NATIONAL GEOPHYSICAL DATA CENTER Solar-Terrestrial Physics Division (E/GC2) Telephone (303) 497-6346 325 Broadway Boulder, Colorado 80303 USA ISSN 1046-1914 # SOLAR RADIO EMISSIONS The quiet Sun emits radio energy with a slowly varying intensity. These radio fluxes, which stem from atmospheric layers high in the chromosphere and low in the corona, change gradually from day-to-day, in response to the number and size of spot groups on the solar disk. The table below gives daily measurements of this slowly varying emission at selected wavelengths between about 1 and 100 centimeters. Many observatories record quiet-sun radio fluxes at the same local time each day and correct them to within a few percent for factors such as antenna gain, bursts in progress, atmospheric absorption, and sky background temperature. At 2800 megahertz (10.7 centimeters) flux observations summed over the Sun's disk have been made continuously since February 1947. # **♦ SOLAR FLUX TABLE** Numbers in parentheses in the column headings below denote frequencies in megahertz. Each entry is given in solar flux units--a measure of energy received per unit time, per unit area, per unit frequency interval. One solar flux unit equals 10^{-22} J/m²Hzsec. Sunspot Obs Flux Solar Flux Adjusted to 1 Astronomical Unit During low periods of solar activity, the flux never falls to zero, because the Sun emits at all wavelengths with or without the presence of spots. The lowest daily Ottawa flux since 1947 occurred on November 3, 1954. On that day the <u>observed</u> noon value dropped to 62.6 units; the highest <u>observed</u> value of 457.0 occurred on April 7, 1947. The preliminary <u>observed</u> and <u>adjusted</u> Penticton fluxes tabulated here are the "Series C" values reported by Canada's Dominion Radio Astrophysical Observatory in Penticton, British Columbia. <u>Observed</u> numbers are less refined, since they contain fluctuations as large as $\pm 7\%$ from the continuously changing sun-earth distance. <u>Adjusted</u> fluxes have this variation removed; they show the energy received at the mean distance between the Sun and Earth. Gaps in the Learmonth, Australia (LEAR) data reflect equipment problems. Fluxes measured either at Palehua on the Hawaiian Islands, or at San Vito, Italy, will be substituted for frequencies at which many Learmonth values are missing. JANUARY 1999 PRELIMINARY SUNSPOT NUMBERS AND SOLAR RADIO FLUX | DEC | 1008 | FINAL | ELLIY | |-----|------|-------|-------| | | 1770 | | FLUA | | Day Intl (2800) (15400) (8800) (4995) (2800) (2695) (1415) (610) (410) (245) | | Number | Pentic | LEAR | LEAR | LEAR | Pentic | LEAR | LEAR | LEAR | LEAR | LEAR | |---|------|--------|--------|------|------|------|--------|------|------|------|------|------| | 01 57 163 608 309 207 161 163 120 86 55 22 02 68 156 310 205 155 156 117 85 22 03 58 145 663 291 182 150 145 114 57 24 04 60 145 563 291 182 142 145 114 85 57 24 05 64 134 539 277 167 132 134 107 78 54 25 06 48 125 549 279 158 122 125 101 77 53 24 07 64 115 547 290 155 111 115 96 61 39 15 08 51 115 544 287 148 112 115 | Dav | | | l . | | | | | | | | | | 02 68 156 310 205 155 156 117 85 22 03 58 145 563 291 182 150 145 114 57 24 05 64 134 539 277 167 132 134 107 78 54 25 06 48 125 549 279 158 122 125 101 77 53 24 07 64 115 547 290 155 111 115 94 66 45 18 08 51 115 544 287 148 112 115 94 66 45 18 09 47 108 538 283 147 111 108 88 65 44 19 10 46 110 544 288 149 106 110 | | | | | . , | | | | | | | | | 03 58 145 563 291 182 150 145 114 57 24 04 60 145 563 291 182 142 145 114 85 57 24 05 64 134 539 277 167 132 134 107 78 54 25 06 48 125 549 279 158 122 125 101 77 53 24 07 64 115 547 290 155 111 115 94 66 45 18 08 51 115 544 287 148 112 115 94 66 45 18 09 47 108 538 283 147 111 108 88 65 44 19 11 32 105 535 285 144 108 105 < | 02 | 68 | 156 | | 310 | 205 | 155 | | | | | | | 04 60 145 563 291 182 142 145 114 85 57 24 05 64 134 539 277 167 132 134 107 78 54 25 06 48 125 549 279 158 122 125 101 77 53 24 07 64 115 547 290 155 111 115 94 66 45 18 08 51 115 544 287 148 112 115 94 66 45 18 09 47 108 538 283 147 111 108 88 65 44 19 10 46 110 544 288 149 106 110 87 65 44 19 11 32 105 535 285 144 108 105 <ts< th=""><th></th><th>58</th><th></th><th>563</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ts<> | | 58 | | 563 | | | | | | | | | | 05 64 134 539 277 167 132 134 107 78 54 25 06 48 125 549 279 158 122 125 101 77 53 24 07 64 115 547 290 155 111 115 96 61 39 15 08 51 115 544 287 148 112 115 94 66 45 18 09 47 108 538 283 147 111 108 88 65 44 19 10 46 110 544 288 149 106 110 87 65 44 19 11 32 105 535 285 144 108 105 85 65 44 17 11 32 105 533 294 148 109 102 | 04 | 60 | 145 | 563 | 291 | 182 | 142 | | | 85 | | | | 06 | 05 | 64 | 134 | 539 | 277 | | | | | | | | | 07 64 115 547 290 155 111 115 96 61 39 15 08 51 115 544 287 148 112 115 94 66 45 18 09 47 108 538 283 147 111 108 88 65 44 19 10 46 110 544 288 149 106 110 87 65 44 19 11 32 105 535 285 144 108 105 85 65 44 17 12 38 102 533 294 148 109 102 84 64 43 16 13 41 107 534 306 149 115 107 83 64 43 16 14 65 117 541 310 162 132 117 88 | | | | | | | | | | | | | | 08 51 115 544 287 148 112 115 94 66 45 18 09 47 108 538 283 147 111 108 88 65 44 19 10 46 110 544 288 149 106 110 87 65 44 19 11 32 105 535 285 144 108 105 85 65 44 17 12 38 102 533 294 148 109 102 84 64 43 16 13 41 107 534 306 149 115 107 83 64 43 16 14 65 117 541 310 162 132 117 88 65 42 15 15 83 131 536 326 182 138 131 95 | 06 | 48 | 125 | 549 | 279 | 158 | 122 | 125 | 101 | 77 | 53 | 24 | | 09 47 108 538 283 147 111 108 88 65 44 19 10 46 110 544 288 149 106 110 87 65 44 19 11 32 105 535 285 144 108 105 85 65 44 17 12 38 102 533 294 148 109 102 84 64 43 16 13 41 107 534 306 149 115 107 83 64 43 16 14 65 117 541 310 162 132 117 88 65 42 15 15 83 131 536 326 182 138 131 95 68 44 15 16 90 139 534 294 170 154 139 99 | 07 | 64 | 115 | 547 | | 155 | 111 | 115 | 96 | 61 | 39 | 15 | | 10 46 110 544 288 149 106 110 87 65 44 19 11 32 105 535 285 144 108 105 85 65 44 17 12 38 102 533 294 148 109 102 84 64 43 16 13 41 107 534 306 149 115 107 83 64 43 16 14 65 117 541 310 162 132 117 88 65 42 15 15 83 131 536 326 182 138 131 95 68 44 15 16 90 139 534 294 170 154 139 99 67 44 15 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 | 80 | | | | | | 112 | 115 | 94 | 66 | 45 | 18 | | 11 32 105 535 285 144 108 105 85 65 44 17 12 38 102 533 294 148 109 102 84 64 43 16 13 41 107 534 306 149 115 107 83 64 43 16 14 65 117 541 310 162 132 117 88 65 42 15 15 83 131 536 326 182 138 131 95 68 44 15 16 90 139 534 294 170 154 139 99 67 44 15 16 90 139 534 294 170 154 139 99 67 44 15 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 | 09 | 47 | | | 283 | 147 | 111 | 108 | 88 | 65 | 44 | 19 | | 12 38 102 533 294 148 109 102 84 64 43 16 13 41 107 534 306 149 115 107 83 64 43 16 14 65 117 541 310 162 132 117 88 65 42 15 15 83 131 536 326 182 138 131 95 68 44 15 16 90 139 534 294 170 154 139 99 67 44 15 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 <th>10</th> <th>46</th> <th>110</th> <th>544</th> <th>288</th> <th>149</th> <th>106</th> <th>110</th> <th>87</th> <th>65</th> <th>44</th> <th>19</th> | 10 | 46 | 110 | 544 | 288 | 149 | 106 | 110 | 87 | 65 | 44 | 19 | | 12 38 102 533 294 148 109 102 84 64 43 16 13 41 107 534 306 149 115 107 83 64 43 16 14 65 117 541 310 162 132 117 88 65 42 15 15 83 131 536 326 182 138 131 95 68 44 15 16 90 139 534 294 170 154 139 99 67 44 15 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 <th>ļ</th> <th></th> | ļ | | | | | | | | | | | | | 13 41 107 534 306 149 115 107 83 64 43 16 14 65 117 541 310 162 132 117 88 65 42 15 15 83 131 536 326 182 138 131 95 68 44 15 16 90 139 534 294 170 154 139 99 67 44 15 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 </th <th></th> | | | | | | | | | | | | | | 14 65 117 541 310 162 132 117 88 65 42 15 15 83 131 536 326 182 138 131 95 68 44 15 16 90 139 534 294 170 154 139 99 67 44 15 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 1 | 1 1 | | | | | | | | | | | | | 15 83 131 536 326 182 138 131 95 68 44 15 16 90 139 534 294 170 154 139 99 67 44 15 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 <td< th=""><th>1 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<> | 1 1 | | | | | | | | | | | | | 16 90 139 534 294 170 154 139 99 67 44 15 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 | | | | | | | | | | | | | | 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 31 121 <t< th=""><th>15</th><th>83 🍦</th><th>131</th><th>536</th><th>326</th><th>182</th><th>138</th><th>131</th><th>95</th><th>68</th><th>44</th><th>15</th></t<> | 15 | 83 🍦 | 131 | 536 | 326 | 182 | 138 | 131 | 95 | 68 | 44 | 15 | | 17 93 149 544 187 156 149 109 70 44 16 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 31 121 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | 18 111 165 560 353 197 166 165 118 79 52 18 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | 19 121 163 554 354 197 170 163 121 80 56 22 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 316 169 129 124 112 84 67 44 27 35 118 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<> | | | | | | | | | | | | | | 20 120 164 554 312 198 166 164 126 84 53 23 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 316 169 129 124 112 84 67 44 27 35 118 279 151 121 118 106 79 52 27 28 28 117 | | | | | | | | | | | | | | 21 114 186 566 366 226 169 186 134 84 51 19 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 316 169 129 124 112 84 67 44 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 30 22 <t< th=""><th>1 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<> | 1 1 | | | | | | | | | | | | | 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 316 169 129 124 112 84 67 44 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 31 30 113 153 112 113 91 | 20 | 120 | 164 | 554 | 312 | 198 | 166 | 164 | 126 | 84 | 53 | 23 | | 22 108 168 561 340 203 172 168 132 87 62 31 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 316 169 129 124 112 84 67 44 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 31 30 113 153 112 113 91 | 21 | 114 | 196 | 566 | 266 | 226 | 160 | 106 | 101 | 0.4 | F.4 | 40 | | 23 87 160 561 308 194 161 160 125 55 23 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 316 169 129 124 112 84 67 44 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 114 31 30 113 153 112 113 91 71 48 19 | | | | | | | | | | | | | | 24 68 158 563 337 202 157 158 126 84 60 25 31 145 303 177 134 145 119 84 57 27 26 30 124 316 169 129 124 112 84 67 44 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 114 31 30 113 153 112 113 91 71 48 19 | | | | | | | | | | | | | | 25 31 145 303 177 134 145 119 84 57 27 26 30 124 316 169 129 124 112 84 67 44 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 114 31 30 113 153 112 113 91 71 48 19 | | | | | | | | | | | | | | 26 30 124 316 169 129 124 112 84 67 44 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 114 31 30 113 153 112 113 91 71 48 19 | | | | | | | | | | | | | | 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 114 31 30 113 153 112 113 91 71 48 19 | 23 | 01 | 140 | | 505 | 177 | 104 | 145 | 119 | 04 | 37 | 21 | | 27 35 118 279 151 121 118 106 79 52 27 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 114 31 30 113 153 112 113 91 71 48 19 | 26 | 30 | 124 | | 316 | 169 | 129 | 124 | 112 | 84 | 67 | 44 | | 28 28 117 281 149 115 117 102 29 24 117 551 273 144 114 117 95 73 47 20 30 22 114 31 30 113 153 112 113 91 71 48 19 | | | | | | | | | | | | | | 29 24 117 551 273 144 114 117 95 73 47 20 30 22 114 31 30 113 153 112 113 91 71 48 19 | | | | | | | | | | | | | | 30 22 114 31 30 113 153 112 113 91 71 48 19 | | | | | | | | | | | | | | 31 30 113 153 112 113 91 71 48 19 | 31 | 30 | 113 | | | 153 | 112 | 113 | 91 | 71 | 48 | 19 | | | Mean | 62 | 135 | 551 | 305 | 173 | 136 | | | | | 21 | | Pentic (2800) (2800)
162.7 158.2
151.7 147.4
153.1 148.7
148.2 144.0
142.4 138.3 | |---| | 162.7 158.2
151.7 147.4
153.1 148.7
148.2 144.0 | | 151.7 147.4
153.1 148.7
148.2 144.0 | | 153.1 148.7
148.2 144.0 | | 148.2 144.0 | | | | 140 4 400 0 | | 142.4 130.3 | | | | 142.3 138.1 | | 153.2 148.7 | | 162.0 157.1 | | 153.9 149.3 | | 133.8 129.8 | | 143.1 138.8 | | 143.1 138.8
143.3 138.9 | | 144.2 139.7 | | 144.4 139.9 | | 141.6 137.2 | | 141.0 137.2 | | 140.5 136.1 | | 146.1 141.5 | | 154.7 149.8 | | 138.0 133.6 | | 134.7 130.4 | | | | 135.3 130.9 | | 128.8 124.6 | | 139.8 135.2 | | 139.4 134.9 | | 144.4 139.6 | | 144.0 440.0 | | 144.9 140.2
166.8 161.4 | | 184.4 178.3 | | | | 182.8 176.8
179.0 173.1 | | 179.0 173.1 | | 174.6 168.8 | | 150.1 145.5 | | | ### SUNSPOT COUNTS In 1848 the Swiss astronomer Johann Rudolph Wolf introduced a daily measurement of sunspot number. His method, which is still used today, counts the total number of spots visible on the face of the Sun and the number of groups into which they cluster, because neither quantity alone satisfactorily measures the level of sunspot activity. An observer computes a daily sunspot number by multiplying his estimated number of groups by ten and then adding this product to his total count of individual spots. Results, however, vary greatly, since the measurement strongly depends on observer interpretation and experience and on the stability of the Earth's atmosphere above the observing site. Moreover, the use of Earth as a platform from which to record these numbers contributes to their variability, too, because the sun rotates and the evolving spot groups are distributed unevenly across solar longitudes. To compensate for these limitations, each daily international number is computed as a weighted average of measurements made from a network of cooperating observatories. The international sunspot numbers tabulated on page 1 are provisional values taken from a bulletin prepared monthly by Pierre Cugnon of the SUNSPOT INDEX DATA CENTER, 3 avenue Circulaire, B-1180 BRUXELLES, BELGIUM. The August 1998 data combine observations from 41 stations. http://www.oma.be/KSB-ORB/SIDC/index.html. ### ♦ HISTORICAL SUNSPOT COUNTS How do sunspot numbers in the table on page 1 compare to the largest values ever recorded? The highest daily count on record occurred December 24-25, 1957. On each of those days the sunspot number totaled 355. In contrast, during years near the spot cycle minimum, the count can fall to zero. Today, much more sophisticated measurements of solar activity are made routinely, but none has the link with the past that sunspot numbers have. Our archives, for example, include reconstructed daily values from January 8, 1818; monthly means from January 1749; and yearly means beginning in 1700. SMOOTHED (OBSERVED AND PREDICTED) SUNSPOT NUMBERS: CYCLES 22 AND 23 | Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Mean | |------|------|------|------|------|------|------|------|------|------|------|------|------|------| | 1988 | 58 | 65 | 71 | 78 | 84 | 94 | 104 | 114 | 121 | 125 | 130 | 138 | 98 | | 1989 | 142 | 145 | 150 | 154 | 157 | 158 | 159 | 158 | 157 | 157 | 158 | 154 | 154 | | 1990 | 151 | 153 | 152 | 149 | 147 | 144 | 141 | 141 | 142 | 142 | 142 | 144 | 146 | | 1991 | 148 | 148 | 147 | 147 | 146 | 145 | 146 | 147 | 145 | 142 | 138 | 132 | 144 | | 1992 | 124 | 115 | 108 | 103 | 100 | 97 | 91 | 84 | 80 | 76 | 74 | 73 | 94 | | 1993 | 71 | 69 | 67 | 64 | 60 | 56 | 55 | 52 | 48 | 45 | 41 | 38 | 56 | | 1994 | 37 | 35 | 34 | 34 | 33 | 31 | 29 | 27 | 27 | 27 | 26 | 26 | 30 | | 1995 | 24 | 23 | 22 | 21 | 19 | 18 | 17 | 15 | 13 | 12 | 11 | 11 | 17 | | 1996 | 10 | 10 | 10 | 9 | 8* | 9 | 8 | 8 | 8 | 9** | 10 | 10 | 9 | | 1997 | 10 | 11 | 14 | 17 | 18 | 20 | 23 | 25 | 28 | 32 | 35 | 39 | 23 | | 1998 | 44 | 49 | 53 | 57 | 59 | 62 | 65 | 72 | 78 | 84 | 88 | 93 | 67 | | | | | | | | | | (3) | (5) | (7) | (10) | (13) | (3) | | 1999 | 97 | 100 | 104 | 109 | 113 | 117 | 121 | 123 | 126 | 129 | 132 | 134 | 117 | | | (16) | (17) | (16) | (14) | (14) | (16) | (20) | (24) | (27) | (30) | (33) | (35) | (22) | | 2000 | 134 | 135 | 136 | 136 | 125 | 134 | 134 | 133 | 133 | 131 | 130 | 128 | 132 | | | (38) | (40) | (42) | (43) | (43) | (43) | (41) | (41) | (42) | (42) | (43) | (43) | (42) | *May 1996 marks Cycle 22's mathematical minimum. # SUNSPOT NUMBER PREDICTIONS For the end of Solar Cycle 22, and the beginning of Cycle 23, the table gives smoothed sunspot numbers up to the one calculated that first uses the most recently measured monthly mean. These smoothed, observed values are based on final, unsmoothed monthly means through June 1998 and on provisional ones thereafter. We compute a smoothed monthly mean by forming the arithmetic average of two sequential 12-month running means of monthly means. Table entries with numbers in parentheses below them denote predictions by the McNish-Lincoln method. This method estimates future numbers by adding a correction to the mean of all cycles that is proportional to the departure of earlier values of the current cycle from the mean cycle. (See page 9 in the July 1987 supplement to *Solar-Geophysical Data*). We use and predict only smoothed monthly means, because we believe the errors are too great to estimate any values more precise. In the table above, adding the number in parentheses to the predicted value generates the upper limit of the 90% confidence interval; subtracting the number from the predicted value generates the lower limit. Consider, for example the June 1999 prediction. There exists a 90% chance that in July 1999 the actual smoothed sunspot number will fall somewhere between 101 and 141. The McNish-Lincoln prediction method generates useful estimates of smoothed, monthly mean sunspot numbers for no more than 12 months ahead. Beyond a year these predictions regress rapidly toward the mean of all 13 cycles used in the computation. Moreover, the method is very sensitive to the date defined as the beginning of the current sunspot cycle, that is, to the date of the most recent sunspot minimum. The new cycle predictions tabulated above are based on the consensus minimum value of 8.8 that occurred in October 1996. For solar maximum discussions, visit http://www.sec.noaa.gov. Although every effort has been made to ensure that these data are correct, we can assume no liability for any damages their inaccuracies might cause. The charge for a 1-year subscription to this monthly bulletin is US\$17.00. To become a subscriber, you may either call (303) 497-6346 or write the NATIONAL GEOPHYSICAL DATA CENTER, Solar-Terrestrial Physics Division (E/GC2), 325 Broadway, Boulder, Colorado 80303 USA. Please include with your written order a cheque or money order payable in U.S. currency to the "Department of Commerce, NOAA/NGDC". Payment may also be made through VISA, MasterCard or American Express credit cards. ^{**}October 1996 marks the consensus Cycle 22 minimum which NGDC is now using.