SOLAR INDICES BULLETIN SEPTEMBER 2004 NATIONAL GEOPHYSICAL DATA CENTER Solar-Terrestrial Physics Division (E/GC2) Telephone (303) 497-6346 325 Broadway Boulder, Colorado 80305-3328 USA ISSN 1046-1914 ## **♦ SOLAR RADIO EMISSIONS** The quiet Sun emits radio energy with a slowly varying intensity. These radio fluxes, which stem from atmospheric layers high in the chromosphere and low in the corona, change gradually from day-to-day, in response to the number and size of spot groups on the solar disk. The table below gives daily measurements of this slowly varying emission at selected wavelengths between about 1 and 100 centimeters. Many observatories record quiet-sun radio fluxes at the same local time each day and correct them to within a few percent for factors such as antenna gain, bursts in progress, atmospheric absorption, and sky background temperature. At 2800 megahertz (10.7 centimeters) flux observations summed over the Sun's disk have been made continuously since February 1947. ### **♦ SOLAR FLUX TABLE** Numbers in parentheses in the column headings below denote frequencies in megahertz. Each entry is given in solar flux units—a measure of energy received per unit time, per unit area, per unit frequency interval. One solar flux unit equals 10^{-22} J/m²Hzsec. During low periods of solar activity, the flux never falls to zero, because the Sun emits at all wavelengths with or without the presence of spots. The lowest daily Ottawa flux since 1947 occurred on November 3, 1954. On that day the <u>observed</u> noon value dropped to 62.6 units; the highest <u>observed</u> value of 457.0 occurred on April 7, 1947. The preliminary <u>observed</u> and <u>adjusted</u> Penticton fluxes tabulated here are the "Series C" values reported by Canada's Dominion Radio Astrophysical Observatory in Penticton, British Columbia. <u>Observed</u> numbers are less refined, since they contain fluctuations as large as ±7% from the continuously changing sun-earth distance. <u>Adjusted</u> fluxes have this variation removed; they show the energy received at the mean distance between the Sun and Earth. Gaps in the Palehua, Hawaii (PALE), data reflect equipment problems. Fluxes measured either at Sagamore Hill, Massachusetts, or at San Vito, Italy, will be substituted for frequencies at which many Palehua values are missing. SEPTEMPER 2004 PRELIMINARY SUNSPOT NUMBERS AND SOLAR RADIO FLUX | Sunspt Obs Flux PALE P | | SEPTEMPER 2004 PRELIMINARY SUNSPOT NUMBERS AND SOLAR RADIO FLUX Sunspot Obs Flux Solar Flux Adjusted to 1 Astronomical Unit | | | | | | | | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|-----|-----|----|-----|------|------| | Day Intl (2800) (15400) (8800) (4995) (2800) (2695) (1415) (610) (410) (245) | | , | | | DALE | | - | | | | DALE | DALE | | 01 8 90 244 188 138 91 94 55 39 27 12 02 8 94 471 244 150 95 106 59 37 27 12 03 18 97 494 236 149 98 107 61 39 28 13 04 20 99 502 240 148 100 109 63 38 27 12 05 37 103 505 246 154 104 115 69 41 28 12 06 32 107 467 240 156 108 120 72 42 29 11 07 38 119 516 246 169 120 123 79 — — — 08 47 125 — — — 126 — — — <td>Dav</td> <td></td> <td></td> <td>l .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | Dav | | | l . | | | | | | | | | | 02 8 94 471 244 150 95 106 59 37 27 12 03 18 97 494 236 149 98 107 61 39 28 13 04 20 99 502 240 148 100 109 63 38 27 12 05 37 103 505 246 156 108 120 72 42 29 11 06 32 107 467 240 156 108 120 72 42 29 11 07 38 119 516 246 169 120 123 79 — — — — 08 47 125 — — — 126 — — — — — — — — — — — — — — — <td< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | _ | | | | | | | | | | | | | 03 18 97 494 236 149 98 107 61 39 28 13 04 20 99 502 240 148 100 109 63 38 27 12 05 37 103 505 246 154 104 115 69 41 28 12 06 32 107 467 240 156 108 120 72 42 29 11 07 38 119 516 246 169 120 123 79 | | | | | | | | | | | | | | 04 20 99 502 240 148 100 109 63 38 27 12 05 37 103 505 246 154 104 115 69 41 28 12 06 32 107 467 240 156 108 120 72 42 29 11 07 38 119 516 246 169 120 123 79 — — — 08 47 125 — — — 126 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — | | | | | | | | | | | | - 1 | | 05 37 103 505 246 154 104 115 69 41 28 12 06 32 107 467 240 156 108 120 72 42 29 11 07 38 119 516 246 169 120 123 79 — — — 08 47 125 — — — 126 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — | | i | | | | | | | | | | | | 06 | | | | | | | | | | | | | | 07 38 119 516 246 169 120 123 79 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — | | | | | | | | | | | | | | 07 38 119 516 246 169 120 123 79 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — | 06 | 32 | 107 | 467 | 240 | 156 | 108 | 120 | 72 | 42 | 29 | 11 | | 08 47 125 — — — 126 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — <td< td=""><td>07</td><td>38</td><td>119</td><td>516</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | 07 | 38 | 119 | 516 | | | | | | | | | | 10 44 130 504 259 174 131 134 76 44 30 15 11 42 116 501 244 161 117 124 71 40 28 13 12 43 115 506 248 164 116 126 67 43 30 12 13 39 118 119 | 08 | 47 | 125 | | | | 126 | | | *** | | | | 11 42 116 501 244 161 117 124 71 40 28 13 12 43 115 506 248 164 116 126 67 43 30 12 13 39 118 119 | 09 | 51 | 131 | 414 | 220 | 166 | 132 | 135 | 78 | 44 | 33 | 23 | | 12 43 115 506 248 164 116 126 67 43 30 12 13 39 118 119 | 10 | 44 | 130 | 504 | 259 | 174 | 131 | 134 | 76 | 44 | 30 | | | 12 43 115 506 248 164 116 126 67 43 30 12 13 39 118 119 | | | | | | | | | | | | | | 13 39 118 — — — 119 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — <td< td=""><td>11</td><td>42</td><td>116</td><td>501</td><td>244</td><td>161</td><td>117</td><td>124</td><td>71</td><td>40</td><td>28</td><td>13</td></td<> | 11 | 42 | 116 | 501 | 244 | 161 | 117 | 124 | 71 | 40 | 28 | 13 | | 14 32 115 499 251 165 116 123 67 42 32 16 15 39 110 497 251 166 111 121 70 43 32 18 16 38 108 495 241 163 109 117 62 45 30 14 17 36 105 500 247 157 106 110 62 41 28 12 18 33 103 507 246 158 103 115 0 42 31 12 19 34 105 504 251 156 105 114 45 45 31 15 20 27 101 504 248 156 101 109 62 40 28 13 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100< | 12 | 43 | 115 | 506 | 248 | 164 | 116 | 126 | 67 | 43 | 30 | 12 | | 15 39 110 497 251 166 111 121 70 43 32 18 16 38 108 495 241 163 109 117 62 45 30 14 17 36 105 500 247 157 106 110 62 41 28 12 18 33 103 507 246 158 103 115 0 42 31 12 19 34 105 504 251 156 105 114 45 45 31 15 20 27 101 504 248 156 101 109 62 40 28 13 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 <td>13</td> <td>39</td> <td>118</td> <td>***</td> <td></td> <td></td> <td>119</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> | 13 | 39 | 118 | *** | | | 119 | | | | _ | | | 16 38 108 495 241 163 109 117 62 45 30 14 17 36 105 500 247 157 106 110 62 41 28 12 18 33 103 507 246 158 103 115 0 42 31 12 19 34 105 504 251 156 105 114 45 45 31 15 20 27 101 504 248 156 101 109 62 40 28 13 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145< | 14 | 32 | 115 | 499 | 251 | 165 | 116 | 123 | 67 | 42 | 32 | 16 | | 17 36 105 500 247 157 106 110 62 41 28 12 18 33 103 507 246 158 103 115 0 42 31 12 19 34 105 504 251 156 105 114 45 45 31 15 20 27 101 504 248 156 101 109 62 40 28 13 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 | 15 | 39 | 110 | 497 | 251 | 166 | 111 | 121 | 70 | 43 | 32 | 18 | | 17 36 105 500 247 157 106 110 62 41 28 12 18 33 103 507 246 158 103 115 0 42 31 12 19 34 105 504 251 156 105 114 45 45 31 15 20 27 101 504 248 156 101 109 62 40 28 13 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 | | | | | | | | | | | | | | 18 33 103 507 246 158 103 115 0 42 31 12 19 34 105 504 251 156 105 114 45 45 31 15 20 27 101 504 248 156 101 109 62 40 28 13 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 <td< td=""><td>16</td><td>38</td><td>108</td><td>495</td><td>241</td><td>163</td><td>109</td><td>117</td><td>62</td><td>45</td><td>30</td><td>14</td></td<> | 16 | 38 | 108 | 495 | 241 | 163 | 109 | 117 | 62 | 45 | 30 | 14 | | 19 34 105 504 251 156 105 114 45 45 31 15 20 27 101 504 248 156 101 109 62 40 28 13 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53< | 1 1 | 36 | | | 247 | | 106 | 110 | 62 | 41 | 28 | 12 | | 20 27 101 504 248 156 101 109 62 40 28 13 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>31</td> <td>12</td> | 1 | | | | | | | | 0 | | 31 | 12 | | 21 24 95 492 237 149 95 102 57 39 27 12 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | 1 | | | | | | | | 45 | | 31 | 15 | | 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | 20 | 27 | 101 | 504 | 248 | 156 | 101 | 109 | 62 | 40 | 28 | 13 | | 22 17 91 491 231 143 91 96 54 37 28 8 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | | | | | | | | | | | | | | 23 10 90 494 238 145 90 100 54 39 27 13 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | 1 1 | | | | | | | | | | | | | 24 10 89 499 236 145 89 94 52 34 24 11 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | | | | | | | | | | | | - | | 25 10 90 491 243 147 90 97 52 38 27 12 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | 1 1 | | | | | | | | | | | | | 26 15 90 504 243 146 90 96 56 38 28 12 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | 1 1 | | | | | | | | | | | | | 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | 25 | 10 | 90 | 491 | 243 | 147 | 90 | 97 | 52 | 38 | 27 | 12 | | 27 15 90 487 239 146 90 96 52 36 25 5 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | | 4- | 00 | 56.4 | 0.40 | 4 40 | | | | | | 4.5 | | 28 8 90 491 240 149 90 97 53 35 27 12 29 25 90 493 231 140 90 94 53 37 27 11 | | | | | | | | | | | | | | 29 25 90 493 231 140 90 94 53 37 27 11 | 1 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 30 31 00 4/4 22/ 140 88 93 53 36 26 7 | l i | | | | | | | | | | | 3 | | [| ا ۵۰ | 31 | 00 | 4/4 | 221 | 140 | 00 | 93 | 53 | 35 | 26 | ′ | | Mean 27.7 103 484 240 154 104 110 59 40 28 13 | Mean | 27.7 | 103 | 484 | 240 | 154 | 104 | 110 | 59 | 40 | 28 | 13 | AUG 2004 FINAL FLUX | 100 2004 | | |----------|------------| | | d Adjusted | | Pentic | | | (2800) | (2800) | | 83.4 | 85.8 | | 84.5 | 87.0 | | 87.6 | | | 85.4 | 87.9 | | 88.9 | 91.5 | | | | | 91.0 | 93.6 | | 94.6 | 97.3 | | 104.8 | 107.7 | | 113.9 | 117.0 | | 121.4 | 124.7 | | | | | 130.8 | 134.3 | | 147.2 | 151.1 | | 148.6 | 152.5 | | 149.2 | 153.1 | | 138.8 | 142.4 | | | | | 133.6 | 137.0 | | 135.0 | | | 139.9 | 143.3 | | 120.6 | 123.5 | | 121.4 | 124.2 | | 120.0 | 122.8 | | 115.2 | 117.8 | | 109.5 | 1 | | 104.9 | | | 104.9 | | | 100.4 | 102.5 | | 97.5 | 99.5 | | 90.5 | 92.3 | | 87.2 | 88.9 | | 86.1 | 87.7 | | 89.9 | 91,6 | | 88.1 | 89.7 | | 110.0 | 112.7 | | | | | | | #### SUNSPOT COUNTS In 1848 the Swiss astronomer Johann Rudolph Wolf introduced a daily measurement of sunspot number. His method, which is still used today, counts the total number of spots visible on the face of the Sun and the number of groups into which they cluster, because neither quantity alone satisfactorily measures the level of sunspot activity. An observer computes a daily sunspot number by multiplying his estimated number of groups by ten and then adding this product to his total count of individual spots. Results, however, vary greatly, since the measurement strongly depends on observer interpretation and experience and on the stability of the Earth's atmosphere above the observing site. Moreover, the use of Earth as a platform from which to record these numbers contributes to their variability, too, because the Sun rotates and the evolving spot groups are distributed unevenly across solar longitudes. To compensate for these limitations, each daily international number is computed as a weighted average of measurements made from a network of cooperating observatories. The international sunspot numbers tabulated on page 1 are provisional values taken from a bulletin prepared monthly by Pierre Cugnon of the SUNSPOT INDEX DATA CENTER, 3 avenue Circulaire, B-1180 BRUXELLES, BELGIUM. The September 2004 data combine observations from 46 stations. (http://sidc.oma.be) #### HISTORICAL SUNSPOT COUNTS How do sunspot numbers in the table on page 1 compare to the largest values ever recorded? The highest daily count on record occurred December 24-25, 1957. On each of those days the sunspot number totaled 355. In contrast, during years near the spot cycle minimum, the count can fall to zero. Today, much more sophisticated measurements of solar activity are made routinely, but none has the link with the past that sunspot numbers have. Our archives, for example, include reconstructed daily values from January 8, 1818; monthly means from January 1749; and yearly means beginning in 1700. SMOOTHED (OBSERVED AND PREDICTED) SUNSPOT NUMBERS: CYCLES 22 AND 23 | Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Mean | |------|------|------|------|--------|------|------|------|------|------|------|------|------|------| | 1993 | 71 | 69 | 67 | 64 | 60 | 56 | 55 | 52 | 48 | 45 | 41 | 38 | 56 | | 1994 | 37 | 35 | 34 | 34 | 33 | 31 | 29 | 27 | 27 | 27 | 26 | 26 | 30 | | 1995 | 24 | 23 | 22 | 21 | 19 | 18 | 17 | 15 | 13 | 12 | 11 | 11 | 17 | | 1996 | 10 | 10 | 10 | 9 | 8* | 9 | 8 | 8 | 8 | 9** | 10 | 10 | 9 | | 1997 | 10 | 11 | 14 | 17 | 18 | 20 | 23 | 25 | 28 | 32 | 35 | 39 | 23 | | 1998 | 44 | 49 | 53 | 57 | 59 | 62 | 65 | 68 | 70 | 71 | 73 | 78 | 62 | | 1999 | 83 | 85 | 84 | 86 | 91 | 93 | 94 | 98 | 103 | 108 | 111 | 111 | 96 | | 2000 | 113 | 117 | 120 | 120.7# | 119 | 119 | 120 | 119 | 116 | 115 | 113 | 112 | 117 | | 2001 | 109 | 104 | 105 | 108 | 109 | 110 | 112 | 114 | 114 | 114 | 115 | 115 | 111 | | 2002 | 114 | 115 | 113 | 111 | 109 | 106 | 103 | 99 | 95 | 91 | 85 | 82 | 102 | | 2003 | 81 | 79 | 74 | 70 | 68 | 65 | 62 | 60 | 60 | 58 | 57 | 55 | 66 | | 2004 | 52 | 49 | 47 | 46 | 45 | 44 | 42 | 40 | 38 | 37 | 36 | 34 | 42 | | |] | | | (2) | (4) | (6) | (8) | (11) | (12) | (13) | (15) | (16) | (7) | | 2005 | 33 | 31 | 30 | 29 | 27 | 26 | 25 | 24 | 24 | 23 | 22 | 21 | 26 | | | (17) | (18) | (18) | (19) | (19) | (18) | (18) | (18) | (18) | (18) | (17) | (16) | (18) | *May 1996 marks Cycle 22's mathematical minimum. **October 1996 marks the consensus Cycle 22 minimum which NGDC is now using. # April 2000 marks Cycle 23 maximun. ## SUNSPOT NUMBER PREDICTIONS For the end of Solar Cycle 22, and the beginning of Cycle 23, the table gives smoothed sunspot numbers up to the one calculated that first uses the most recently measured monthly mean. These smoothed, observed values are based on final, unsmoothed monthly means through June 2004 and on provisional ones thereafter. We compute a smoothed monthly mean by forming the arithmetic average of two sequential 12-month running means of monthly means. Table entries with numbers in parentheses below them denote predictions by the McNish-Lincoln method. This method estimates future numbers by adding a correction to the mean of all cycles that is proportional to the departure of earlier values of the current cycle from the mean cycle. (See page 9 in the July 1987 supplement to Solar-Geophysical Data). We use and predict only smoothed monthly means, because we believe the errors are too great to estimate any values more precise. In the table above, adding the number in parentheses to the predicted value generates the upper limit of the 90% confidence interval; subtracting the number from the predicted value generates the lower limit. Consider, for example the January 2005 prediction. There exists a 90% chance that in March 2005, the actual smoothed sunspot number will fall somewhere between 12 and 48. The McNish-Lincoln prediction method generates useful estimates of smoothed, monthly mean sunspot numbers for no more than 12 months ahead. Beyond a year these predictions regress rapidly toward the mean of all 13 cycles used in the computation. Moreover, the method is very sensitive to the date defined as the beginning of the current sunspot cycle, that is, to the date of the most recent sunspot minimum. The new cycle predictions tabulated above are based on the consensus minimum value of 8.8 that occurred in October 1996. For solar maximum discussions, visit http://www.sec.noaa.gov. Although every effort has been made to ensure that these data are correct, we can assume no liability for any damages their inaccuracies might cause. The charge for a 1-year subscription to this monthly bulletin is US\$17.00. To become a subscriber, you may either call (303) 497-6346 or write the NATIONAL GEOPHYSICAL DATA CENTER, Solar-Terrestrial Physics Division (E/GC2), 325 Broadway, Boulder, Colorado 80305-3328 USA. Please include with your written order a cheque or money order payable in U.S. currency to the "Department of Commerce, NOAA/NGDC". Payment may also be made through VISA, MasterCard or American Express credit cards.