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ABSTRACT 
The algorithm determines whether the GOES spacecraft has crossed the 
magnetopause. It accomplishes this by determining three conditions: (1) whether 
the north-south magnetic field component measured by GOES is less than zero, 
(2) whether there is a substantial increase in the mid-energy ion and electron 
density to temperature ratios and (3) whether the Shue et al. (1998) 
magnetopause model r-vector (the magnetopause location along the Earth-
satellite vector) and r0-vector (the magnetopause subsolar standoff distance 
along the Earth-sun line) is less than 6.6 RE (geosynchronous altitude). This 
ATBD provides a mathematical and pseudo code description of the algorithm. 
The assumptions made regarding input spacecraft attitude data and 
ephemerides are also described. Example test runs using proxy data are shown 
and compared to results from currently implemented algorithms. Current 
algorithm limitations and possible future improvements are also discussed.
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1.0 INTRODUCTION 
 

1.1 Purpose of This Document 

The purpose of this document is to describe the product algorithm and its 
theoretical basis. This document can be used as a reference for implementing 
the algorithm into software. The magnetopause crossings detection product uses 
magnetometer data in the appropriate geophysical coordinate systems to detect 
when the GOES spacecraft has crossed the magnetopause boundary.  The 
assumptions made regarding input data, instrumentation and input spacecraft 
attitude are specified. Given that GOES-R orbits at geosynchronous altitudes, in 
this document we will often refer to magnetopause crossings as GMCs 
(geosynchronous magnetopause crossings). 

1.2 Who Should 

 Use This Document 

The STAR AIT group shall use this document to integrate the algorithm into their 
collaborative framework environment.  It shall also be used by the prime 
development and implementation contractor to design, develop, test, validate and 
implement the algorithm into the final operational processing system. In addition, 
the GOES-R AWG space weather application team shall use this ATBD to verify 
their operational requirements are being met by the proposed algorithm. They 
should also use it to understand the strengths and weaknesses of the algorithm 
as well as its accuracy and applicability. 

1.3 Inside Each Section 

Section 2.0, OBSERVING SYSTEM OVERVIEW, describes the product 
objectives and requirements, and assumptions made regarding the 
magnetometer and SEISS instrument characteristics.  
 
Section 3.0 ALGORITHM DESCRIPTION, describes the theoretical basis of the 
algorithm, assumptions made for sensory data, input data and ancillary data, 
algorithm input/output, error estimates and programming, procedural and 
computational considerations. 
 
Section 4.0 TEST DATA SETS AND OUTPUTS, describes the test data sets 
used to characterize the performance of the algorithm and the data product 
quality.  Also are described are the results from the algorithm processing on 
simulated input data. 
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Section 5.0 PRACTICAL CONSIDERATIONS, discusses issues involving 
numerical computation, programming and procedures, quality assessment and 
diagnostics and exception handling. 
   
Section 6.0 ASSUMPTIONS AND LIMITATIONS, discusses algorithm 
performance with regard to accuracy and the limitations of the algorithm and 
possible improvements. 
 
Section 7.0 REFERENCES, provides all references mentioned in the ATBD. 
 

1.4 Related Documents 

(1) GOES-R MAGNETOMETER PORD (417-R-MAGPORD). 
 
(2) GOES-R Series SEISS PORD (417-R-SEISSPORD-0030). 
 
(3) GOES-R Mission Requirements Document 2B Prime (MRD-2B'). 
 
 

1.5 Revision History 

 
Revision 
Number 

Date  Author Revision 
Description 

Reason for 
Revision 

2 11 Feb 2011 Paul Loto’aniu  Update from 
CDR 

 

2.0 OBSERVING SYSTEM OVERVIEW 

 

2.1 Product Generated 

The GOES-R GMC detection algorithm is composed of three parts with one 
using magnetometer data, second using particle data and the third using solar 
wind data to determine when the GOES-R spacecraft has crossed the 
magnetopause boundary. The form of the output will be flags (state machine) 
attached to the data stream that indicates the state of each part of the algorithm 
with state 1 = magnetopause crossing and state 0 = no magnetopause crossing. 
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With three parts there are a total of five output flags which are described in more 
details in section 3.0. 

2.2 Instrument Characteristics 

The SEISS and MAG instrument operational requirements and characteristics 
are detailed in sections 3.4.2.5 and 3.4.2.7, respectively, of the GOES-R Series 
Mission Requirements Document (MRD) Version 3.0 dated February 2007 and 
the SEISS and MAG instrument Performance and Operational Requirements 
Documents (PORDs) draft dated in March and November 2004, respectively. 
The accuracy of the MAG and SEISS components of the algorithm relies on 
precise instrument orientation and calibration, data timing and knowledge of 
spacecraft attitude and location. For the magnetopause model component, 
accuracy is restricted to the inherent accuracy of the model and accuracy of the 
solar wind data inputted to the model. Algorithm development by the SWx AT will 
assume the SEISS and MAG instruments meet the performance requirements 
outlined in the GOES-R MRD and MAG and SEISS PORDs. 
 

3.0 ALGORITHM DESCRIPTION 

 

3.1 Algorithm Overview 

The algorithm consists of 3 components: 
 
1. Magnetic field 

• The condition Hp < Hp_limit is used to define a GMC. 
Here, Hp is the north-south magnetic field component 
in ENP coordinates. The value of Hp_limit is based on 
the correlation between Hp and IMF-Bz during GMCs.  

• It is assumed that GMCs occur only when IMF-Bz is 
negative, hence, Hp_limit is set to 0 nT.  

2. Particle 
• A substantial increase in the mid-energy ion and 

electron density (D) to temperature (T) ratios is used 
to define a GMC. We use the method defined by 
Suvorova et al. (2005). Suvorova et al. estimated the 
ratios using data from 130 eV/q to 45 keV/q energy 
ions and 30 eV to 45 keV electrons. For the GMC 
algorithm the temperature and density moments are 
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SEISS Ion temperature keV  

SEISS Ion density n/cm^3 

SEISS Electron temperature keV  

SEISS Electron density n/cm^3 

Time Data time tags  
time series 
(hh,mm,ss.ss) 

Date Data date tags 
time series  
(yy,mm,dd) 

Spacecraft 
location 

Spacecraft location in ECI 
coordinates 
(km)  

3-D (X,Y,Z) 

 

3.3.2 Ancillary Data 

 
Table 2 Ancillary input data to the algorithm 

Name Description Dimension 

Solar wind 
pressure 

Solar wind dynamic pressure nPa  

Solar wind IMF-
Bz  

Solar wind interplanetary 
magnetic field (IMF)-Bz 
component in GSM coordinates 

nT  

Solar wind speed Solar wind speed  km/s 

 

3.4 Theoretical Description 

Very strong geomagnetic storms are often accompanied by compression of the 
magnetopause to altitudes below geosynchronous. Detection of geosynchronous 
magnetopause crossings indicate significant solar wind energy received at Earth 
and these strong storms can cause disruption to satellites, communications and 
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In this algorithm it is assumed that for the magnetic field component of the 
algorithm IMF-Bz is negative during GMCs and therefore that Hp is also negative 
during GMCs.  
 
3.4.1.2 Particle signatures of geosynchronous magnetopause crossings 
 
Particle signatures of GMCs are most often recognized by an increase in the 
mid-energy ion (or electron) density and a decrease in the same article 
temperatures. An example of this change in density and temperature is shown in 
Figure 4 below from the ISEE spacecraft. For this algorithm the ratio of density to 
temperature is used to define a GMC and the limit for this ratio is based on the 
work of Suvorova et al. (2005).  
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magnetopause location observed by multiple spacecraft. Some of the model 
development separated individual events by a minimum time interval, and 
restricted local time ranges while individually defining events. Here, we only 
restrict local time ranges and the model must run on 1-minute cadence data. 
 
Using historical events observed by GOES and the corresponding solar wind 
data, results uing the different models are shown in Table 4. When using solar 
wind parameters within the valid ranges of the models, the Shue et al. (1998) 
model predicted ~57% of the events while Chao et al. (2001) and Petrinec and 
Russell (1996) models both predicted 0%. Hence, we use the Shue et al. (1998) 
model, which requires solar wind dynamic pressure and IMF-Bz as inputs. 
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The r-vector direction can be found by defining the GOES-R position unit vector 
ru(i,j,k) as ru=rg/rg , and assuming k=0, q=cos-1(i/ru), where rg is the vector from 
center of Earth to GOES. 
 
3.4.2.4 Coordinate Transformation 
The input coordinate system for the Shue et al (1998) magnetopause model is 
aberrated GSM coordinates. The aberrated coordinates take into account Earth’s 
orbital rotation around the Sun of ~30 km/s in the GSE coordinate system [e.g., 
Shue et al., 1998; Dmitriev et al., 2003]. the solar wind speed. Starting with the 
GSE coordinates [see, magnetometer convert data to alternative geophysical 
coordinate systems, ATBD Version 1.0, 2008] we convert to aGSE using  
 
 
 
 
 
 
 
 
 
where, 
 
 
 
 
 
The aGSE to aGSM transformation is the same as GSE to GSM transformation 
[See, magnetometer convert data to alternative geophysical coordinate systems, 
ATBD Version 1.0, 2008]. As an example of this transformation, slower solar 
wind speed results in more aberration, for example, 400 km/s solar wind means 
about 4.3o aberration. 
 
3.4.2.5 Magnetic Local Time 
The reliability of the algorithm will be dependent on the location of GOES-R 
during GMCs. We take this into account by outputting the magnetic local time 
(mlt) of GOES-R. The algorithm for mlt requires input of GOES-R location (x,y-
components only) in SM coordinates and kilometer units. The Solar Magnetic 
(SM) Coordinate System is described in the Covert to Alternative Coordinate 
Transformation ATBD. The algorithm for seudo-code is 
  

zgsezagse

aygseaxgseyagse

aygseaxgsexagse
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)/30(tan 1
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if x EQ 0 then  
 if y LT 0 then  
    theta=-90 
if x EQ 0 then  
  if y GT 0 then  
     theta=90 
        if x NE 0 then  
  theta=tan-1(y/x)/p*180.0 
        if x LT 0 and y GT 0 then   
  theta=180+theta 
 if x LT 0 and y LT 0 then   
  theta=theta-180 
 
       mlt=12/180*theta+12 
 
if x LT 0 then  
   if y EQ 0 then  
     begin 
        mlt=0  
        theta=-180.0 
     end 
 

3.4.3 Algorithm Output 

 
Table 4 Algorithm output 

Name Description Dimension 

Flag1 
Set to 1 when magnetic field Hp-
component is negative, else 0.  

integer 

Flag2 
Set  to 1 when ion density to 
temperature ratio is greater than 30, 
else 0.  

integer 

Flag3 
Set to 1 when electron density to 
temperature ratio is greater than 100, 
else 0.  

integer 

Flag4 
Set to 1 when magnetopause stand off 
distance r <= 6.6 Re from the 

integer 
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magnetopause model, else 0.  

Flag5 
Set  to 1 when magnetopause distance 
r0 <= 6.6 Re from the magnetopause 
model.  

integer 

Magnetic 
local 
time 

GOES-R magnetic local time (MLT) 
time series 
(hh.mmm) 

 

4.0 TEST DATA SETS AND OUTPUTS 

4.1 Simulated/Proxy Input Data Sets 

The proxy data for the magnetic field component of the algorithm uses previous 
GOES magnetic field data. For the SEISS instrument we use LANL data as 
previous GOES particle instrument data does not cover the range of energies 
required for the algorithm. Proxy particle data from LANL were found to work best 
when the LANL and GOES satellites were separated by 30 degrees or less.  
 

4.2 Output from Simulated/Proxy Inputs Data Sets 

Output examples from the algorithm using proxy data are shown in the figure 
below. 

4.2.1 Output from MAG and SEISS simulated inputs data sets 
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4.2.2 Error Budget 

N/A 
 

5.0 PRACTICAL CONSIDERATIONS 

There are many practical considerations in this algorithm with some not yet 
idenfified explicitly. For example, the spacecraft location is required to determine 
the magnetopause location along the Earth-satellite vector and to calculate 
magnetic local time. Also, the assumed magnetic field coordinate system is ENP, 
however, the ENP system is not currently well defined at Level 1B. Furthemroe, 
the GOES field in GSM coordinates is more optimal for correlation with IMF-Bz. 
 
In addition, continuous 1-minute solar wind dynamic pressure and IMF-Bz data 
are required for model, as well as continuous 1-minute electron and ion moments 
data. We assume that the magnetic field Hp-component value represents GMC 
truth, but this is very difficult to verify for 100% of the events. There has also 
been no consideration given to how the output should be displayed.  
 
The algorithm also assumes the solar wind data are accurate to within the 1-
minute resolution of the output. This includes assuming that the propagation of 
the solar wind data from L1 to Earth is accurate within the 1-minute resolution of 
the data. It has also not been determined how the solar wind will be made 
available as a realtime stream to the algorithm. 
 
Finally, we have not fully tested the algorithm under different scenarios to 
understand other possible practical considerations. The algorithm should 
probably run on a proving ground type environment before going fully 
operational.  

5.1 Numerical Computation Considerations 

There are no foreseeable computational issues. 

5.2 Programming and Procedural Considerations 

The algorithm essentially runs as a state machine. When a GMC is detected the 
state switches to on (or 1), otherwise the state is zero (or off). As previously 
mentioned, there has been no consideration given to the how to display the 
states of the algorithm for forecasters.   
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5.3 Quality Assessment and Diagnostics 

The following procedures are recommended for diagnosing the performance of 
the algorithm.  

 Compare results to research community publications. 
 Compare results to near by spacecraft. 

5.4 Exception Handling 

Member functions will return 0 or 1 with 0 meaning no error and 1 meaning an 
error occurred. However, in most functions no action is taken as a result of an 
error return. The input data are assumed to have error flags represented by fill in 
values. If the input value to the algorithm, that is nedded to calculate a flag, is a 
fill in value, then that corresponding output event flag is set to -1. However, no 
other exception action is taken given an error. 
 

5.5 Algorithm Validation 

 
Pre-Launch Validation:  
 
The algorithm will be/has been validated as described in section 4 by 
comparisons to research community results and nearby spacecraft. 
 
Post-Launch Validation: 
 
The algorithm will be validated by comparing output to research community 
results and near-by spacecraft. 
 

6.0 ASSUMPTIONS AND LIMITATIONS 

 

6.1 Performance 

 
The algorithm assumes that solar wind data are always available in real-time 
(within 1-minute). The requirement of 90% events detected with false detection 
10% of the time has not been validated. The algorithm assumes GMCs occur 
only when Hp is < 0 nT and positive Hp events have not been studied. The ion 
and electron ratio Probability of Detection has not been esitmated.  
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However, it should be noted that the algorithm is significantly better than any 
previously implemented magnetopause crossing detection algorithm. 
 

6.2 Assumed Sensor Performance 

The algorithm assumes the GOES-R magnetometer and SEISS sensors will 
meet specification and performance requirements within normal operational 
parameters. The algorithm assumes that time tags are accurate and that GOES-
R spacecraft location data will be available in real time. The algorithm also 
assumes the solar wind data are accurate to within the 1-minute resolution of the 
output. This includes assuming that the propagation of the solar wind data from 
L1 to Earth is accurate within the 1-minute resolution of the data. 
 

6.3 Pre-Planned Product Improvements 

6.3.1 Improvement 1 

The algorithm requires verification and validation under simulated or real 
operational conditions. For example, testing in an environment such as the 
proving ground would be very valuable. In particular it would allow us to 
determine if model limits should be widened to include events outside valid 
ranges and Hp > 0 nT events. 

6.3.2 Improvement 2 

A study of the possibility of using the GOES magnetic field Bz-GSM component 
instead of ENP Hp-component would be highly valuable.  

6.3.3 Improvement 3 

A study should be undertaken to determe the Probability of Detection for ion and 
electron moment ratios as well as determining if the particle event criteria need 
modification. 

6.3.4 Improvement 4 

Further testing is required of the model output and applicability, for example, 
determing the accuracy of the r0-vector when GOES-R is in the nightside. 
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6.3.5 Improvement 5 

A study that looks at combining event flags to create different confidence levels 
for the forecaster would be useful, in addition to a study of the visualization of the 
output from the algorithm. 

6.3.6 Improvement 6 

More extensive exception handling is required. 
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