 274
265 | 274
266 | 274
267 | 274
268 | 274
269 | 274
270 | | Н.60
Н.63 | 246 | | | | 250
es 64 | 251 | | | 254 | 255 | 256 | 257 | 258
282 | | | 261
282 | 262
282 | 263
282 | 264
282 | 265
282 | 266
282 | | 268
282 | | | | 30 | - IN | _y U | o ካወሽ | ~> U4 | u i i u | | | | | | | | | | | | | | | | | | | ^{*} See "Key" on pages 64 and following. INDEX TO "SOLAR-GEOPHYSICAL DATA" | Key * | 1967
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | 1968
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | |--------------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | A.1
A.2a
A.2b
A.2c | 271
270
282
270 | 272
271
282
271 | 273
272
282
272 | 274
273
282
273 | 275
274
282
274 | 276
275
282
275 | 277
276
282
276 | 278
277
282
277 | 279
278
282
278 | 280
279
282
279 | 281
280
282
280 | 282
281
282
281 | 283
282
295
282 | 284
283
295
283 | 285
284
295
284 | 286
285
295
285 | 287
286
295
286 | 288
287
295
287 | 289
288
295
288 |
290
289
295
289 | 291
290
295
290 | 292
291
295
291 | 293
292
295
292 | 294
293
295
293 | | A.3a
A.3b
A.4 | 271
270
271 | 272
271
272 | 273
272
273 | 274
273
274 | 275
274
275 | 276
275
276 | 277
276
277 | 278
277
278 | 279
278
279 | 280
279
280 | 281
280
281 | 282
281
282 | 283
282
283 | 284
283
284 | 285
284
285 | 286
285
286 | 287
286
287 | 288
287
288 | 289
288
289 | 290
289
290 | 291
290
291 | 292
291
292 | 293
292
293 | 294
293
294 | | A.5
A.5a
A.7b | 271
270
271 | 272
271
272 | 273
272
273 | 274
273
275 | 275
274
275 | 276
275
276 | 277
276
277 | 278
277
278 | 279
278
279 | 280
279
280 | 281
280
282 | 282
281
282 | 283
282
283 | 284
283
284 | 285
284
285 | 286
285
286 | 287
286
287 | 288
287
288 | 289
288
289 | 290
289
290 | 291
290
291 | 292
291
292 | 293
292
293 | 294
293
294 | | A.8aa
A.8ac
A.8g | 270
270
270
270 | 271
271
271 | 272
272
272
272 | 273
273
273 | 274
274
274
274 | 275
275
275
275 | 276
276
276 | 277
277
277 | 278
278
278
278 | 279
279
279 | 280
280
280
280 | 281
281
281 | 282
282
282
282 | 283
283 | 284
284 | 285
285 | 286
286 | 287
287 | 288
288 | 289
289 | 290
290 | 291
291 | 292
292 | 293
293 | | A.9a
A.9b
A.10a | 271
271
271 | 272
272
272 | 273
273
272 | 274
274
274
273 | 275
275 | 276
276 | 277
277
277 | 278
278
278
277 | 279

279 | 280
280
279 | 281
281
280 | 282
282 | 283
283 | 283
284
284 | 284
285
285 | 285
286
286 | 286
287
 | 287
288
288 | 288
289
289 | 289
290
290 | 290
291
291 | 291
292
292 | 292
293
293 | 293
294
294 | | A.10b
A.10c
A.10d | 270
270
270
270 | 271
271
271
271 | 272
272
272
272 | 273
273
273
273 | 275
274
274 | 275
275
275
275 | 276
276
276
276 | 277
277
277
277 | 279
278
278
278 | 279
279
280
280 | 280
280
280
280 | 281
281
281 | 282
282
282
282 | 283
283
283 | 284
284
284
284 | 285
285
285
285 | 287
287
286
286 | 287
287
287
287 | 288
288
288
288 | 289
289
289
289 | 290
290
290
290 | 291
291
291
291 | 292
292
292
292 | 293
293
293
293 | | A.10e
A.11aa
A.11ab | 271
275 | 272
276 | 273
277 | 274
278 | 275
279 | 276
280 | 277
281 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 287
288 | 288
289 | 289
290 | 290
291 | 291
292 | 292
293 | 293
294 | | A.llac
A.llae
A.lld | 271
 | 272
272
 | 273
273
278 | 274
274
279 | 275
279 | 276
280 | 277
281 | 278

282 | 279
279
 | 280
280 | 281 | | | | | | | 288
288 | 289
289 | 290
290 | 291
291 | 292
292 | 293
293 | | | A.12aa
A.12ab
A.13a | 305 | 305 | 305 | 305 | 282
282
305 | 282
282
305 | 282
282
305 | 282
282
305 | 283
283
305 | 284
284
305 | 285
285
281 | 286
286
281 | 287
287
282 | 288
288
283 | 289
289
284 | 290
290
285 | 291
291
286 | 292
292
287 | 293
293
288 | 298
298
289 | 298
298
290 | 298
298
291 | 300
300
292 | 301
301
293 | | B.51ca
B.51cb
B.52 | 271
271
271 | 272
272
272 | 273
273
273 | 274
274
274 | 275
275
275 | 276
276
276 | 277
277
277 | 278
278
278 | 279
279
279 | 280
280
280 | 281
281
281 | 282
282
282 | 283
283
283 | 284
284
284 | 285
285
285 | 286
286
286 | 287
287
287 | 288
288
288 | 289
289
289 | 290
290
290 | 291
291
291 | 292
292
292 | 293
293
293 | 294
294
294 | | C.1a
C.1ba | 270
275 | 271
276 | 272
277
278 | 273
278 | 274
279 | 275
280 | 276
281 | 277
282 | 278
283 | 279
284 | 280
285 | 281
286 | 282
287 | 283
288 | 284
289 | 285
290 | 286
291 | 287
292 | 288
293 | 289
294 | 290
295 | 291
296 | 292
297 | 293
298 | | C.1d
C.1g | 270
275 | 271
276 | 272
277 | 273
278 | 274
279 | 275
280 | 276
281 | 277
282 | 278
283 | 279
284 | 280
285 | 281
286 | 282
287
295 | 283
288
295 | 284
289
295 | 285
290
295 | 286
291
295 | 287
292
295 | 288
293 | 289
294 | 290
295 | 291
296 | 292
297 | 293
298 | | C.3a
C.3k
C.31 | 270
270
270 | 271
271
271 | 272
272
272 | 273
273
273 | 274
274
274 | 275
275
275 | 276
276
276 | 277
277
277 | 278
278
278 | 279
279
279 | 280
280
280 | 281
281
281 | 282
282 | 283
283
283 | 284
284
284 | 285
285 | 286
286 | 287
287 | 288
288 | 289
289 | 290
290 | 291
291 | 292
292 | 293
293 | | C.3m
C.3n
C.3p | 270 | 271 | 272
272 | 273
273 | 274
274
274 | 275
275 | 276
276 | 277
277
277 | 278
278
278 | 279
279
279 | 280
280
280
280 | 281
281
281 | 282
282
282 | 283
283 | 284
284 | 285
285 | 286
286 | 287
287 | 288
288
288 | 289
289
289 | 290
290
290
290 | 291
291
291
291 | 292
292
292 | 293
293
293
293 | | C.3q
C.3r
C.3s | | | | | | | | 477 | 470 | 279 | 280
280 | 281
281 | 282
282
282
282 | 283
283 | 284
284
284 | 285
285
285 | 286
286
286 | 287
287
287
287 | 288
288
288 | 289
289
289 | 290
290
290 | 291
291
291
291 | 292
292
292 | 293
293
293
293 | | C.4aa
C.4b
C.4d
C.4e | 277
270
277 | 277
271
277 | 277
272
277 | 277
273
277 | 277
274
277 | 277
275
277 | 277
276
277 | 278
278
278 | 279
279
279 | 280
280
280 | 281
281
281 | 282
282
282 | 283
283
283 | 284
284
284 | 285
285
285
285
285 | 286
286
286
286 | 287
287
287
287
287 | 288
288
288
288 | 289
289
289
289 | 290
290
290
290 | 291
291
291
292 | 292
292
292
292 | 293
293
293
293 | 294
294
294
294 | | C.4f
C.5b
C.5c | 278
271 | 278
272 | 278
273 | 280
274 | 280
275 | 281
276 | | 283
278 | .283
279 | 284
280 | 285
281 | 287 | 283
287
283 | 284
288
284 | 285
289
285 | 286
290
286 | 287
291
287 | 288
292
288 | 289
293
289 | 290
294
290 | 291
295
291 | 292
296
292 | 293
297
293 | 294
299
294 | | C.5d
C.6 | 271 | 272 | 278
273 | 279
274 | 279
275 | 280
276 | 281
277 | 282
278 | 279 | 280 | 281 | 282 | 283
287 | 284
288 | 285
289 | 286
290 | 287
291 | 287
292 | 288
293 | 289
294 | 290
295 | 291
296 | 292
297 | 293
298 | | C.8
C.8ba
C.8be | 284
271 | 284 | 284
273 | 284
274 | 284
275 | 284
276 | 277 | 278 | 279 | 280 | 281 | · | | | | | | | | | | | | | | D.1a
D.1b
D.1c
D.1d
D.1e | 271
282
282
271
207 | 272
282
282
272 | 273
282
282
273 | 274
282
282
274 | 275
282
282
275 | 276
282
282
276 | 277
282
282
277 | 278
282
282
278 | 279
282
282
279 | 280
282
282
280 | 281
282
282
281 | 282
282
282
282 | 283
294
294
283 | 284
294
294
284 | 285
294
294
285 | 286
294
294
286 | 287
294
294
287 | 288
294
294
288 | 289
294
294
289 | 290
294
294
290 | 291
294
294
291 | 292
294
294
292 | 293
294
294
293 | 294
294
294
294 | | D.1f
F.1a | 297
277
271 | 277
272 | 277
273 | 280
274 | 280
275 | 280
276 | 283
277 | 283
278 | 283
279 | 285
280 | 285
281 | 285
282 | 290
283 | 290
284 | 290
285 | 291
286 | 291
287 | 291
288 | 295
289 | 295
290 | 295
291 | 298
296
292 | 298
296
293 | 296
294 | | F.1b
F.1c
F.1d
F.1e | 271
288
288
271 | 272
288
288
272 | 273
288
288
273 | 274
288
288
274 | 275
288
288
275 | 276
288
288
276 | 277
288
288
277 | 278
288
288
278 | 279
288
288
279 | 280
280
288
280 | 281
281
288
281 | 282
282
282
282 | 283
283
288 | 284
284
284
284 | 285
285
285
285 | 286
286
286
286 | 287
287
287
287 | 288
288
288
288 | 289
289
289
289 | 290
290
290
290 | 291
291
291
291 | 292
292
292
292 | 293
293
293
293 | 294
294
294
294 | | H.60
H.62
H.63 | 270

282 | 271

282 | 272

282 | 273

282 | 274

282 | 275

282 | 276

282 | 277

282 | 278

282 | 279

282 | 280

282 | 281

282 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293
299 | ^{*} See "Key" on pages 64 and following. | | 1969 | r -t | | 0 | u | luma | July | Aug | Sep | 0ct | Nov | Dec | |----------------------|------------------|--------------------|--------------------|------------------|--------------------
--------------------|--------------------|-------------------|--------------------|---------------------------|--------------------|-------------------| | Key* | Jan
Serial | Feb | Mar | Apr | May | June | | Aug | | | | | | A.1 | # page
295 | # page
296 | # page
297 | # page
298 | # page
299 41 | # page
300 31 | # page
301 32 | # page
302 34 | # page
303 34 | # page
304 36 | # page
305 28 | 306 28 | | A.2a | 294 | 295 | 296 | 297 | 298 | 299 7 | 300 7 | 301 7 | 302 7 | 303 7 | 304 7
307 6 | 305 7
307 6 | | A.2b
A.2c | 307 5
294 | 307 6
295 | 307 6
296 | 307 6
297 | 307 6
298 | 307 6
299 7 | 307 6
300 7 | 307 6
301 7 | 307 6
302 7 | 303 7 | 304 7 | 305 7 | | A.3a | 295 | 296 | 297 | 298 | 299 41 | 300 31 | 301 32 | 302 34 | 303 34
303 69 | 304 36
304 73 | 305 28
305 63 | 306 28
306 65 | | A.3b
A.4 | 295
295 | 296
296 | 297
297 | 298
298 | 299 72
299 41 | 300 61
300 31 | 301 69
301 32 | 302 65 | 303 64 | 304 67 | 305 58 | 306 59 | | A.5 | 295 | 296 | 297 | 298 | 299 41 | 300 31 | 301 32 | 302 34 | 303 34
303 69 | 304 36
304 73 | 305 28
305 63 | 306 28
306 65 | | A.5a
<u>A.7b</u> | 295
295 | 296
296 | 297
297 | 298
298 | 299 72
299 41 | 300 61
300 31 | 301 69
301 32 | 302 34 | 303 34 | 304 36 | 305 28 | 306 28 | | A.8aa | 294 | 295 | 296 | 297 | 298 | 299 7 | 300 7
300 7 | 301 7
301 7 | 302 7
302 7 | 303 7
303 7 | 304 7
304 7 | 305 7
305 7 | | A.8ac
A.8g | 294
294 | 295
295 | 296
296 | 297
297 | 298
298 | 299 7
299 7 | 300 7 | 301 7 | 302 7 | 303 7 | 304 7 | 305 7 | | A.9a | 295 | 296 | 297 | 298 | 299 41
299 41 | 300 31
300 31 | 301 32
301 32 | 302 34
302 34 | 303 34
303 34 | 304 36
304 36 | 305 28
305 28 | 306 28
306 28 | | A.9b
A.10a | 295
294 | 296
295 | 297
296 | 298
297 | 298 | 299 29 | 300 20 | 301 22 | 302 21 | 303 23 | 304 25 | 305 19 | | A.10b | 294 | 295 | 296 | 297
297 | 298
298 | 299 28
299 31 | 300 19
300 22 | 301 21
301 24 | 302 20
302 23 | 303 22
303 25 | 304 24
304 27 | 305 18
305 21 | | A.10c
A.10d | 294
294 | 295
295 | 296
296 | 297 | 298 | 299 32 | 300 23 | 301 25 | 302 24 | 303 26 | 304 28 | 305 22 | | A. 10e | 294 | 295
296 | 296
297 | 297
298 | 298
299 84 | 299 30
300 71 | 300 21
301 78 | 301 23
302 81 | 302 22
303 79 | 303 24
304 83 | 304 26
305 73 | 305 20
306 74 | | A.11aa
A.11ab | 295
299B 58 | 300B 60 | 301B 86 | 302B 64 | 303B 80 | 304B 77 | 305B 46 | 306B 52 | 307B 55 | 308B 65 | 309B 63
305 28 | 310B 36
306 28 | | A.11e | 301B120 | 301B126 | 303B112 | 303B118 | 303B 96 | 304B 92 | 301, 64
305B 62 | 302 34
306B 68 | 303 34
307B 70 | 304 36
308B 81 | 309B 78 | 310B 52 | | A.12aa
A.12ab | 301B121 | 301B127 | 303B113 | 303B119 | 303B 97 | 304B 93 | 305B 63 | 306B 69 | 307B 70 | 308B 82
303 3 1 | 309B 79
304 31 | 310B 53
305 25 | | A.12ba
A.12bb | | | 296 | 297 | 298
 | 299 37 | 300 27 | 301 29 | | | | 305 26 | | A.13a | 294 | 295 | 296 | 297 | 298 | 299 33
299 34 | 300 24
300 25 | 301 26
301 27 | 302 25
302 26 | 303 27
303 28 | 304 29
306B 99 | 305 23
306B100 | | A.13b
A.13c | 294 | 295 | 296
296 | 297
297 | 298
298 | 299 34
299 36 | 300 25
300 26 | 301 28 | 302 28 | 303 30 | 304 30 | 305 24 | | B.51ca | 295 | 296 | 297 | 298 | 299 104 | 300 88
300 89 | 301 94
301 95 | 302 95
302 96 | 303 95
303 96 | 304 100
304 101 | 305 192
305 93 | 306 92
306 93 | | B.51cb
B.52 | 295
295 | 296
296 | 297
297 | 298
298 | 299 105
299 106 | 300 90 | 301 96 | 302 97 | 303 97 | 304 102 | 305 94 | 306 94 | | B.53 | | 205 | 206 | 297 | 298 | 299 10 | 300 10 | 301 10 | 302 10 | 303 10 | 304 10 | 306 96
305 10 | | C.1a
C.1ba | 294
299B 10 | 295
300B1 4 | 296
301B 4 | 302B 4 | 303B 4 | 304B 5 | 305B 4 | 306B 4 | 307B 4 | 308B 4 | 309B 4 | 310B 4 | | C.1d | 294
299B 35 | 295
300B 29 | 296
301B 35 | 297
302B 37 | 298
303B 48 | 299 18
304B 43 | 300 15
305B 30 | 301 14
306B 34 | 302 14
307B 34 | 303 15
308B 38 | 304 13
309B 33 | 305 12
310B 23 | | C.1e | | | | | | | | | 307B 24
307B 35 | 308B 27
308B 39 | 309B 23
309B 34 | | | C.3
C.3a | 299B 41
294 | 300B 38
295 | 301B 51
296 | 302B 45
297 | 303B 57
298 | 304B 5I | 305B 34
e C.3:) | 306B 35 | 3076 33 | 3000 39 | 2030 24 | . 3100 T4 | | C.3k | 294 | 295 | 296 | 297 | 298 | (Se | e C.3') | | | | | | | C.31
C.3m | 294 | 295 | 296 | 297
296 | 298 | Se | e C.3) | | | | | | | C.3n | 294 | 295 | 296 | 297 | 298 | (Se | e C.3) | | | | | | | C.3p
C.3q | 294
294 | 295
300B 38 | 296
296 | 297
297 | 298
298 | | e C.3)
e C.3) | | | | | | | C.3ŕ | 294 | 295 | 296 | 297 | 298 | (Se | e C.3) | | | | | | | C.3s
C.4aa | 294
295 | 295
296 | 296
297 | 297
298 | 298
299 87 | (Se
300 74 | e C.3) 301 81 | 302 84 | 303 82 | 304 86 | 305 77 | 306 79 | | C.4b | 295 | 296 | 297 | 298 | 299 87 | 300 74 | 301 81 | 302 84 | 303 82 | 304 86 | 305 77 | 306 79 | | C.48
C.4e | 295
295 | 296
296 | 297
297 | 298
298 | 299 87
299 87 | 300 74
300 74 | | | | | 305 77
306 77 | | | C.4f
C.5b | 295
299B 57 | 296
300B 58 | 297
302B 89 | 298 | 299 87 | 300 74 | 301 81 | 302 84 | 303 82 | 304 86 | 305 77 | 306 79 | | C.5c | 295 | 296 | 297 | 303B108
298 | 304B104
299 86 | 304B 76
300 73 | 305B 45
301 80 | | | | 312B 86
305 75 | | | C.6 | 294
299B 36 | 295
300B 30 | 296
301B 36 | 297
302B 38 | 298 | 299 19 | 300 16 | 301 15 | 302 15 | 303 16 | 304 14 | 305 13 | | D.1a | 295 | 296 | 297 | 298 | 299 100 | 304B 44
300 84 | 305B 31
301 90 | 306B 74
302 92 | | 304 97 | 305 89 | 306 77
306 87 | | D.1b
D.1c | 306 89
306 90 | 306 89
306 90 | 306 89
306 90 | 306 89
306 90 | | 306 89
306 90 | | 306 89 | 306 89 | 306 89 | 306 89 | 306 89 | | D.1d | 295 | 296 | 297 | 298 | 299 102 | 300 86 | 301 92 | 302 94 | | | 306 90
305 91 | 306 91 | | D.le
<u>D</u> .lf | 300B 84 | 300B 74
300B 84 | 301B102
300B 84 | | 303B 98
303B110 | 304B 94
303B110 | | 306B 74 | 307B 76 | | 309B 84 | 310B 58 | | F.1a | 295 | 296 | 297 | 298 | 299 98 | 300 82 | 301 88 | 302 90 | 303 90 | 304 95 | 305 87 | 306 85 | | F.1b
F.1c | 295
295 | 296
296 | 297
297 | 298
298 | 299 98
299 98 | 300 82
300 82 | | | | 304 95
 | 305 87 | 306 85 | | F.1d | 295 | 296 | 297 | 298 | 299 98 | 300 82 | 301 88 | 302 90 | | | | | | <u>F.1e</u>
H.60 | 295
294 | 296
295 | 297
296 | 298
297 | 299 99
298 | 300 83
299 5 | 301 89
300 5 | 302 91
301 5 | | | 305 88
304 4 | | | H.62 | 300B 76 | 301B107 | 302B 82 | 303B101 | | | | 307B 80 | | 309B 88 | | | $[\]star$ See "Key" on pages 64 and following. | Vout | 1070 | | | | | | | | | | | |---|---|---|---|--|---|---|---|---|--|---|---| | Key* | 1970
Jan | Feb | Mar Apr | May | June | July | Aug | Sep | 0ct | Nov | Dec | | A. 1
A. 2a
A. 2b
A. 2c
A. 3a
A. 3b
A. 4 | 307 30
306 7
319 6
306 7
307 30
307 67
307 61
307 30 | 308 30
307 7
319 6
307 7
308 30
308 63
308 58
308 30 | 309 31 310
308 7 309
319 6 319
308 7 309
309 31 310
309 68 310
309 62 310
309 62 310 | 63 311 63
7 310 7
6 319 6
7 310 7
31 311 32
73 311 74
63 311 63
33 311 32 | 312 62
311 7
319 6
311 7
312 32
312 72
312 62
312 32 | 313 62
312 7
319 6
312 7
313 31
313 73
313 62
313 31 | 314 63
313 7
319 6
313 7
314 31
314 74
314 63
314 31 | 315 60
314 7
319 6
314 7
315 30
315 70
315 60
315 30 | 316 63
315 73
319 6
315 7
316 32
316 74
316 63
316 32 | 317 58
316 7
319 6
316 7
317 28
317 68
317 58
317 28 | 318 59
317 7
319 6
317 7
318 28
318 70
318 59 | | A.5a
<u>A.</u> 5b | 307 67
 | 308 63 | 309 68 310 | 73 311 74 | 312 72
 | 313 73 | 314 74 | 315 70
 | 316 74
 | 317 68
 | 318 28
318 70
318 77 | | A.7b
A.8aa
A.8ac
A.8g
<u>A.9a</u>
A.9b | 307 30
306 7
306 7
306 7
307 30
307 30 | 308 30
307 7
307 7
307 7
308 30
308 30 | 309 31 310
308 7 309
308 7 309
308 7 309
309 31 310
309 31 310 | 63 311 63
7 310 7
7 310 7
7 310 7
33 311 32
33 311 32 | 312 62
311 7
311 7
311 7
312 32
312 32 | 313 62
312 7
312 7
312 7
313 31
313 31 | 314 63
313 7
313 7
313 7
314 31
314 31 | 315 60
314 7
314 7
314 7
315 30
315 30 | 316 63
315 7
315 7
315 7
316 32
316 32 | 317 58
316 7
316 7
316 7
317 28
317 28 | 318 59
317 7
317 7
317 7
318 28
318 28 | | A.9c
7.10a
Á.10b
A.10c
A.10d | 306 14
306 13
306 16
306 17 | 307 17
307 16
307
19
307 20 | 310 308 17 309 308 16 309 308 19 309 308 20 309 | 33 311 32
18 310 18
17 310 17
20 310 20
21 310 21 | 312 32
311 21
311 20
311 23
311 24 | 313 31

312 19
312 21
312 22 | 314 31

313 15
313 17
313 18 | 315 30
314 18
314 17
314 20
314 21 | 316 32
315 17
315 16
315 19
316 20 | 317 28
316 17
316 16
316 19
316 20 | 318 28
318 97
318 96
317 18
317 19 | | A.10e
A.11aa
A.11ab
<u>A.11e</u>
A.12aa
A.12ab
A.12ba | 306 15
307 77
311B 38
307 30
311B 54
311B 55
306 21 | 307 18
308 73
3128 56
308 30
3128 70
3128 70
307 24 | 308 18 309
309 78 310
3138 72 314E
309 31 310
313B 88 314E
313B 89 314E
308 23 309 | 33 311 32
76 315B 88 | 311 22
312 83
316B 99
312 32
316B114
316B115
311 27 | 312 20
313 83
3178 90
313 31
3178106
3178107
312 25 | 313 16
314 85
3188 68
314 31
3238 86
3238 87
313 21 | 314 19
315 81
319B 61
316B130
323B 92
323B 93
314 25 | 315 18
316 82
320B 65
316 32
323B 98
323B 99
315 23 | 316 18
317 77
321B 65
317 28
326B 74
326B 75
316 23 | 317 17
318 78
322B 66
318 28
326B 80
326B 81
317 23 | | A. 12bb
A. 12c
A. 13a
A. 13b
A. 13c
B. | 306 22
306 24
306 18
306 19
306 20 | 307 25
307 27
307 21
307 22
307 23 | 308 24 309
308 26 309
308 21 309

308 22 309 | 25 310 26
27 310 28
22 310 22
23 310 23 | 311 28
311 30
311 25

311 26 | 312 26
312 28
312 23

312 24 | 313 22
313 24
313 19

313 20 | 314 26
314 28
314 22

314 23 | 315 24
315 26
315 21

315 22 | 316 24
316 26
317 21

316 22 | 317 24
317 25
318 20

317 21 | | B.51ca
B.51cb
B.52
B.53
C. | 307 96
307 97
307 98
307 100 | 308 98
308 99
308 100
308 102 | 309 108 310 | 108 311 107 | 312 106
312 107
312 108
312 110 | 313 112
313 113
313 114
313 116 | 314 112
314 113
314 114
314 115 | 315 104
315 105
315 106
315 108 | 316 104
316 105
316 106
316 108 | 317 100
317 101
317 102
317 104 | 318 106
318 107
318 108
318 110 | | C.1a
C.1ba
C.1d
C.1e
C.1f | 306 10
311B 5
306 12
311B 26
311B 19 | 307 10
312B 4
307 15
312B 34
312B 24 | 308 10 309
313B 5 314B
308 15 309
313B 34 314E
313B 25 314E | 16 310 16
38 315B 41 | 311 10
316B 5
311 19
316B 52
316B 38 | 312 10
317B 5
312 18
317B 56
317B 40 | 313. 10
318B 4
313 14
318B 44
318B 30
319B 85 | 314 10
319B 4
314 16
319B 45
319B 32
320B 91 | 315 10
3208 4
315 15
3208 47
3208 36
3218 89 | 316 10
321B 4
316 15
321B 40
321B 32
322B 91 | 317 10
322B 4
317 14
322B 38
322B 30
323B 79 | | C.3
C.4aa
C.4b
C.4d
C.4e | 311B 27
307 84
307 84
307 84
307 84 | 312B 35
308 82
308 82
308 82
308 82 | 313B 35 314E
309 87 310
309 87 310
309 87 310
309 87 311E | 39 315B 42
93 311 92
93 311 92
93 311 92
72 311 92 | 316B 53
312 92
312 92
313B108
312 92 | 317B 57
313 91

313 91
313 91 | 318B 45
314 93

314 93
314 93 | 319B 46
315 87

315 87
315 87 | 320B 48
316 89

316 89
316 89 | 321B 41
317 86
317 86
317 86
318B 96 | 322B 39
318 84
318 84
318 84
318 84 | | C.4f
C.4g
C.5b
<u>C.5c</u>
C.6 | 307 84
313B106
307 79
307 80 | 308 82
308 82
313B107
308 76
308 77 | 309 87 310
309 87 310
3138 70 314E
309 80 310
309 82 310 | 93 311 92
93 3128 89
60 3158 71
86 311 86
88 311 87 | 312 92
312 92
316B 97
312 85
312 87 | 313 91
313 91
317B 88
313 85
313 87 | 314 93
314 93
318B 66
314 87
314 89 | 315 87
315 87
319B 60
315 83
315 84 | 316 89
323B 83
320B 64
316 84
316 85 | 317 86

321B 64
317 79
317 81 | 318 84

323B 85
318 80
318 81 | | D.1a
D.1b
D.1c
D.1d
D.1e
D.1f | 307 93
318 102
318 103
307 95
311B 60
310B 68 | 308 94
318 102
318 103
308 96

310B 68 | 309 102 310
318 102 318
318 103 318
309 104 310
313B 94 314E
310B 68 313B | 102 318 102
103 318 103
106 311 105
82 315B 94 | 312 103
318 102
318 103
312 105
316B120
313B104 | 313 108
318 102
318 103
313 110
317B112
317B122 | 314 109
318 102
318 103
314 111
3188 84
3178122 | 315 100
318 102
318 103
315 102

317B122 | 316 100
318 102
318 103
316 102
320B 81
318B 94 | 317 96
318 102
318 103
317 98
3218 80
3188 94 | 318 100
318 102
318 103
318 104
322B 82
318B 94 | | F.la
F.lb
F.lc
F.ld
F.le
H. | 307 91
307 91

307 92 | 308 92
308 92

308 93 | 309 100 310
309 100 310

309 101 310 | 102 311 101
311 101
311 101 | 312 101
312 101
312 101 | 313 106
313 106
313 106
313 106
313 107 | 314 107
314 107
314 107
314 107
314 108 | 315 98
315 98
315 98
315 98
315 99 | 316 98
316 98
316 98
316 98
316 99 | 317 94
317 94
317 94
317 94
317 95 | 318 98
318 98
318 98
318 98
318 99 | | H.60
H.62 | 306 5
312B 78 | 307 5
313B 97 | 308 4 309
314B 85 315F | 5 310 5
3 97 316B122 | | 312 4
318B 86 | 313 5
319B 78 | 314 5
320B 84 | 315 5
321B 82 | 316 4
322B 84 | | ^{*} See "Key" on pages 64 and following. | Key* | 1971
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec | |--|--|--|--|--|---|---|---|---|---|---|--|--| | A.
A.1
A.2a
A.2b
A.2c | 319 62
318 7
331 6
318 7 | 320 59
319 7
331 6
319 7 | 321 64
320 7
331 6
320 7 | 322 61
321 7
331 6
321 7 | 323 60
322 7
331 6
322 7 | 324 62
323 7
331 6
323 7 | 325 63
324 7
331 6
324 7 | 326 61
325 7
331 6
325 7 | 327 58
326 7
331 6
326 7 | 328 60
327 7
331 6
327 7 | 329 58
328 7
331 6
328 7 | 330 58
329 7
331 6
329 7 | | A.3a
A.3b
A.4
A.5
A.5a | 319 31
319 73
319 62
319 31
319 73 | 320 31
320 69
320 59
320 31
320 69 | 321 33
321 75
321 64
321 33
321 75 | 322 31
322 71
322 61
322 31
322 71 | 323 29
323 71
323 60
323 29
323 71 | 324 32
324 72
324 62
324 32
324 72 | 325 32
325 74
325 63
325 32
325 74 | 326 30
326 72
326 61
326 30
326 72 | 327 28
327 68
327 58
327 28
327 68 | 328 29
328 71
328 60
328 29
328 71 | 329 28
329 68
329 58
329 28
329 68 | 330 27
330 69
330 58
330 27
330 69 | | A.5b
A.7b
A.8aa
A.8ac
A.8g | 319 80
319 62
318 7
318 7
318 7 | 320 75
320 59
319 7
319 7
319 7 | 321 83
321 64
320 7
320 7
320 7 | 322 79
322 61
321 7
321 7
321 7 | 323 80
323 60
322 7
322 7
322 7 | 324 80
324 62
323 7
323 7
323 7 | 325 82
325 63
324 7
324 7
324 7 | 326 79
326 61
325 7
325 7
325 7 | 327 76
327 58
326 7
326 7
326 7 | 328 78
328 60
327 7
327 7
327 7 | 329 76
329 58
328 7
328 7
328 7 | 330 76
330 58
329 7
329 7
329 7 | | A.9a
A.9b
A.9c
A.10a | 319 31
319 31
319 31
318 15
318 14 | 320 31
320 31
320 31
320 31
319 15
319 14 | 321 33
321 33
321 33
321 33
320 16
320 15 | 322 31
322 31
322 31
321 16
321 15 | 323 29
323 29
325B 61
322 15
322 14 | 324 32
324 32
324 32
323 15
323 14 | 325 32
325 32
325 32
324 18
324 17 | 326 30
326 30
326 30
325 18
325 17 | 327 28
327 28
327 28
 | 328 29
328 29
328 29
 | 329 28
329 28
329 28
333B 66 | 330 27
330 27
330 27
333B 67 | | A.10b
A.10c
A.10d
A.10e
A.11aa
A.11ab | 318 17
318 18
318 16
319 81
323B 53 | 319 17
319 18
319 16
320 76
3248 44 | 320 18
320 19
320 17
321 84
3258 33 | 321 18
321 19
321 17
322 80
326B 47 | 322 17
322 18
322 16
323 81
327B 44 | 323 17
323 18
323 16
324 81
328B 36 | 324 20
324 21
324 19
325 83
329B 60 | 325 20
325 21
325 19
326 80
330B 64 | 326 15
326 16
326 14
327 77
331B 42 | 327 16
327 17
327 15
328 79
332B 34 | 328 15
328 16
328 14
329 77
3338 39 | 329 16
329 17
329 15
330 77
334B 38 | | A.11e
A.12aa
A.12ab
A.12ba
A.12bb | 319 31
328B 68
328B 69
318 21
318 22 | 322B 94
328B 74
328B 75
319 24
319 25 | 321 33
328B 80
328B 81
320 25
320 26 | 322 31
328B 86
328B 87
321 24
321 25 | 323 29
328B 92
328B 93
322 24
322 25 | 324 32
330B 92
330B 93
323 22
323 23 | 325 32
330B 98
330B 99
324 27
324 28 | 326 30
336B 98
336B 99
325 27
325 28 | 327
28
336B104
366B105
326 22
326 23 | 328 29
336B110
336B111
327 23
329B 89 | 329 28
338B 64
338B 65
328 23
329B 89 | 330 27
338B 70
338B 71
329 23 | | A.12c
A.13a
A.13c
B. | 318 23
318 19
318 20 | 319 26
319 22
319 23 | 320 27
320 23
320 24 | 321 26
321 22
321 23 | 322 26
322 22
322 23 | 323 24
323 20
323 21 | 324 29
324 25
324 26 | 325 29
325 25
325 26 | 326 24
326 20
326 21 | 327 24
327 21
327 22 | 328 24
328 21
328 22 | 329 24
329 21
329 22 | | B.51ca
B.51cb
B.52
B.53
C. | 319 104
319 105
319 106
319 108 | 320 96
320 97
320 98
320 100 | 321 104
321 105
321 106
321 108 | 322 100
322 101
322 102
324B 70 | 323 102
323 103
323 104
324B 70 | 324 100
324 101
324 102
324 104 | 325 104
325 105
325 106
325 108 | 326 100
326 101
326 102
326 104 | 327 96
327 97
327 98
327 100 | 328 98
328 99
328 100
328 102 | 329 96
329 97
329 98
330B104 | 330 98
330 99
330 100
330 102 | | C.1a
C.1ba
C.1d
C.1e
C.1f | 318 10
323B 4
323B 33
323B 25
324B 67 | 319 10
324B 5
324B 29
324B 21
325B 58 | 325B 23
325B 16 | | 322 10
327B 4
327B 28
327B 19
328B 62 | 323 10
328B 4
328B 26
328B 17
329B 85 | 324 10
329B 4
329B 44
329G 30
330B 89 | 325 10
330B 4
330B 45
330B 33
331B 65 | 326 10
331B 4
331B 30
331B 29
332B 59 | 327 10
3328 4
3328 23
3328 15
3338 63 | 328 10
333B 4
333B 25
333B 19
334B 65 | 334B 5 | | C.3
C.3
C.4aa
C.4b | 323B 34

319 88
319 88 | 324B 30
319 19
320 81
320 81 | 325B 24
320 20
321 89
321 89 | 326B 33
321 20
322 86
322 86 | 327B 29
322 19
323 87
323 87 | 328B 27
323 19
324 87
324 87 | 329B 45
324 22
325 89
325 89 | 330B 46
325 22
326 86
326 86 | 331B 31
326 17
327 82
327 82 | 332B 24
327 18
328 84
328 84 | 333B 26
328 17
329 82
329 82 | 334B 25
329 18
330 82
330 82 | | C.4d
C.4e
C.4f
C.4g
C.5b | 319 88
319 88
319 88

323B 52 | | 321 89
321 89
321 89
325B 32 | 322 86
322 86
322 86
326B 46 | 323 87
323 87
323 87
327B 43 | | 325 89
325 89
325 89
328B 64
329B 59 | 330B 63 | | 328 84

332B 33 | 329 82
329 82
329 82
333B 70
333B 38 | 330 82
330 82
333B 71
334B 37 | | C.5c
C.6
D. | 319 83
319 84 | 320 79 | 321 87 | 322 83 | 323 83
323 84 | | 325 85
325 86 | | 327 80 | 328 82 | 329 79
329 80 | 330 80 | | D.1a
D.1b
D.1c
D.1d
D.1e
D.1f | 319 100
330 94
330 95
319 102
323B 69
319 103 | 330 94
330 95
320 94
324B 58 | 330 94
330 95
321 102
325B 49 | 330 94
330 95
322 98
326B 62 | 330 95
323 100
327B 60 | 330 94
330 95
324 98 | 330 95
325 102 | 326 98 | 330 94 | 330 94
330 95
328 96 | 329 92
330 94
330 95
329 94

329 95 | 330 94
330 95
330 96
3348 54 | | F. 1a
F.1b
F.1c
F.1d
F.1e | 319 96
319 96
319 96
319 96
319 98 | 310 90
320 90
320 90
320 91
320 90 | 321 98
321 98
321 98
321 99
321 98 | 322 94
322 94
322 94
322 95
322 94 | 323 96
323 96
323 96
323 97
323 96 | 324 94
324 95
324 94 | 325 99
325 98 | 326 95
326 94 | 327 90
328B 67
327 90
327 90
327 91
327 90
327 90 | 328 92
328 92
328 92
328 93
328 92 | 333B 76 | 330 90
333B 76
333B 76
330 91
330 90 | | F.1g
H.
H.60
H.62 | 319 96
318 4
324B 60
* See " | 319 5
325B 52 | 320 5
326B 64 | 321 5 | 322 5
328B 55 | 324 94
323 5
329B 78 | 325 98
324 5
330B 82 | 325 5 | 326 5 | 327 5 | 328 5
334B 58 | 329 5 | ^{*} See "Key" on pages 64 and following. | Key* | 1972
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | 0ct | Nov | Dec | |---|--|--|--|---|--
--|---|---|---|--|---|---| | A. A. 1 A. 2a A. 2b A. 2c A. 3a A. 3b A. 4 A. 5 A. 5a A. 5b A. 7c A. 11 ja A. 8aa A. 8aa A. 9a A. 9a A. 9b A. 10c A. 10c A. 10c A. 10d A. 11aa A. 12aa A. 12ab A. 12ba A. 12ba A. 12ba A. 13c A. 13c A. 13c A. 17 | 331 64
330 7
343 6
330 7
331 33
331 75
331 82
331 64
331 33
331 64
330 7
330 7
330 7
331 33
331 33
330 22
330 20 | 332 59 331 7 332 30 332 74 332 30 332 74 332 59 332 59 331 7 331 7 331 7 331 7 331 7 331 7 331 16 332 30 332 30 332 30 332 30 332 30 332 30 332 30 332 30 332 30 332 30 331 23 331 23 331 23 331 23 331 23 331 23 331 23 331 23 331 28 331 28 331 28 | 333 56 332 7 333 25 333 72 333 72 333 75 333 56 333 56 333 56 332 7 332 7 332 7 332 7 332 7 332 15 333 25 334 80 332 17 332 15 333 80 332 15 333 80 337 8 82 | 334 66 333 7 334 36 334 81 334 88 334 86 334 86 334 86 334 86 334 86 334 86 334 86 334 36 333 19 333 20 333 20 333 20 333 20 333 20 | 335 34
334 7
335 34
335 96
335 34
335 36
335 34
335 34
336 32
336 337 32
337 337 337 337 337 337 337 337 337 337 | 336 30
335 7
343 6
336 30
336 30
337 7
335 7
335 7
335 17
335 17
335 16
336 30
336 30
336 30
336 30
337 7
337 7
337 7
338 30
338 30
339 30
330 30
340 30
350 30 | 337 40 336 7 337 40 337 102 337 40 337 102 337 40 337 40 337 40 337 40 337 40 337 40
337 40 337 40 336 7 336 7 336 7 336 15 336 15 336 16 337 10 341B 44 337 40 341B 61 337 40 341B 61 337 40 341B 61 337 40 341B 62 336 24 336 24 336 26 | 338 24
337 7
338 24
338 86
338 24
338 86
338 24
338 24
338 24
338 24
337 7
337 7
337 7
337 7
337 18
338 24
339 96
337 15
337 16
338 24
339 96
337 16
338 24
337 28
337 28
337 28
337 28 | 339 28
338 7
339 28
339 28
338 7
338 7
338 7
338 15
339 28
339 28
338 15
338 16
339 36
3438 34
3438 49
3438 50
338 21
338 21
338 21 | 340 26
349 6
349 6
340 26
340 26
349 6
349 6
349 6
349 26
349 26
340 | 341 22 340 7 341 82 341 82 341 82 341 82 341 82 341 82 341 87 341 22 340 7 340 7 340 7 340 7 340 15 341 22 341 22 340 13 340 15 340 15 340 15 340 15 340 15 340 20 340 22 340 22 340 23 | 342 22 341 7 343 6 341 7 342 22 342 84 342 22 342 22 342 22 342 22 341 7 341 7 341 7 341 7 341 7 341 7 341 15 341 16 341 16 341 14 342 90 3468 40& 3538 58 3468 41& 3538 59 341 19 341 19 341 19 341 19 | | A.18
B.51ca
B.51cb
B.52
B.53 | 331 106
331 107
331 108
331 110 | 332 106
332 107
332 108
332 110 | 333 104
333 105
333 106
333 108 | 333 20
334 108
334 109
334 110
334 112 | 334 29
335 130
335 131
335 132
335 134 | 335 27
336 122
336 123
336 124
336 126 | 336 26
337 132
337 133
337 134
337 136 | 337 29
338 122
338 123
338 124
338 126 | 338 21
339 116
339 117
339 118
339 120 | 339 23
340 124
340 125
340 126
340 128 | 340 22
341 104
341 105
341 106
341 108 | 341 19
342 110
342 111
342 112
342 114 | | C. 1a
C.1ba
C.1ba
C.1e
C.1f
C.3
C.3
C.3t
C.4aa
C.4b
C.4dd
C.4d | 330 10
3358 5
3358 23
3358 18
3368 92
3358 24
330 16

331 88
331 88
331 88
331 88 | 331 10
3368 5
3368 38
3368 30
3378 96
3368 39
331 20

332 88
332 88
332 88
332 88 | 332 10
3378 5
3378 37
3378 28
3388 62
3378 38
332 18

333 86
333 86
333 86
333 86
3368 95 | 333 10
3388 5
3388 22
3388 15
3398 94
3388 23
333 16

334 94
334 94
334 94
334 94 | 334 10
3398 5
3398 38
339B 28
340B 90
339B 39
334 21

335 111
335 111
335 111 | 335 10
3408 5
3408 35
3408 24
3418 76
3408 36
335 19

336 104
336 104
336 104
336 104 | 336 10
3418 5
3418 28
3418 21
3428105
3418 29
336 19

337 115
337 115
337 115
337 115 | 337 10
342B 4
342B 34
342B 25
343B 65
342B 35
337 20

338 100
338 100
338 100
338 100 | 338 10
343B 4
343B 22
343B 16
344B 79
343B 23
338 19

339 101
339 101
339 101
339 101 | 339 9 344B 4 344B 25 344B 19 345B 55 344B 26 339 18 340 105 340 105 340 105 | 340 10 3458 4 3458 14 3458 11 3468 55 3458 15 340 17 341 93 341 93 341 93 | 341 10
346B 4
346B 14
347B 51
347B 51
347B 15
341 17
342 101
342 95
342 95
342 95
342 95 | | C.4g
C.5b
C.5c
C.6 | 331 88

335B 38
331 85
331 86 | 332 88
333B 72
337B104
332 84
332 85 | 333 86

338B 82
333 82
333 83 | 334 94
338 31
334 91
334 92 | 335 111
335 111
341B 78
335 107
335 108 | 336 104
341B 79
336 100
336 101 | 341B 43
337 112 | 338 100

338 96
338 97 | 339 101

339 98
339 99 | 340 105

340 101
340 102 | 341 93

341 90
341 91 | 342 95

342 92
342 93 | | D.1a
D.1b
D.1c
D.1d
D.1e
D.1f
F. | 331 102
342 106
342 107
331 104

331 105 | 332 102
342 106
342 107
332 104

332 105 | 333 100
342 106
342 107
333 102

333 103 | 334 104
342 106
342 107
334 106

334 107 | 335 126
342 106
342 107
335 128
3398 84
335 129 | 342 107 | 342 106
342 107 | 338 118
342 106
342 107
338 120
3428 92
338 121 | 339 112
342 106
342 107
339 114
3438 55
339 115 | 340 120
342 106
342 107
340 122

340 123 | 341 100
342 106
342 107
341 102
3458 44
341 103 | 342 104
342 106
342 107
342 108

342 109 | | F.1a
F.1b
F.1c
F.1d | 331 100
331 100
331 100
331 100 | 332 100
332 100
3428111
3428111 | 333B 71
333 98
333 98
342B111 | 334 102
334 102
342B111 | 335 124
335 124
342B111 | 336 116
336 116
336 116 | 337 126 | 350B 98
338 116
348B 49 | 350B 98
339 110
348B 49 | 350B 98
340 118
348B 49 | 350B 98
341 98
348B 49 | 350B 98
342 102
348B 49 | | F.le
F.lf
F.lg
H. | 331 101
331 100
331 100 | 332 101
332 100
332 100 | 334B 71
333 98
333 98 | 334 103
334 102
334 102 | 335 125
335 124
335 124 | 336 117
336 116
336 116 | 337 127
337 126
337 126 | 350B 99
338 116
338 116 | 350B100
339 110
339 110 | 350B100
340 118
340 118 | 350B101
341 98
341 98 | 350B101
342 102
341 102 | | H.60
H.62 | 330 5
336B 85
See "Key | 337B 90 | | 339B 87 | 334 5
3408 83 | 335 5
341B 69 | 336 5
3428 98 | 337 4
343B 58 | 338 5
344B 72 | 339 4
345B 48 | 340 5
346B 48 | 341 5
347B 44 | | Key* | 1973
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | 0ct | Nov | Dec | |-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------------|------------------------------|-------------------------------| | A.
A.1
A.2a | 343 22
342 7 | 344 26
343 7 | 345 30
344 7 | 346 30
345 7 | 347 24
346 7 | 348 24
347 7 | 349 26
348 7 | 350 28
349 7 | 351 26
350 7 | 352 24
351 7 | 353 26
352 7 | 354 24
353 7 | | A.2b
A.2c | 355 6
342 7 | 355 6
343 7
344 26 | 355 6
344 7 | 355 6
345 7
346 30 | 355 6
346 7
347 24 | 355 6
347 7
348 24 | 355 6
348 7
349 26 | 355 6
349 7
350 28 | 355 6
350 7
351 26 | 355 6
351 7
352 24 | 355 6
352 7
353 26 | 355 6
353 7
354 24 | | A.3a
A:3b
A.4 | 343 22
343 84
343 22 | 344 82
344 26 | 345 92
345 30 | 346 90
346 30 | 347 86
347 24 | 348 84
348 24 | 349 88
349 26 | 350 90
350 28 | 351 86
351 26 | 352 86
352 24 | 353 86
353 26 | 354 86
354 24 | | A.5
A.5a
A.5b | 343 22
343 84
343 91 | 344 26
344 82
344 88 | 345 30
345 92
345 99 | 346 30
346 90
346 96 | 347 24
347 86
347 92 | 348 24
348 84
348 90 | 349 26
349 88
349 95 | 350 28
350 90
350 95 | 351 26
351 86
351 91 | 352 24
352 86
352 93 | 353 26
353 86
353 92 | 354 24
354 86
354 91 | | A.6
A.7b | 343 22
343 22 | 344 26
344 26 | 345 30
345 30 | 346 30
346 30 | 347 24
347 24 | 348 22
348 24
348 24 | 349 25
349 26
349 26 | 350 27
350 28
350 28 | 351 25
351 26
351 26 | 352 23
352 24
352 24 | 353 25
353 26
353 26 | 354 23
354 24
354 24 | | A.7c
A.11ja
<u>A.7e</u> | 343 22
343 22 | 344 26
344 26 | 345 30
345 30 | 346 30
346 30 | 347 24
347 24 | 348 24
348 24 | 349 26
349 26 | 350 28
350 28 | 351 26
351 26 | 352 24
352 24 | 353 26
353 26 | 354 24
354 24
353 7 | | A.8aa
A.8ac
A.8g | 342 7
342 7
342 7 | 343 7
343 7
343 7 | 344 7
344 7
344 7 | 345 7
345 7
345 7 | 346 7
346 7
346 7 | 347 7
347 7
347 7 | 348 7
348 7
348 7 | 349 7
349 7
349 7 | 350 7
350 7
350 7 | 351 7
351 7
351 7 | 352 7
352 7
352 7 | 353 7
353 7
353 7 | | A.9a
A.9b
A.9c | 343 22
343 22 | 344 26
344 26 | 345 30
345 30 | 346 30
346 30 | 347 24
347 24 | 348 24
348 24 | 349 26
349 26 | 350 28
350 28
350 28 | 351 26
351 26 | 352 24
353B 54 | 353 26
353 6 | 354 24
354 24 | | A.10a
A.10c | 342 13
342 15 | 343 13
343 15 | 344 15
344 17 | 345 15
345 17 | 346 15
346 17 | 347 13
347 15
347 16 | 348 13
348 15
348 16 | 349 13
349 15
349 16 | 350 14
351 107
351 108 | 351 13
351 15
351 16 | 352 13
353 104
353 105 | 353 13
353 15
353 16 | | A.10d
A.10e
A.11aa | 342 16
342 14
343 92 | 343 16
343 14
344 89 | 344 18
344 16
345 100 | 345 18
345 16
346 97 | 346 18
346 16
347 93 | 347 14
348 91 | 348 14
349 96 | 349 14
350 96 | 350 <u>15</u>
351 92 | 351 14
352 94 | 352 14
353 93 | 353 14
354 92 | | A.11ab
A.11f
A.12aa | 347B 26
343 22
350B102 | 348B 21
344 26
353B 64 | 349B 50
345 30
353B 70 | 350B 67
346 30
353B 76 | 351B 61
347 24
353B 82 | 352B 30
348 24 | 353B 26
349 26 | 354B 21
350 28 | 355B 37
351 26 | 356B 24
352 24 | 357B 21
353 26 | 358B 20
354 24 | | A.12ab
A.12ba | 350B102
342 19 | 353B 64
343 19 | 353B 70

344 24 | 353B 76
345 27 | 353B 82
346 26
346 27 | 347 20
347 21 | 348 19 | 349 20
349 21 | 350 20
350 21 | 351 20 | 352 17
352 18 | 353 20
353 21 | | A.12bb
A.13a
A.13ab | 342 19
342 20 | 343 19 | 344 24 | | 346 26
346 27 | 347 20
347 21 | 348 19 | 349 20
349 21 | 350 20
350 21 | 351 20
351 20 | 352 17
352 18 | 353 20
353 21 | | A.17
A.17
A.17c | 342 19
342 20
348 20 | 343 19
348 20 | 344 24
348 20 | | 346 27
346 27
348 20 | 347 21
347 21
348 20 | 348 19
348 20 | 349 21
349 21
349 22 | 350 21 | 351 20
351 21 | 352 18
352 19
 353 21
353 21
353 22 | | A.18
A.18
B. | 342 19
342 20 | 343 19 | 344 24 | 345 27 | 346 27
346 27 | 347 21
347 21 | 348 19 | 349 21
349 21 | 350 21 | 351 20 | 352 18 | 353 21
353 21 | | B.51ca
B.51cb | 343 110
343 111 | 344 108
344 109 | 345 126
345 127 | 346 128
346 129 | 347 120
347 121 | 348 114
348 115 | 349 118
349 119 | 350 115 | 351 117 | 352 114
352 115 | 353 114
353 115 | 354 111 | | B.52
B.53
C. | 343 112
343 114 | 344 110
344 112 | 345 128
345 130 | 346 130
346 132 | 347 122
347 124 | 348 116
348 118 | 349 120
349 122 | 350 116
350 118 | 351 120 | 352 116
352 118 | 353 116
353 118 | 354 112
354 114 | | C.la
C.lba
C.ld | 342 10
347B .4
347B 15 | 343 6
348B 4
348B 14 | 344 10
349B 4
349B 26 | 350B 4 | 346 10
351B 4
351B 27 | 347 10
352B 4
352B 19 | 348 10
353B 4
353B 16 | 349 10
354B 4
354B 14 | 355B 4 | 351 10
3568 4
3568 15 | 352 10
357B 4
357B 12 | 353 10
358B 4
358B 13 | | C.le
C.lf
C.3 | 3478 14
348B 45
347B 16 | 348B 12
349B 78
348B 15 | 349B 20 | 350B 28
351B 82 | 351B 21
352B 63
351B 28 | 352B 14
353B 51
352B 20 | 353B 11
354B 45
353B 17 | 354B 10
355B 61
354B 15 | 355B 16
356B 51 | 356B 12
357B 45
356B 16 | 3578 9
358B 45
357B 13 | 358B 10
359B 45
358B 14 | | C.3
C.3t | 342 17
344B 83 | 343 17
344 101 | 344 19
345 117 | 345 19
346 119 | 346 19
347 111 | 347 17
348 105 | 348 17
349 109 | 349 17
350 106 | 350 16
351 106 | 351 17
352 105 | 352 15
353 102 | 353 17
354 101 | | C.4aa
C.4b
C.4d | 343 97
343 97
343 97 | 344 95
344 95
344 95 | 345 106
345 106
345 106 | 346 104 | 347 100
347 100
347 100 | 348 97
348 97
348 97 | 349 101
349 101
349 101 | 350 100
350 100
350 100 | 351 97 | 352 99
352 99
352 99 | 353 97
353 97
353 97 | 354 96
354 96
354 96 | | C.4e
C.4f
C.5c | 343 97
343 97
343 94 | 344 95
344 95
344 91 | 345 106
345 106
345 102 | 346 104 | | 348 97
348 97
348 93 | 349 101
349 101
349 98 | 350 100
350 100
350 98 | 351 97 | 352 99
352 99
352 96 | 353 97
353 97
353 95 | 354 96
354 96
354 94 | | C.6
D. | 343 95 | 344 93 | 345 103 | 346 100 | 347 97 | 348 94 | 349 99 | 350 99 | <u>351 95</u> | 352 97 | 353 96 | 354 95 | | D.1a
D.1b
D.1c | 343 106
354 106
354 107 | | 354 106
354 107 | 354 106
354 107 | 354 106
354 107 | 354 107 | 349 112
354 106
354 107 | 354 106
354 107 | | D.1d
D.1e
D.1f | 343 108

343 109 | 344 106
348B 35
344 107 | 345 122
349B 66
345 124 | 350B 82 | 351B 77 | 352B 51 | 349 115

349 116 | | | 356 | B 40 | 354 109

354 110 | | D.1g
F. | | | | | 347 116 | 348 110 | 349 114 | 350 111 | 351 113 | 352 110 | 353 110 | 354 108 | | F.1a
F.1c
F.1e | 346B 58
343 104
346B 59 | 344 102
346B 60 | 345 118
346B 6 | 346 121
347B 55 | 347 112
348B 48 | 348 106
349B 81 | 349 110
349 110
349 111 | 350 107
350 108 | 7 352B 66
3 351 1 1 0 | 352 106
352 107 | 353 106
353 107 | 354 102
355B 64 | | F.1f
<u>F.1g</u>
F.1h | 343 104
343 104 | | | | 347 112 | 348 106 | 349 110
349 110
349 110 | 350 107 | 351 109 | 352 106 | 353 106 | 354 102 | | F.1i
F.1j
H. | | | | | | | | | | | | 354 102
354 102 | | Н.60
Н.62 | 342 5
348B 38
"Key" on | 349B 72 | 350B 88 | 345 5
3 351B 82 | 346 5
352B 56 | | 348 5
354B 38 | | 350 5
356B 44 | | | | | ~366 | NEY UII | hade ny qi | ~ 10110M. | ıny. | | 78 | | | | | | | | Key* | 1974
Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | 0ct | Nov | Dec | |--|---|--|---|--|---|--|--|--|--|--|---|---| | A.
A.1
A.2a
A.2b
A.2c
A.3a
A.3b | 355 24
354 7
367A 6
354 7
355 24
355 86 | 356 24
355 7
367A 6
355 7
356 24
356 80 | 357 26
356 7
367A 6
356 7
357 26
357 88 | 358 30
357 7
367A 6
357 7
358 30
358 90 | 359 22
358 7
367A 6
358 7
359 22
359 84 | 360 42
359 7
367A 6
359 7
360 42
360 102 | 361 30
360 7
367A 6
360 7
361 30
361 92 | 362 32
361 7
367A 6
361 7
362 32
362 94 | 363 28
362 7
367A 6
362 7
363 28
363 88 | 364 32
363 7
367A 6
363 7
364 32
364 94 | 365 26
364 7
367A 6
364 7
365 26
365 86 | 366 24
365 7
367A 6
365 7
366 24
366 86 | | A.3c
A.4
A.5
A.5a
A.5b
A.6
A.7b
A.7c | 355 24
355 24
355 86
355 92
355 23
355 24
355 24 | 356 24
356 24
356 80
356 86
356 23
356 24
356 24 | 357 26
357 26
357 88
357 96
357 25
357 26
357 26 | 358 30
358 30
358 90
358 97
358 29
358 30
358 30 | 359 22
359 22
359 84
359 94
359 21
359 22
359 22 | 360 42
360 42
360 102
360 110
360 40
360 42
360 42 | 361 27
361 30
361 30
361 92
361 102
361 26
361 30 | 362 32
362 32
362 32
362 94
362 102
362 31
362 32 | 363 28
363 28
363 28
363 88
363 97
363 27
363 28 | 364 32
364 32
364 32
364 94
364 101
364 31
364 32 | 365 26
365 26
365 26
365 86
365 92
365 24
365 26 | 366 24
366 24
366 24
366 86
366 92
366 23
366 24 | | A.11ja
A.8aa
A.8ac
A.8g
A.9c
A.9cb | 355 24
354 7
354 7
354 7
356B 56 | 356 24
355 7
355 7
355 7
356 24 | 357 26
356 7
356 7
356 7 | 357 7
357 7
357 7 | 358 7
358 7
358 7 | 359 7
359 7
359 7 | 360 7
360 7
360 7 | 361 7
361 7
361 7 | 362 7
362 7
362 7 | 363 7
363 7
363 7 | 364 7
364 7
364 7
364 7 | 365 7
365 7
365 7

366 24 | | A.9d
A.10a
A.10c
A.10d
A.10e
A.11aa
A.11ab | 354 13
354 15
354 16
354 14
355 93
3598 18 | 355 13
355 15
355 16
355 14
356 87
364B 44 | 356 12
356 14
356 15
356 13
364B 57
365B 84 | 357 14
357 16
357 17
357 17
357 15
364B 59 | 358 14
358 16
358 17
358 15 | 360 42
359 13
360B 32
360B 33
359 14 | 361 30
360 16
360 18
360 19
360 17 | 362 32
361 13
361 15
361 16
361 14 | 363 28
362 14
362 16
362 17
362 15 | 364 32
364 110
363 15
363 16
363 14 | 365 26
364 13
364 15
364 16
364 14 | 366 24
365 12
365 14
365 15
365 13 | | A.11e
A.11f
A.11g
A.12ba
A.12bb
A.12d | 355 24

354 19 | 356 24

355 19 | 357 26
356 17
356 18 | 365B 92
358 30 | 359 22

358 23 | 360 42 | 365B 98
361 30

360 31
360 33 | 362 32

361 18
361 19
361 20 | 363 28

362 22
362 23 | 364 32

363 22 | 365 26

364 21

364 19
364 24 | 366 24
365 18
365 17 | | A.13a
A.13ab
A.17
A.17
A.17c
A.18 | 354 19
354 19
354 19
354 20
354 19 | 355 19
355 19
355 20 | 356 17
356 18

356 18
356 19 | 357 22 | 358 23

358 23
358 25 | 359 18 | 360 31
360 31
360 31
360 32
360 31 | 361 18
361 19
361 19
361 19
361 23
361 19 | 362 22

362 26
362 26
362 22 | 363 21
363 21
363 24 | 364 19

364 19
364 27 | 365 17

365 21 | | A.18
B.
B.51ca
B.52
B.53
C. | 354 19
355 111
355 112
355 114 | 355 19
356 107
356 108
356 110 | 356 18
357 111
357 112
357 114 | 358 117
358 118
358 120 | 358 23
359 119
359 120
359 122 | 360 131
360 132
360 134 | 360 31
361 131
361 132
361 134 | 361 19
362 119
362 120
362 122 | 363 123
363 124
363 126 | 364 119
364 120
364 122 | 364 19
365 109
365 110
365 112 | 366 111
366 112
366 114 | | C.1a
C.1ba
C.1d
C.1e
C.1f
C.3
C.3 | 354 10
3598 4
3598 12
3598 9
3608 29
3598 13
354 17 | 355 10
360B 4
360B 12
360B 10
361B 22
360B 13 | 356 10
361B 4
361B 10
361B 8
362B 47
361B 11 | 357 10
3628 4
3628 23
3628 18
3638 41
3628 24 | 358 10
3638 4
3638 18
3638 14
3648 39
3638 19 | 359 10
3648 4
3648 17
3648 13
3658 81
3648 18 | 360 10
3658 4
3658 26
3658 20
3668 29
3658 27 | 361 10
366B 4
366B 14
366B 13
367B 52
366B 15 | 362 10
3678 4
3678 20
3678 16
3688 56
3678 21 | 363 10
368B 4
368B 24
368B 20
369B 34
368B 25 | 364 10
369B 4
369B 14
369B 11
370B 26
369B 15 | 365 10
3708 4
3708 11
3708 8
3718 22
3708 12 | | C.3t
C.4aa
C.4b
C.4d
C.4e
C.4f | 354 17
355 103
355 98
355 98
355 98
355 98
355 98 | 355 17
356 98
356 91
356 91
356 91
356 91
356 91 | 356 16
357 103
357 99
357 99
357 99
357 99
357 99 | 357 18
3598
51
358 102
358 102
3598 48
358 102
358 102 | 358 18
359 110
359 98
359 98
359 98
359 98
359 98 | 359 15
360 122
361B 24
360 113
360 113
360 113
360 113 | 360 20
361 122
361 106
361 106
361 106
361 106
361 106 | 361 17
362 111
362 104
362 104
362 104
362 104
362 104 | 362 18
263 115
363 101
363 101
363 101
363 101
363 101 | 363 17
3658105
364 104
364 104
3658103
364 104
364 104 | 364 17
365 101
365 94
365 94
365 94
365 94
365 94 | 365 16
366 100
366 94
366 94
366 94
366 94
366 94 | | C.4h
C.4i
C.5c
C.5e
C.6 | 355 95
355 96 | 356 91

356 89

356 90 | 357 99
357 99

357 97 | 358 102
358 102
364B 61

358 98 | 359 98
359 98

359 95 | 360 113
360 113

360 111 | 361 106
361 106.
261 106

361 103 | 362 104
362 104
362 104

362 103 | 363 101
363 101

363 99 | 364 104
364 104

364 102 | 365 94
365 94
265 94

364 23 | 366 94
366 94

365 18 | | D. 1a D. 1ba D. 1c D. 1d D. 1e | 355 106
355 107
366 107
355 109
3598 34 | 356 102
356 103
366 107
356 105 | 357 106
357 107
366 107
357 109
3628 48 | 358 112
358 113
366 107
358 115
363B 42 | 359 114
359 115
366 107
359 117 | 360 126
360 127
366 107
360 129 | 361 126
361 127
366 107
361 129
365B 70 | 362 114
362 115
366 107
362 117 | 363 118
363 119
366 107
363 121
367B 40 | 364 113
364 114
366 107
364 116
3673 44
364 118 | 365 93
365 104
365 104
366 107
365 107 | 366 93
366 103
366 105
366 107
366 109 | | D.1f
D.1g
F. | 355 110
355 108 | 356 106
356 104 | 357 110
357 108 | 358 116
358 114 | 359 118
359 116 | 360 130
360 128 | 361 130
361 128 | 362 118
362 116 | 363 122
363 120 | 364 115 | 365 108
365 106 | 366 110
366 108 | | F.1a
F.1b
F.1c
F.1e | 356B 54
355 104
356B 54 | 357B 48

356 100
357B 48 | 357 104
357 104
357 104 | 358 110

358 110 | 359 112

359 112 | 360 124

360 124 | 361 124

361 124 | 362 112

362 112 | 364B 42

364B 42 | 364 111

364 111 | 365 102 | 366 101
366 101 | | F.1f
F.1g
F.1h
F.1i
F.1j
H. | 355 104
355 104
355 104
355 104
355 104
355 104 | 356 100
356 100
356 100
356 100
356 100 | 357 104
357 104
357 104
357 104
357 104
357 104 | 358 110
358 110
358 110
358 110
358 110 | 359 112
359 112
359 112
359 112
359 112 | 360 124
360 124
360 124
360 124
360 124 | 361 124
361 124
361 124
361 124
361 124
361 124 | 362 112
362 112
362 112
363B 47
362 112
362 112 | 363 116
363 116
363 116
363 116
363 116 | 364 111
364 111
364 111
364 111
364 111 | 365 102
366B 32
366B 32
365 102
365 102
365 102 | 365 101
366 101
366 101
366 101
366 101 | | H.60
H.62 | 354 4
360B 22 | 355 4
3618 16 | 356 4
362B 40 | 357 4
363B, 34 | 358 4
3648 32 | 359 4
365B 74 | 360 4
366B 22 | 361 4
367B 44 | 362 4
368B 48 | 363 4
369B 25 | 364 4
370B 17 | 365 4
3718 13 | ^{*} See "Key" on pages 64 and following. | | | | | INI | DEX TO "SO | LAR-GEOPH | YSICAL DA | ITA" | | | | | |--|--|--|--|---
--|--|---|--|---|---|--
--| | | 1975
Jan | Feb | Mar | Apr | May | Jun - | Juli | Aug | Sep | Oct 1 | VoV | Dec | | A. 1
A. 2ab
A. 2cc
A. 3ac
A. 3cc
A. 3cc
A. 5ac
A. 5ac
A. 5ac
A. 6bc
A. 10cc
A. 10cc
A. 10cc
A. 11cc
A. 11c | 367A 24
366A 7
378A 6
367A 24
367A 24
367A 24
367A 24
367A 23
367A 24
367A 24
367A 24
367A 24
367A 24
367A 24
367A 24
367A 12
366A 7
366A 7
366A 1
366A 1 | 368A 26
367A 7
368A 26
368A 26
368A 26
368A 26
368A 26
368A 26
368A 26
368A 26
368A 26
368A 26
367A 7
367A 7
367A 13
367A 15
367A 12
367A 14
367A 15
367A 12
367A 14
367A 15
367A 17
367A 17 | 369A 26 368A 7 369A 26 10 368A 17 10 375B 35 6 373B 6 6 375B 41 6 375B 41 7 373B 7 8 369A 98 1 3 | Apr 370A 24 369A 7 378A 6 369A 7 370A 24 369A 7 369A 7 369A 12 369A 12 369A 13 371B 24 369A 13 371B 24 369A 19 370A106 370A108 | May 371A 24 370A 7 378A 6 370A 7 371A 24 100 371A 101 370A 16 370A 17 10 371A 108 | Jun 372A 28 371A 7 378A 6 371A 7 378A 6 371A 28 372A 27 371A 7 371A 7 371A 7 371A 12 371A 13 373A 34 371A 18 371A 19 | 373A 34
372A 7
378A 6
372A 7
373A 96
373A 34
373A 34
373A 34
373A 34
373A 34
373A 37
373A 7
372A 7
372A 7
372A 7
372A 15
372A 15
372A 16
372A 16
372A 17
372A 22
372A 21
372A 22
372A 21
373A 32
373A 32 | Aug 374A 28 373A 7 378A 6 373A 7 374A 28 373A 7 373A 7 373A 7 373A 28 373A 15 373A 16 373A 25 374A 28 373A 19 | 375A 24
374A 7
375A 24
375A 12
374A 12
374A 13
374A 13
374A 13
374A 19
374A 19
375A 10
375A 10 | 376A 28
375A 7
376A 28
376A 28
375A 7
376A 28
375A 12
375A 12
375A 13
375A 13
375A 13
375A 13
375A 12
375A 13
375A 20

375A 20

376A 28
376A 28
375A 17

375A 17

375A 17

375A 17

375A 20

376A 28
376A 28
376A 28
376A 28
376A 28
376A 13
376A 13
376A 13
376A 28
376A 28
376A 28
376A 28
376A 10
380B 4
376A 11
380B 6
381B 36
380B 8
376A 98
376A 98 | 377A 26
377A 26
377A 26
377A 26
377A 26
377A 26
377A 26
377A 26
377A 25
377A 25
377A 26
377A 26
377A 26
377A 26
376A 7
376A 7
376A 16
376A 16
376A 16
376A 16
376A 12
377A 26
377A 26
377A 26
376A 12
377A 26
377A 27
377A 27
377A 27
377A 27
377A 27
377A 28
377A 28 | 378A 28
377A 7
378A 6
378A 28
378A 27
378A 28
377A 7
378A 28
377A 7
378A 28
377A 7
378A 28
377A 12
378A 28
377A 12
378A 28
377A 12
378A 28
377A 12
378A 28
377A 12
378A 28
377A 18
377A 18
377A 18
377A 17
377A 21
378A 36
378A 26
378A 96
378A 96 | | C.4d
C.4e
C.4f
C.4j
C.5e
C.5e
D.1a
D.1a
D.1ba
D.1d | 367A 96
367A 96
367A 96
367A 96
367A 96
367A 91
367A 10
367A10
378A10
367A10 | 5 368A 9:
5 368A 9:
5 368A 9:
5 368A 9:
5 368A 9:
6 368A 9:
7 368A 9:
6 368A 9:
7 368A 9:
7 368A 9:
8 378A10:
9 368A10: | 1 369A 95
1 369A 95
1 369A 95
1 369A 95
1 369A 95
1 369A 95
8 368A 15
0 369A 95
8 369A10
9 369A10
9 369A10 | 5 370A 93
5 370A 93
5 370A 93
5 370A 93
5 370A 93
5 370A 93
4 370A 93
4 370A10
5 370A10
5 370A10
7 370A10 | 371A 94
3 371A 94
3 371A 94
3 371A 94
3 370A 18
2 371A 93
0 371A104
1 371A105
8 378A108 | 372A 95
372A 95
372A 95
372A 95
372A 95
372A 94
372A104
372A105
378A108 | 373A103
373A103
373A103
373A103
372A 23
373A102
373A112
373A115
378A108 | 374A 99
374A 99
374A 99
374A 99
3 374A 96
3 374A 96
3 374A110
3 374A113
3 378A108 | 375A 92
375A 92
375A 92
375A 92
375A 92
375A 91
374A 98
374A 98
374A 99
378A108 | 376A 98
376A 98
376A 98
376A 98
376A 98
375A 18
376A 108
376A108
376A109
378A108
376A111
381B 47 | 377A 94
377A 94
377A 94
377A 94
376A 23
377A 93
377A105
377A106
378A108
377A106
378A108 | 378A 96
378A 96
378A 96
378A 96
377A 23
378A 95
378A105
378A107
378A107
378A108 | | D.1e
D.1f
D.1g
F.
F.1a
F.1e
F.1f
F.1f | 367A10
367A10
367A10
367A10
367A10
367A10
367A10 | 8 368A10
4 368A 9
04 368A 9
04 368A 9
04 368A 9 | 00 369A10
06 369A10
06 369A10
06 369A10
06 369A10 | 8 370A10
6 370A10
2 370A 9
12 370A 9
12 370A 9
12 370A 9
12 370A 9 | 4 371A107
2 372B 24
8 371A107
8 371A107
8 371A107
8 371A107
8 371A107
8 371A107 | 7 372A108
4 372A106
2 372A102
2 372A102
2 372A102
2 372A102
2 372A102
2 372A102
2 372A102 | 373A113
373A111
373A111
373A11
373A11
374B 2
374B 2
374B 2 | 8 374A114
6 374A112
2 374A102
2 374A102
2 374A102
2 374A102
2 374A102
2 374A102 | 2 374A100
8 375A 96
8 375A 96
8 375A 96
8 375A 96
8 375A 96
8 375A 96 | 2 376A112
376A110
5 377B 34
5 376A106
5 377B 34
5 376A106
6 376A106
6 376A106 | 377A107
377A103
377A103
377A103
377A103
377A103
377A103 | 378A111
378A104
378A104
378A104
378A104
378A104
378A104
378A104 | | F.1i
F.1j
H.
H.60
H.62 | 367A10
367A10
367A10
366A
372B | 04 368A 9
04 368A 9
4 367A
11 373B | 96 370A10
96 369A10
5 368A | 370A 9
370A 9
4 369A
8 375B 1 | 8 371A10
8 371A10
5 370A
6 376B 1 | 2 372A102 | 373A11
373A11
372A | 2 374A10
2 374A10
4 373A | 8 375A 9
8 375A 9
4 374A | 6 376A106 | 377A10
376A | 3 378A104
5 377A 5 | ^{*} See "Key" on pages 64 and following. | | 1976 | | | IN | DEX TO "S | OLAR-GEOP | HYSICAL D | ATA" | | | | | |--|--|---|--|---|---|---|---|--|---|--|--|--| | Key* | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | 0ct | Nov | Dec | | A.
A.1
A.2a
A.2b | 379A 26
378A 7 | 380A 36
379A 7 | 381A 30
380A 7 | 382A 26
381A 7 | 383A 26
382A 7 | 384A 24
383A 7 | 385A 26
384A 7 | 386A 22
385A 7 | 387A 26
386A 7 | 388A 26
387A 7 | 389A 26
388A 7 | 390A 28
389A 7 | | A.2c
A.3a
A.3b
A.3c
A.4
A.5
A.5a
A.5b
A.66 | 378A 7
379A 26
379A 88
379A 26
379A 26
379A 88
379A 93
379A 25 | 379A 7
380A 36
380A 94
380A 36
380A 36
380A 94
380A100
380A 33 | 380A 7
381A 30
381A 92
381A 30
381A 30
381A 30
381A 92
381A 97
381A 29 | 381A 7
382A 26
382A
86

382A 26
382A 26
382A 86
382A 91
382A 91
382A 25
386B 4 | 382A 7
383A 26
383A 88

383A 26
383A 26
383A 88
383A 94
383A 25
387B 4 | 383A 7
383A 24
384A 84

384A 24
384A 24
384A 84
384A 90
384A 23
388B 4 | 384A 7
385A 26
385A 88

385A 26
385A 26
385A 88
385A 93
385A 24
389B 4 | 385A 7
386A 22
386A 84
386A 22
386A 22
386A 22
386A 84
386A 89
386A 20
390B 4 | 386A 7
387A 26
387A 86
387A 26
387A 26
387A 26
387A 86
387A 93
387A 26 | 387A 7
388A 26
388A 88
388A 26
388A 26
388A 26
388A 88
388A 94
388A 26 | 388A 7
389A 26
389A 86
389A 26
389A 26
389A 26
389A 86
389A 90
389A 26 | 389A 7
390A 28
390A 90
390A 28
390A 28
390A 90
390A 95
390A 26 | | A.7b
A.7f
A.8aa
A.8ac
A.9cb
A.9cb
A.10a
A.10c
A.10c
A.11p
A.11p
A.11p
A.12bb | 379A 26
378A 23
378A 7
378A 7
379A 26
379A 26
379A 13
378A 15
378A 15
378A 14
378A 20
379A 26 | 380A 36
379A 7
379A 7
379A 7
380A 36
380A 36
380A 36
379A 12
379A 14
379A 15
379A 15
379A 19
380A 36
380A 36 | 381A 30
380A 7
380A 7
380A 7
381A 30
381A 30
380A 15
380A 17
380A 18
380A 16
380A 26
381A 30
381A 30 | 382A 26
381A 24
381A 7
381A 7
381A 7
382A 26
382A 26
381A 15
381A 15
381A 14
381A 14
381A 21
382A 26
382A 26 | 383A 26
382A 21
382A 7
382A 7
382A 7
383A 26
383A 26
382A 12
382A 14
382A 15
382A 15
382A 18
383A 26
383A 26 | 384A 24
383A 7
383A 7
383A 7
383A 7
384A 24
383A 13
383A 15
383A 16
383A 16
383A 19
384A 24
384A 24 | 385A 26
384A 19
384A 7
384A 7
385A 26
385A 26
385A 26
384A 12
384A 13
384A 15
384A 17
385A 26
385A 26 | 386A 22
385A 21
385A 7
385A 7
385A 7
386A 22
386A 22
385A 14
385A 15
385A 15
385A 18
386A 22
386A 22 | 387A 26

386A 7
386A 7
387A 26
387A 26
387A 26
387A101
387A102
386A 13
386A 16
387A 26
387A 26
386A 15 | 388A 26
387A 7
387A 7
387A 7
388A 26
388A 26
387A 12
388A101
388A102
387A 13
387A 13
387A 18
388A 26
388A 26
388A 26 | 389A 26
388A 7
388A 7
388A 7
389A 26
389A 26
388A 12
388A 15
388A 15
388A 19
389A 26
389A 26
389A 26 | 390A 28
389A 21
389A 7
389A 7
389A 7
390A 28
390A 28
389A 12
389A 14
389A 15
389A 13
389A 18
390A 28 | | A.12e
A.13a
A.13ab
A.13d
A.13e
A.17
A.17 | 383B 17
378A 19

378A 18
383B 16
 | 384B 10
379A 18

380A123
384B 9 | 385B 16

380A 25
385B 15
 | 386B 20

381A 20
387B 36
 | 387B 16

382A 17
387B 15 | 388B 15

383A 18
388B 14
 | 389B 12

389B 11 | 390B 23

390B 22 | 386A 15 | 387A 16
387A 17
387A 15

387A 17 | 388A 18

388A 17 | 389A 17 | | A.17c
A.18
A.18 | 378A 24 | 379A 22 | 380A 31 | 381A 25 | 382A 22 | 383A 22 | 384A 20 | 385A 22 | 386A 18 | 387A 21
387A 17 | 388A 22 | 389A 22
 | | B.
B.51ca
B.52
B.53 | 379A115
379A116
379A118 | 380A119
380A120
380A122 | 381A126
381A127
381A129 | 382A113
382A114
382A116 | 383A118
383A120
383A119 | 384A108
384A110
384A109 | 385A113
385A114
385A116 | 386A111
386A112
386A114 | 387A115
387A116
387A118 | 388A116
388A118 | 389A110
389A109 | 390A116
390A118 | | C. 1a
C. 1ba
C. 1d
C. 1d
C. 1e
C. 1f | 378A 10
383B 4
378A 12
383B 10
383B 9
384B 24 | 379A 10
384B 4
379A 11
384B 7
384B 6
385B 56 | 380A 10
385B 4
380A 14
385B 14
385B 13
386B 34 | 381A 10
386B 7
381A 12
386B 12
386B 11
387B 30 | 382A 10
387B 6
382A 11
387B 10
387B 9
388B 30 | 383A 10
388B 6
383A 12
388B 11
388B 10
389B 26 | 384A 10
389B 6
384A 11
389B 9
389B 8
390B 39 | 385A 10
390B 6
385A 11
390B 11
390B 10 | 386A 10
386A 11 | 387A 10
387A 11 | 388A 10
388A 11 | 389A 10
389A 11 | | C.3
C.3t
C.4a | 383B 11
378A 17
379A102
379A 95 | 384B 8
379A 16
380A106
380A102 | 385B 15
380A 19
381A114
381A100 | 386B 13
381A 17
383B 37
382A 93 | 387B 11
382A 16
383A103
383A 96 | 388B 12
383A 17
385B 60
384A 92 | 389B 10
384A 16
385A100
385A 95 | 390B 12
385A 16
390B 42
386A 91 | 386A 14
390B 43
387A 95 | 387A 14
390B 44
388A 96 | 388A 16
389A 92 | 389A 16
390A 97 | | C.4b
C.4d
C.4e
C.4f
C.4i
C.4j
C.5e
C.5e
D. | 379A 95
379A 95
379A 95
379A 95
379A 95
379A 95
379A 95
378A 22
379A 94 | 380A102
380A102
380A102
381B 45

380A102
381B 45

380A101 | 381A100
381A100
381A100
381A100
381A100
381A100
381A100
380A 28
381A 98 | 382A 93
383B 34
382A 93
382A 93
382A 93
382A 93
381A 23
382A 92 | 383A 96
383A 96
383A 96
383A 96
383A 96
383A 96
383A 96
382A 20
383A 95 | 384A 92
385B 58
384A 92
384A 92
384A 92
384A 92

394A 91 | 385A 95
385A 95
385A 95
385A 95
385A 95
385A 94 | 387B 32
386A 91
386A 91
386A 91
386A 91
386A 91
385A 20
386A 90 | 389B 29
387A 95
387A 95
387A 95
387A 95
387A 95

387A 94 | 389B 32
388A 96
388A 96
388A 96
388A 96
388A 96

388A 95 | 389A 92
389A 92
389A 92
389A 92
389A 92
389A 92

389A 91 | 390A 97
390A 97
390A 97
390A 97
390A 97
389A 20
390A 96 | | D.1a
D.1ba
D.1c
D.1d
D.1e | 379A108
379A109
390A110
379A113 | 380A112
380A114
390A110
380A117 | 381A119
381A121
390A110
381A124 | 382A106
382A108
390A110
382A111 | 383A111
383A113
390A110
383A116 | 385B 61
384A103
390A110
384A106 | 385A106
385A108
390A110
385A111 | 386A104
386A106
390A110
386A109 | 387A108
387A110
390A110
387A113 | 388A108
388A110
390A110
388A113 | 389A102
389A104
390A110
389A107 | 390A107
390A109
390A110
390A114 | | 0.1f
D.1g | 379A114
379A112 | 380A118
380A116 | 381A125
381A123 | 382A112
382A110 | 383A117
383A115 | 384A107
384A105 | 385A112
385A110 | 386A110
386A108 | 387A114
387A112 | 388A114
388A112 | 389A108
389A106 | 390A115
390A113 | | F. 1a
F.1b
F.1e
F.1f
F.1g
F.1h
F.1i | 379A103
379A103
379A103
380B 28
380B 28
379A103
379A103
379A103 | 380A107
380A107
380A107
381B 44
381B 44
380A107
380A107
380A107 | 381A118
381A118
381A118
381A118
381A118
381A118
381A118
381A118 | 382A101
382A101
382A101
382A101
382A101
383B 38
382A101
382A101 | 383A104
383A104
383A104
383A104
383A104
383A104
383A104
383A104 | 384A 96
384A 96
384A 96
384A 96
384A 96

384A 96
384A 96 | 385A101
385A101
385A101
385A101
385A101

385A101
385A101 | 386A 99
386A 99
386A 99
386A 99
386A 99
386A 99
386A 99 | 387A103
387A103
387A103
387A103
387A103

387A103
387A103 | 388A103
388A103
388A103
388A103
388A103

388A103
388A103 | 389A 97
389A 97
389A 97
389A 97
389A 97

389A 97
389A 97 | 390A106
390A106
390A106
390A106
390A106
390A106
390A106 | | H.
H.60
H.62 | 378A 5
384B 17 | 379A 5
3858 49 | 380A 4
386B 27 | 381A 4
387B 23 | 382A 4
388B 23 | 383A 5
389B 19 | 384A 5
390B 32 | 385A 5 | 386A 5 | 387A 4 | 388A 5 | 389A 4 | | | | | | | | | | | | | | | ^{*} See "Key" on pages 64 and following. ## DEGREES FROM CENTRAL MERIDIAN 8 d97 - S not 8 d97 - 5S not Feb 9-Apr I ## DAYS FROM CENTRAL MERIDIAN June 3 - June 10 Dec 4 - Dec 11 Olanut-& anut Ilaad-A ad June 11 - June 18 Nov 26 - Dec 3 Moy 25-June 2 Dec 12-Dec 19 June 19-June 27 Nov 18-Nov 25 May I 7 - May 24 Ts 550 - Dec 27 June 28-July 6 Nov 10-Nov 17 91 yow - 8 way 16 Dec 28- Jon 4 July 7-July 16 Oct 31-Nav 9 Υ γοΜ − 82 1qA Pl που − 2 που July 17 - July 27 Oct 20 - Oct 30 TS 1qA -Ti 1qA PS noL-81 noL July 28 - Aug 12 Oct 5 - Oct 19 Apr 2-Apr 16 Jan 25-Feb 8 Aug 13-Oct 4 1 1QA- 6 ds7 ## WORLD DATA CENTER A ## FOR The ICSU Panel on WDCs has recommended that it would be appropriate courtesy to acknowledge in publications that data were obtained from the originating station or investigator through the intermediary of the WDCs. The following statement is suggested: "Data used in this study were provided by WDC-A for Solar-Terrestrial Physics, NOAA E/GC2, 325 Broadway, Boulder Colorado 80303, USA."