NATIONAL GEOPHYSICAL DATA CENTER Solar-Terrestrial Physics Division (E/GC2) Telephone (303) 497-6346 325 Broadway Boulder, Colorado 80305-3328 USA ISSN 1046-1914

SOLAR RADIO EMISSIONS

The quiet Sun emits radio energy with a slowly varying intensity. These radio fluxes, which stem from atmospheric layers high in the chromosphere and low in the corona, change gradually from day-to-day, in response to the number and size of spot groups on the solar disk. The table below gives daily measurements of this slowly varying emission at selected wavelengths between about 1 and 100 centimeters. Many observatories record quiet-sun radio fluxes at the same local time each day and correct them to within a few percent for factors such as antenna gain, bursts in progress, atmospheric absorption, and sky background temperature. At 2800 megahertz (10.7 centimeters) flux observations summed over the Sun's disk have been made continuously since February 1947.

♦ SOLAR FLUX TABLE

Numbers in parentheses in the column headings below denote frequencies in megahertz. Each entry is given in solar flux units—a measure of energy received per unit time, per unit area, per unit frequency interval. One solar

flux unit equals 10^{-22} J/m²Hz sec. During low periods of solar activity, the flux never falls to zero, because the Sun emits at all wavelengths with or without the presence of spots. The lowest daily Ottawa flux since 1947 occurred on November 3, 1954. On that day the <u>observed</u> noon value dropped to 62.6 units; the highest <u>observed</u> value of 457.0 occurred on April 7, 1947.

The preliminary <u>observed</u> and <u>adjusted</u> Penticton fluxes tabulated here are the "Series C" values reported by Canada's Dominion Radio Astrophysical Observatory in Penticton, British Columbia. <u>Observed</u> numbers are less refined, since they contain fluctuations as large as ±7% from the continuously changing sun-earth distance. <u>Adjusted</u> fluxes have this variation removed; they show the energy received at the mean distance between the Sun and Earth. Gaps in the Palehua, Hawaii (PALE), data reflect equipment problems. Fluxes measured either at Sagamore Hill, Massachusetts, or at San Vito, Italy, will be substituted for frequencies at which many Palehua values are missing.

Day		FEBRUARY 2006 PRELIMINARY SUNSPOT NUMBERS AND SOLAR RADIO FLUX										
Day		· · · · · · · · · · · · · · · · · · ·										
01 0 78 480 218 129 75 76 42 30 22 10 02 0 77 460 221 129 74 75 40 34 21 10 03 0 79 476 220 129 76 80 41 34 21 10 04 0 77 488 215 126 74 75 40 31 22 11 05 0 76 494 217 128 73 76 40 32 23 9 06 0 75 489 219 128 72 75 40 31 25 9 06 7 74 484 222 128 72 73 40 33 25 9 08 7 74 490 209 129 72 73 38 34 <												PALE
02 0 77 460 221 129 74 75 40 34 21 10 03 0 79 476 220 129 76 80 41 34 21 10 04 0 77 488 215 126 74 75 40 31 22 11 05 0 76 494 217 128 73 76 40 31 25 9 06 0 75 489 219 128 72 75 40 31 25 9 07 7 74 484 222 128 72 73 40 33 25 9 08 7 74 490 209 129 72 73 38 34 20 11 09 10 75 486 223 130 72 75 39 33												
03 0 79 476 220 129 76 80 41 34 21 10 04 0 77 488 215 126 74 75 40 31 22 11 05 0 76 494 217 128 73 76 40 31 22 11 06 0 75 489 219 128 72 75 40 31 25 9 07 7 74 484 222 128 72 73 40 33 25 9 08 7 74 490 209 129 72 73 38 34 20 11 09 10 75 488 221 130 72 75 39 33 25 8 10 10 75 488 221 130 72 75 39 33												
04 0 77 488 215 126 74 75 40 31 22 11 05 0 76 494 217 128 73 76 40 32 23 9 06 0 75 489 219 128 72 75 40 31 25 9 07 7 74 484 222 128 72 73 40 33 25 9 08 7 74 490 209 129 72 73 38 34 20 11 09 10 75 466 223 130 72 75 39 33 25 8 10 10 75 488 221 130 73 79 40 32 21 9 11 8 76 475 224 126 74 76 39 32 <	1 I											
05 0 76 494 217 128 73 76 40 32 23 9 06 0 75 489 219 128 72 75 40 31 25 9 07 7 74 484 222 128 72 73 40 33 25 9 08 7 74 490 209 129 72 73 38 34 20 11 09 10 75 466 223 130 72 75 39 33 25 8 10 10 75 488 221 130 73 79 40 32 21 9 11 8 76 475 224 126 74 76 39 32 23 9 12 0 76 478 218 128 74 39 32 <												,
06 0 75 489 219 128 72 75 40 31 25 9 07 7 74 484 222 128 72 73 40 33 25 9 08 7 74 490 209 129 72 73 38 34 20 11 09 10 75 466 223 130 72 75 39 33 25 8 10 10 75 488 221 130 73 79 40 32 21 9 11 8 76 475 224 126 74 76 39 32 23 9 12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 40 31												
07 7 74 484 222 128 72 73 40 33 25 9 08 7 74 490 209 129 72 73 38 34 20 11 09 10 75 466 223 130 72 75 39 33 25 8 10 10 75 488 221 130 73 79 40 32 21 9 11 8 76 475 224 126 74 76 39 32 23 9 12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 40 31 21 9 14 11 77 483 221 133 77 79 42 32	05	0	76	494	217	128	73	76	40	32	23	9
07 7 74 484 222 128 72 73 40 33 25 9 08 7 74 490 209 129 72 73 38 34 20 11 09 10 75 466 223 130 72 75 39 33 25 8 10 10 75 488 221 130 73 79 40 32 21 9 11 8 76 475 224 126 74 76 39 32 23 9 12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 40 31 21 9 14 11 77 483 221 133 77 79 42 32												
08 7 74 490 209 129 72 73 38 34 20 11 09 10 75 466 223 130 72 75 39 33 25 8 10 10 75 488 221 130 73 79 40 32 21 9 11 8 76 475 224 126 74 76 39 32 23 9 12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 39 32 35 18 13 9 76 483 223 131 74 40 31 21 9 15 79 486 221 133 77 79 42 32 22												
09 10 75 466 223 130 72 75 39 33 25 8 10 10 75 488 221 130 73 79 40 32 21 9 11 8 76 475 224 126 74 76 39 32 23 9 12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 40 31 21 9 14 11 77 483 221 134 75 78 40 33 20 9 15 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 33	07											
10 10 75 488 221 130 73 79 40 32 21 9 11 8 76 475 224 126 74 76 39 32 23 9 12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 40 31 21 9 14 11 77 483 221 134 75 78 40 33 20 9 15 15 79 486 221 133 77 79 42 32 22 9 16 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77	08			490	209							
111 8 76 475 224 126 74 76 39 32 23 9 12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 40 31 21 9 14 11 77 483 221 134 75 78 40 33 20 9 15 15 79 486 221 133 77 79 42 32 22 9 16 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75	09	10		466	223							
12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 40 31 21 9 14 11 77 483 221 134 75 78 40 33 20 9 15 15 79 486 221 133 77 79 42 32 22 9 16 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 457 220 130 74	10	10	75	488	221	130	73	79	40	32	21	9
12 0 76 478 218 128 74 39 32 35 18 13 9 76 483 223 131 74 40 31 21 9 14 11 77 483 221 134 75 78 40 33 20 9 15 15 79 486 221 133 77 79 42 32 22 9 16 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 457 220 130 74												
13 9 76 483 223 131 74 40 31 21 9 14 11 77 483 221 134 75 78 40 33 20 9 15 15 79 486 221 133 77 79 42 32 22 9 16 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74	11	8	76	475	224			76				
14 11 77 483 221 134 75 78 40 33 20 9 15 15 79 486 221 133 77 79 42 32 22 9 16 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74	12	0	76	478	218		74		39	32	35	
15 15 79 486 221 133 77 79 42 32 22 9 16 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 <td>13</td> <td>9</td> <td></td> <td>483</td> <td></td> <td></td> <td>74</td> <td></td> <td></td> <td></td> <td></td> <td></td>	13	9		483			74					
16 15 79 486 226 131 77 78 42 34 22 10 17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74	14	11	77	483	221	134	75	78	40	33	20	
17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74	15	15	79	486	221	133	77	79	42	32	22	9
17 7 79 493 224 125 77 76 42 35 22 9 18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74												
18 7 79 493 226 134 77 78 43 33 24 9 19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75	16	15	79	486	226	131	77	78	42	34	22	10
19 12 77 482 223 131 75 76 42 33 21 9 20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75	17	7	79	493	224	125	77	76	42	35	22	
20 0 76 74 73 39 23 16 9 21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8	18	7	79	493	226	134	77	78	43	33	24	
21 0 76 457 220 130 74 76 41 34 22 10 22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8	19	12	77	482	223	131	75	76	42	33	21	
22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8 29	20	0	76				74	73	39	23	16	9
22 0 76 466 219 129 74 75 41 33 23 10 23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8 29												
23 0 75 451 220 132 73 75 41 34 22 9 24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8 29	21	0	76	457	220	130	74	76	41	34	22	10
24 0 76 459 217 127 74 77 41 34 21 10 25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8 29	22	0	76	466	219	129	74	75	41	33	23	10
25 0 76 480 223 129 74 75 41 33 24 10 26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8 29	23	0	75	451	220	132	73	75	41	34	22	9
26 0 77 475 221 130 75 83 41 32 21 10 27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8 29	24	0	76	459	217	127	74	77	41	34	21	10
27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8 29	25	0	76	480	223	129	74	75	41	33	24	10
27 7 77 486 220 132 75 75 40 32 22 7 28 7 77 475 221 131 75 80 41 32 23 8 29												
28 7 77 475 221 131 75 80 41 32 23 8 29	26	0	77	475	221	130	75	83	41	32	21	10
29	27	7	77	486	220	132	75	75	40	32	22	7
29	28	7	77	475	221	131	75	80	41	32	23	8
30	30											
31												
		4.7	77	479	220	130	74	71	41	32	22	10

JAN 2006 FINAL FLUX

Observed Pentic (2800)	Pentic
<u> </u>	(2800)
87.4	84.5
84.5	81.7
84.9	82.1
84.0	81.2
83.4	80.6
55.1	00.0
82.0	79.3
79.2	76.6
78.2	75.6
77.6	75.0
77.8	75.2
77.3	74.7
76.5	74.0
76.5	74.0
77.4	74.9
80.9	78.3
83.8	81.1
82.5	79.8
85.6	82.9
88.6	85.8
90.7	87.9
93.8	90.9
92.8	89.9
92.4	89.6
92.6	89.8
89.0	86.3
96.0	040
86.9	84.2
83.5	81.0 77.6
80.0	77.6
79.5	77.2
78.8	76.5
77.6	75.3
83.4	80.8

♦ SUNSPOT COUNTS

In 1848 the Swiss astronomer Johann Rudolph Wolf introduced a daily measurement of sunspot number. His method, which is still used today, counts the total number of spots visible on the face of the Sun and the number of groups into which they cluster, because neither quantity alone satisfactorily measures the level of sunspot activity.

An observer computes a daily sunspot number by multiplying his estimated number of groups by ten and then adding this product to his total count of individual spots. Results, however, vary greatly, since the measurement strongly depends on observer interpretation and experience and on the stability of the Earth's atmosphere above the observing site. Moreover, the use of Earth as a platform from which to record these numbers contributes to their variability, too, because the Sun rotates and the evolving spot groups are distributed unevenly across solar longitudes. To compensate for these limitations, each daily international number is computed as a weighted average of measurements made from a network of

cooperating observatories. The international sunspot numbers tabulated on page 1 are provisional values taken from a bulletin prepared monthly by Pierre Cugnon of the SUNSPOT INDEX DATA CENTER, 3 avenue Circulaire, B-1180 BRUXELLES, BELGIUM. The February 2006 data combine observations from 48 stations. (http://sidc.oma.be)

♦ HISTORICAL SUNSPOT COUNTS

How do sunspot numbers in the table on page 1 compare to the largest values ever recorded? The highest daily count on record occurred December 24-25, 1957. On each of those days the sunspot number totaled 355. In contrast, during years near the spot cycle minimum, the count can fall to zero. Today, much more sophisticated measurements of solar activity are made routinely, but none has the link with the past that sunspot numbers have. Our archives, for example, include reconstructed daily values from January 8, 1818; monthly means from January 1749; and yearly means beginning in 1700.

SMOOTHED (OBSERVED AND PREDICTED) SUNSPOT NUMBERS: CYCLES 22 AND 23

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1993	71	69	67	64	60	56	55	52	48	45	41	38	56
1994	37	35	34	34	33	31	29	27	27	27	26	26	30
1995	24	23	22	21	19	18	17	15	13	12	11	11	17
1996	10	10	10	9	8*	9	8	8	8	9**	10	10	9
1997	10	11	14	17	18	20	23	25	28	32	35	39	23
1998	44	49	53	57	59	62	65	68	70	71	73	78	62
1999	83	85	84	86	91	93	94	98	103	108	111	111	96
2000	113	117	120	120.7#	119	119	120	119	116	115	113	112	117
2001	109	104	105	108	109	110	112	114	114	114	115	115	111
2002	114	115	113	111	109	106	103	99	95	91	85	82	102
2003	81	79	74	70	68	65	62	60	60	58	57	55	66
2004	52	49	47	46	44	42	40	39	38	36	35	34	42
2005	35	34	34	32	29	29	29	27	27	26	24	23	29
									(2)	(3)	(4)	(4)	(1)
2006	23	22	21	20	20	19	18	17	16	15	14	14	18
	(5)	(6)	(7)	(7)	(7)	(8)	(8)	(9)	(9)	(9)	(10)	(10)	(8)
2007	13	13	13	12	12	12	13	13	14	15	16	17	14
	(9)	(9)	(9)	(9)	(10)	(11)	(12)	(14)	(15)	(17)	(19)	(21)	(13)

*May 1996 marks Cycle 22's mathematical minimum. **October 1996 marks the consensus Cycle 22 minimum which NGDC is now using. # April 2000 marks Cycle 23 maximun.

SUNSPOT NUMBER PREDICTIONS

For the end of Solar Cycle 22, and the beginning of Cycle 23, the table gives smoothed sunspot numbers up to the one calculated that first uses the most recently measured monthly mean. These smoothed, observed values are based on final, unsmoothed monthly means through Sep 2005 and on provisional ones thereafter. We compute a smoothed monthly mean by forming the arithmetic average of two sequential 12-month running means of monthly means.

Table entries with numbers in parentheses below them denote predictions by the McNish-Lincoln method. This method estimates future numbers by adding a correction to the mean of all cycles that is proportional to the departure of earlier values of the current cycle from the mean cycle. (See page 9 in the July 1987 supplement to Solar-Geophysical Data). We use and predict only smoothed monthly means, because we believe the errors are too great to estimate any values more precise. In the table above,

adding the number in parentheses to the predicted value generates the upper limit of the 90% confidence interval; subtracting the number from the predicted value generates the lower limit. Consider, for example the July 2006 prediction. There exists a 90% chance that in August 2006, the actual smoothed sunspot number will fall somewhere between 8 and 26.

The McNish-Lincoln prediction method generates useful estimates of smoothed, monthly mean sunspot numbers for no more than 12 months ahead. Beyond a year these predictions regress rapidly toward the mean of all 13 cycles used in the computation. Moreover, the method is very sensitive to the date defined as the beginning of the current sunspot cycle, that is, to the date of the most recent sunspot minimum. The new cycle predictions tabulated above are based on the consensus minimum value of 8.8 that occurred in October 1996. For solar maximum discussions, visit http://www.sec.noaa.gov.

Although every effort has been made to ensure that these data are correct, we can assume no liability for any damages their inaccuracies might cause. The charge for a 1-year subscription to this monthly bulletin is US\$17.00. To become a subscriber, you may either call (303) 497-6346 or write the NATIONAL GEOPHYSICAL DATA CENTER, Solar-Terrestrial Physics Division (E/GC2), 325 Broadway, Boulder, Colorado 80305-3328 USA. Please include with your written order a cheque or money order payable in U.S. currency to the "Department of Commerce, NOAA/NGDC". Payment may also be made through VISA, MasterCard or American Express credit cards.