NATIONAL GEOPHYSICAL DATA CENTER Solar-Terrestrial Physics Division (E/GC2) Telephone (303) 497-6346 325 Broadway Boulder, Colorado 80303 USA ISSN 1046-1914 ## SOLAR RADIO EMISSIONS The quiet Sun emits radio energy with a slowly varying intensity. These radio fluxes, which stem from atmospheric layers high in the chromosphere and low in the corona, change gradually from day-to-day, in response to the number and size of spot groups on the solar disk. The table below gives daily measurements of this slowly varying emission at selected wavelengths between about 1 and 100 centimeters. Many observatories record quiet-sun radio fluxes at the same local time each day and correct them to within a few percent for factors such as antenna gain, bursts in progress, atmospheric absorption, and sky background temperature. At 2800 megahertz (10.7 centimeters) flux observations summed over the Sun's disk have been made continuously since February 1947. # **♦ SOLAR FLUX TABLE** Numbers in parentheses in the column headings below denote frequencies in megahertz. Each entry is given in solar flux units--a measure of energy received per unit time, per unit area, per unit frequency interval. One solar flux unit equals 10^{-22} J/m²Hzsec. During low periods of solar activity, the flux never falls to zero, because the Sun emits at all wavelengths with or without the presence of spots. The lowest daily Ottawa flux since 1947 occurred on November 3, 1954. On that day the <u>observed</u> noon value dropped to 62.6 units; the highest <u>observed</u> value of 457.0 occurred on April 7, 1947. The preliminary <u>observed</u> and <u>adjusted</u> Penticton fluxes tabulated here are the "Series C" values reported by Canada's Dominion Radio Astrophysical Observatory in Penticton, British Columbia. <u>Observed</u> numbers are less refined, since they contain fluctuations as large as $\pm 7\%$ from the continuously changing sun-earth distance. <u>Adjusted</u> fluxes have this variation removed; they show the energy received at the mean distance between the Sun and Earth. Gaps in the Learmonth, Australia (LEAR) data reflect equipment problems. Fluxes measured either at Palehua on the Hawaiian Islands, or at San Vito, Italy, will be substituted for frequencies at which many Learmonth values are missing. DECEMBER 1998 PRELIMINARY SUNSPOT NUMBERS AND SOLAR RADIO FLUX | | | FINAL | | |----|---------|----------|----| | Į. | Observe | d Adjust | ed | | Day Intl (2800) (15400) (8800) (4995) (2800) (2695) (1415) (610) (410) 01 127 163 542 265 185 158 158 125 80 53 02 87 152 549 265 183 148 158 124 81 53 03 91 153 548 268 179 149 146 124 80 51 04 86 148 544 262 174 144 154 118 72 46 05 68 142 535 252 172 138 140 116 06 89 142 166 138 138 108 07 95 153 553 261 175 148 141 109 74 50 08 <td< th=""><th>245)
26
23
23
23
24
13
23
24
25</th></td<> | 245)
26
23
23
23
24
13
23
24
25 | |--|--| | 01 127 163 542 265 185 158 158 125 80 53 02 87 152 549 265 183 148 158 124 81 53 03 91 153 548 268 179 149 146 124 80 51 04 86 148 544 262 174 144 154 118 72 46 05 68 142 535 252 172 138 140 116 06 89 142 166 138 138 108 07 95 153 553 261 175 148 141 109 74 50 08 119 162 546 258 183 157 145 107 74 51 | 26
23
23
23
24
13
23
24 | | 02 87 152 549 265 183 148 158 124 81 53 03 91 153 548 268 179 149 146 124 80 51 04 86 148 544 262 174 144 154 118 72 46 05 68 142 535 252 172 138 140 116 06 89 142 166 138 138 108 07 95 153 553 261 175 148 141 109 74 50 08 119 162 546 258 183 157 145 107 74 51 | 23
23
23
24
13
23
24 | | 03 91 153 548 268 179 149 146 124 80 51 04 86 148 544 262 174 144 154 118 72 46 05 68 142 535 252 172 138 140 116 06 89 142 166 138 138 108 07 95 153 553 261 175 148 141 109 74 50 08 119 162 546 258 183 157 145 107 74 51 | 23
23
24
13
23
24 | | 04 86 148 544 262 174 144 154 118 72 46 05 68 142 535 252 172 138 140 116 06 89 142 166 138 138 108 07 95 153 553 261 175 148 141 109 74 50 08 119 162 546 258 183 157 145 107 74 51 | 23
24
13
23
24 | | 05 68 142 535 252 172 138 140 116 06 89 142 166 138 138 108 07 95 153 553 261 175 148 141 109 74 50 08 119 162 546 258 183 157 145 107 74 51 | 24132324 | | 06 89 142 166 138 138 108 07 95 153 553 261 175 148 141 109 74 50 08 119 162 546 258 183 157 145 107 74 51 | 13
23
24 | | 07 95 153 553 261 175 148 141 109 74 50 08 119 162 546 258 183 157 145 107 74 51 | 23
24 | | 07 95 153 553 261 175 148 141 109 74 50 08 119 162 546 258 183 157 145 107 74 51 | 23
24 | | 08 119 162 546 258 183 157 145 107 74 51 | 24 | | | | | 1 00 1 400 454 540 000 404 440 450 465 56 | 25 | | 09 103 154 542 232 181 149 153 112 74 55 | | | 10 108 134 548 261 182 130 143 107 72 48 | 21 | | | | | 11 105 143 544 255 173 139 137 101 71 50 | 23 | | 12 102 143 546 257 174 139 137 102 72 48 | 24 | | 13 84 144 531 243 168 140 133 101 73 52 | -1 | | 14 83 144 562 235 167 140 132 102 71 56 | 72 | | 15 72 142 538 256 167 138 132 103 73 51 | 29 | | | | | 16 60 141 547 261 168 136 134 103 71 48 | 22 | | 17 49 146 574 262 168 141 135 103 72 49 | 24 | | 18 60 155 575 269 171 150 136 106 72 47 | 24 | | 19 50 138 268 170 134 134 103 73 49 | 25 | | 20 50 135 553 271 166 131 132 102 75 50 | 24 | | 21 43 135 510 252 158 131 124 102 65 42 | 20 | | | 20 | | 22 39 129 536 271 160 125 129 104 72 48 23 47 140 576 276 165 135 130 110 81 53 | 23
26 | | 24 58 139 560 266 167 134 136 111 78 50 | 26
23 | | 25 | 23
24 | | 1 20 100 177 550 202 170 159 150 111 74 50 | 4 | | 26 81 145 287 180 140 146 117 53 | 24 | | 27 100 167 550 293 193 161 144 117 77 51 | 23 | | 28 121 184 568 306 217 178 171 130 79 49 | 19 | | 29 96 183 560 319 225 177 170 125 83 53 | 23 | | 30 99 179 553 325 235 173 171 124 83 54 | 22 | | | | | 31 92 175 584 284 209 169 164 120 75 51 | 22 | | Mean 82 150 551 268 179 145 143 111 75 50 | | | Pentic | Pentic | |----------------|----------------| | (2800) | (2800) | | 121.4 | 119.5 | | 126.1 | 124.1 | | 151.8 | 149.3 | | 141.4 | 139.0 | | 152.7 | 150.1 | | 140.9 | 138.4 | | 148.5 | 145.8 | | 152.7 | 149.9 | | 162.4 | 159.3 | | 153.8 | 150.8 | | ,,,,, | 700.0 | | 147.1 | 144.1 | | 141.6 | 138.7 | | 135.4 | 132.6 | | 126.5 | 123.8 | | 126.4 | 123.7 | | 124.6 | 121.8 | | 120.8 | 118.0 | | 114.8 | 112.2 | | 116.5 | 113.7 | | 121.5 | 118.6 | | 101.0 | 440.0 | | 121.2
126.1 | 118.3
123.0 | | 120.1 | 126.7 | | 140.2 | 136.7 | | 149.5 | 145.6 | | 140.0 | 140.0 | | 156.4 | 152.3 | | 158.9 | 154.7 | | 164.8 | 160.4 | | 167.8 | 163.2 | | 163.4 | 158.9 | | | | | 140.2 | 137.1 | | | | #### SUNSPOT COUNTS In 1848 the Swiss astronomer Johann Rudolph Wolf introduced a daily measurement of sunspot number. His method, which is still used today, counts the total number of spots visible on the face of the Sun and the number of groups into which they cluster, because neither quantity alone satisfactorily measures the level of sunspot activity. An observer computes a daily sunspot number by multiplying his estimated number of groups by ten and then adding this product to his total count of individual spots. Results, however, vary greatly, since the measurement strongly depends on observer interpretation and experience and on the stability of the Earth's atmosphere above the observing site. Moreover, the use of Earth as a platform from which to record these numbers contributes to their variability, too, because the sun rotates and the evolving spot groups are distributed unevenly across solar longitudes. To compensate for these limitations, each daily international number is computed as a weighted average of measurements made from a network of cooperating observatories. The international sunspot numbers tabulated on page 1 are provisional values taken from a bulletin prepared monthly by Pierre Cugnon of the SUNSPOT INDEX DATA CENTER, 3 avenue Circulaire, B-1180 BRUXELLES, BELGIUM. The August 1998 data combine observations from 31 stations. http://www.oma.be/KSB-ORB/SIDC/index.html. #### HISTORICAL SUNSPOT COUNTS How do sunspot numbers in the table on page 1 compare to the largest values ever recorded? The highest daily count on record occurred December 24-25, 1957. On each of those days the sunspot number totaled 355. In contrast, during years near the spot cycle minimum, the count can fall to zero. Today, much more sophisticated measurements of solar activity are made routinely, but none has the link with the past that sunspot numbers have. Our archives, for example, include reconstructed daily values from January 8, 1818; monthly means from January 1749; and yearly means beginning in 1700. SMOOTHED (OBSERVED AND PREDICTED) SUNSPOT NUMBERS: CYCLES 22 AND 23 | Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Mean | |------|------|------|------|------|------|------|------|------|------|------|------|------|------| | 1988 | 58 | 65 | 71 | 78 | 84 | 94 | 104 | 114 | 121 | 125 | 130 | 138 | 98 | | 1989 | 142 | 145 | 150 | 154 | 157 | 158 | 159 | 158 | 157 | 157 | 158 | 154 | 154 | | 1990 | 151 | 153 | 152 | 149 | 147 | 144 | 141 | 141 | 142 | 142 | 142 | 144 | 146 | | 1991 | 148 | 148 | 147 | 147 | 146 | 145 | 146 | 147 | 145 | 142 | 138 | 132 | 144 | | 1992 | 124 | 115 | 108 | 103 | 100 | 97 | 91 | 84 | 80 | 76 | 74 | 73 | 94 | | 1993 | 71 | 69 | 67 | 64 | 60 | 56 | 55 | 52 | 48 | 45 | 41 | 38 | 56 | | 1994 | 37 | 35 | 34 | 34 | 33 | 31 | 29 | 27 | 27 | 27 | 26 | 26 | 30 | | 1995 | 24 | 23 | 22 | 21 | 19 | 18 | 17 | 15 | 13 | 12 | 11 | 11 | 17 | | 1996 | 10 | 10 | 10 | 9 | 8* | 9 | 8 | 8 | 8 | 9** | 10 | 10 | 9 | | 1997 | 10 | 11 | 14 | 17 | 18 | 20 | 23 | 25 | 28 | 32 | 35 | 39 | 23 | | 1998 | 44 | 49 | 53 | 57 | 59 | 62 | 69 | 75 | 82 | 88 | 92 | 97 | 66 | | | | | | | | | (2) | (5) | (7) | (9) | (12) | (15) | (3) | | 1999 | 101 | 105 | 109 | 114 | 118 | 123 | 126 | 129 | 131 | 134 | 137 | 139 | 121 | | | (17) | (18) | (17) | (16) | (15) | (16) | (20) | (23) | (26) | (29) | (32) | (34) | (21) | | 2000 | 140 | 140 | 141 | 141 | 140 | 139 | 138 | 138 | 137 | 135 | 133 | 132 | 138 | | | (37) | (39) | (41) | (43) | (43) | (42) | (41) | (41) | (42) | (42) | (43) | (43) | (41) | *May 1996 marks Cycle 22's mathematical minimum. ### SUNSPOT NUMBER PREDICTIONS For the end of Solar Cycle 22, and the beginning of Cycle 23, the table gives smoothed sunspot numbers up to the one calculated that first uses the most recently measured monthly mean. These smoothed, observed values are based on final, unsmoothed monthly means through June 1998 and on provisional ones thereafter. We compute a smoothed monthly mean by forming the arithmetic average of two sequential 12-month running means of monthly means. Table entries with numbers in parentheses below them denote predictions by the McNish-Lincoln method. This method estimates future numbers by adding a correction to the mean of all cycles that is proportional to the departure of earlier values of the current cycle from the mean cycle. (See page 9 in the July 1987 supplement to *Solar-Geophysical Data*). We use and predict only smoothed monthly means, because we believe the errors are too great to estimate any values more precise. In the table above, adding the number in parentheses to the predicted value generates the upper limit of the 90% confidence interval; subtracting the number from the predicted value generates the lower limit. Consider, for example the June 1999 prediction. There exists a 90% chance that in June 1999 the actual smoothed sunspot number will fall somewhere between 107 and 139. The McNish-Lincoln prediction method generates useful estimates of smoothed, monthly mean sunspot numbers for no more than 12 months ahead. Beyond a year these predictions regress rapidly toward the mean of all 13 cycles used in the computation. Moreover, the method is very sensitive to the date defined as the beginning of the current sunspot cycle, that is, to the date of the most recent sunspot minimum. The new cycle predictions tabulated above are based on the consensus minimum value of 8.8 that occurred in October 1996. For solar maximum discussions, visit http://www.sec.noaa.gov. Although every effort has been made to ensure that these data are correct, we can assume no liability for any damages their inaccuracies might cause. The charge for a 1-year subscription to this monthly bulletin is US\$17.00. To become a subscriber, you may either call (303) 497-6346 or write the NATIONAL GEOPHYSICAL DATA CENTER, Solar-Terrestrial Physics Division (E/GC2), 325 Broadway, Boulder, Colorado 80303 USA. Please include with your written order a cheque or money order payable in U.S. currency to the "Department of Commerce, NOAA/NGDC". Payment may also be made through VISA, MasterCard or American Express credit cards. ^{**}October 1996 marks the consensus Cycle 22 minimum which NGDC is now using.