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ABSTRACT 
The GOES-R Solar Ultraviolet Imager (SUVI) will provide high-cadence full-disk 
images of the solar atmosphere in six narrow-band extreme ultraviolet (EUV) 
spectral channels that will support Space Weather forecast activities at NOAA’s 
Space Weather Prediction Center (SWPC). 
 
This document provides a comprehensive description of the SUVI Thematic Map 
algorithm.  A SUVI Thematic Map is a 2D array of integer-valued pixel labels.  
Each integer value corresponds to one of a finite set of known solar features, or 
classes (e.g., coronal hole, solar flare, etc.) that can be uniquely identified using 
one or more nearly simultaneous narrow-band SUVI spectral channels.  The 2D 
integer array may be displayed by itself, providing a simplified view of the solar 
disk that emphasizes solar features relevant to space weather forecasting, or it 
may serve as input for higher level solar image product algorithms like coronal 
hole boundary maps or flare location reports. 
 
The algorithm chosen for SUVI thematic maps is a supervised multichannel 
Bayesian pixel classifier.  In short, class-dependent multichannel pixel value 
means and covariances are determined from training data selected offline by 
solar image experts.  These statistical parameters are then combined with actual 
measurements online to generate data-conditioned probabilities that each pixel 
belongs to one of the predefined classes.  The class with the highest probability, 
or maximum likelihood (ML), is assigned to each pixel.  Additionally, prior 
probabilities that favor a degree of smoothness in the SUVI thematic map are 
generated from the ML solution, then combined with the conditional probabilities 
according to Bayes’ theorem to generate a maximum a posteriori probability 
(MAP) solution to reduce pixel classification noise. 
 
Information necessary for developers and reviewers to verify that the algorithm 
meets operational requirements is presented.  Also presented, when applicable, 
is traceability to heritage, and the design details necessary for development and 
implementation of the algorithm into operational use. Test and validation 
procedures are also provided along with assumptions and known limitations of 
the algorithm. 
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1 INTRODUCTION 
The GOES-R Algorithm Working Group (AWG) Space Weather Application Team 
(SWx AT) is responsible for producing algorithms that generate products using 
space environment data from the GOES-R series satellites.  These algorithms 
shall meet the operational needs of the NOAA/NWS/NCEP Space Weather 
Prediction Center (SWPC) to observe and forecast space weather conditions 
impacting near-earth systems such as satellites, communications, electrical 
power grids, manned space missions and many others.  They shall also meet the 
requirements of outside operational and research agencies as agreed.   

1.1 Purpose of This Document 
This Algorithm Theoretical Basis Document (ATBD) details of the GOES-R Solar 
Ultraviolet Imager (SUVI) Thematic Map algorithm design and processing.  The 
ATBD provides operational requirements for this product and defines how these 
requirements will be met using this algorithm.  The algorithm inputs, processing, 
and outputs are described in enough detail to design, develop, test and 
implement the necessary processing software and storage mechanisms.   

1.2 Who Should Use This Document 
The members of the Space Weather Forecast Office and the Research and 
Customer Requirements Section of the SWPC shall use this ATBD to verify their 
operational requirements are being met by the proposed algorithm.  They should 
also use it to understand the strengths and weaknesses of the algorithm as well 
as its applicability, accuracy, and robustness.  The STAR Algorithm Integration 
Team (AIT) shall use this document to integrate the algorithm into their 
collaborative framework environment.  It shall also be used by the prime 
development and implementation contractor to design, develop, test, validate and 
implement the algorithm into the final operational processing system. 
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1.3 Inside Each Section 
Section 2.0 OBSERVING SYSTEM OVERVIEW: 

 provides objectives of the SUVI thematic map algorithm including the 
output thematic maps and how they may be used operationally;   

 discusses SUVI instrument characteristics and the fundamental algorithm 
approach; 

 
Section 3.0 ALGORITHM DESCRIPTION:  

 contains a complete SUVI thematic map algorithm description, including 
an outline of the processing, input data, and a theoretical description; 

 provides estimates of the algorithm performance and output quality; 
 reviews the numerical computation, programming and procedural issues 

and a description of how the algorithm has been validated; 
 
Section 4.0 TEST DATA SETS AND OUTPUTS: 

 describes the test data sets used to characterize the performance of the 
algorithm and quality of the data product(s),; 

 discusses the results from algorithm processing on simulated input data; 
 
Section 5.0 PRACTICAL CONSIDERATIONS:  

 discusses issues involving numerical computation, programming and 
procedures, quality assessment and diagnostics and exception handling at 
a level of detail appropriate for the current algorithm maturity; 

 
Section 6.0 ASSUMPTIONS AND LIMITATIONS: 

 describes all assumptions concerning the SUVI Composite algorithm 
theoretical basis and performance; 

 discusses planned product improvements for future enhancements; 
 
Section 7.0 REFERENCES:  

 Provides references to all sources cited in the ATBD. 

1.4 Related Documents 
GOESR SUVI thematic map Test Plan and Results 
GOESR SUVI thematic map Implementation and User’s Guide 
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2.2 Instrument Characteristics 
The SUVI instrument operational requirements are detailed in section 3.4.2.4 of 
the GOES-R Series Mission Requirements Document (MRD) Version 3.9, dated 
November 2009.  The SUVI thematic map algorithm assumes inputs that meet 
these minimum requirements, although in all likelihood, the delivered instrument 
performance will exceed these requirements.  To start, individual SUVI spectral 
channel specifications are repeated in Table 1 for ease of reference, along with 
the type of EUV solar feature that motivated each spectral channel choice.  
 
Table 1 SUVI image spectral channels 

Channel Wavelength Sample Use 

SUVI (Fe XVIII) 9.39 nm Flares (~6x106 K) 

SUVI (Fe VIII) 13.1 nm 
Flares (~10x106 K) and 
Hot flares (~15x106 K)  

SUVI (Fe IX) 17.1 nm Active regions (~6x105 K) 

SUVI (Fe XII) 19.5 nm 
Active regions (~1x106 K) and 
Hot Flares (~20x106 K) 

SUVI (Fe XV) 28.4 nm Coronal holes (~2x106 K) 

SUVI (He II) 30.4 nm Filaments (~6x104 K) 

 
The minimum spatial resolution of a SUVI image is 2.5 arcseconds, which when 
combined with a field-of-view requirement of 1.3 solar radii, translates to an 
image array of approximately 1000x1000 pixels.  A measurement range of 0.3-
106 photons/s/cm2/arcsec2 is also specified in the MRD, a dynamic range that is 
not achievable with a single exposure given SUVI’s hardware limitations.  Multi-
exposure, high dynamic range composite images, a separate level 2 SUVI data 
product, will serve as the primary input to the SUVI thematic map algorithm. 
 
SUVI’s minimum refresh rate is one full dynamic range image every 2 minutes.  
Note that this does not call for all spectral channels to refresh every 2 minutes.  If 
higher level data products (e.g., solar flare location report) require a thematic 
map input at a relatively high cadence, it is likely, that a single full dynamic range 
composite image will serve as input to more than one thematic map.  The SUVI 
Thematic Map algorithm assumes all necessary input images are assembled and 
presented to it by a space weather data processing framework. 
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3 ALGORITHM DESCRIPTION 

3.1 Algorithm Overview 
Class-dependent multichannel pixel means and covariances are determined from 
training data collected offline.  These statistical parameters fully characterize a 
multivariate normal, or Gaussian, sample distribution of pixel values for each 
solar pixel class. The mathematics required to generate these input parameters 
are described in Section 3.4.2, although this is not technically part of the 
Thematic Map algorithm. 
 
The multichannel pixel means and covariances are combined online with actual 
measurements to generate data-conditioned probabilities that each pixel belongs 
to one of the predefined set of classes.  The integer corresponding to the class 
with the highest probability is then assigned to each pixel.  Because we assume 
Gaussian distributions, the pixel with the highest probability is also known as the 
maximum likelihood (ML) solution. 
 
A ML solution can be quite noisy when viewed in the context of an entire image.  
By invoking Bayes’ theorem, we can incorporate prior probabilities that favor a 
degree of smoothness in the thematic map.  These are initially generated from 
the whole-image ML solution, then combined with conditional probabilities to give 
a posterior probability that each pixel belongs to a given class.  The class that 
generates the maximum a posteriori probability (MAP) is then assigned to the 
corresponding pixel.   
 
As will be described in detail in subsection 3.4.2, the smoothness priors are 
themselves a function of a whole-image thematic map solution.  This results in an 
algorithmic nonlinearity that requires an iterative solution where prior probabilities 
are recalculated from the MAP whole-image solution repeatedly until a stable 
solution is found. 
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3.2 Processing Outline 
Steps required to construct a SUVI thematic map are: 
 

1. Process algorithm configuration parameters and input images to construct 
multichannel image for subsequent classification: 

a. read parameters for generating conditional probabilities 
b. read parameters for generating prior probabilities 
c. Read image metadata, pixel values, pixel weights, and pixel flags 

for most recent single-channel image 
d. apply image selection criteria and/or replace bad pixels (TBR) 
e. save single-channel pixel array to appropriate slice of 3D 

multichannel pixel array 
f. repeat 1a-1e until 3D multichannel image is complete 

2. Generate initial ML thematic map 
a. generate data-conditioned probabilities for each class (Eq. (3.9)) at 

each pixel, and store for subsequent processing 
b. initialize posterior probabilities with data-conditioned probabilities 
c. determine ML solution from posterior probabilities and use as initial 

MAP solution 
3. Update MAP thematic map: 

a. calculate smoothness prior probability for each class at each MAP 
TM pixel using class ID of the pixel’s nearest neighbors (Eq. (3.11)) 

b. combine smoothness priors with class-conditioned probabilities to 
generate a new set of posterior probabilities (Eq. (3.2)) 

c. repeat steps 3a-3b until the maximum number of iterations have 
been performed 

4. Write out thematic map and associated metadata 
 
The process flow is depicted graphically in Figure 3. 
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Figure 3  Flow diagram of SUVI thematic map algorithm 
This flow diagram depicts at a high level steps required to generate a SUVI 
thematic map from SUVI composite images. 
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3.3 Algorithm Input 

3.3.1 Primary Sensor Data 
The SUVI thematic map algorithm requires as its primary input high dynamic 
range composite images, a separate level 2 SUVI data product, or something 
compatible at the metadata and pixel value levels.  It is assumed that a Space 
Weather L2 data processing framework will make all necessary images available.  
A listing of the information expected in any input image is provided in Table 2. 
 
Table 2. SUVI L2 inputs to thematic map algorithm 

Name Description TYPE (Dimension) 

Date/Time 
Image date and time tags 
(e.g. YYYY,MM,DD,hh,mm,ss.sss) 

CHAR(1) or Integer(7) 

Channel/Filter Identifier for channel/filter combo CHAR (1) 

Exposure Time Accumulated exposure duration REAL (1) 

Pixels Composite image pixel value REAL (n
x
, n

y
) 

Pixel Weights Composite image pixel weights
 
 REAL (n

x
, n

y
) 

Pixel Flags Composite image pixel flags INTEGER (nx, ny) 

DCpix 
X & Y pixel coordinates of solar disk 
center 

REAL (2) 

pix 
Pseudo-angle describing a pixel’s plate 
scale in the X & Y directions 

REAL (2) 

P
0
 Position angle between solar north and 

image Y-axis 
REAL (1) 

L
0
  Carrington longitude of Earth REAL (1) 


S
 Stonyhurst longitude of SUVI (0 if SUVI 

and Earth are co-located) 
REAL (1) 

B
0
 Heliographic latitude of SUVI REAL (1) 

DS Distance from sun center to SUVI REAL (1) 
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3.3.2 Ancillary Data 
Ancillary data are assumed to be data not generated by SUVI or the GOES-R 
spacecraft.  We include multichannel class-conditioned statistical parameters and 
user configurable inputs in this category.  It may be desirable to ignore a channel 
or solar pixel class in the processing, but to demonstrate that this was deliberate, 
associated metadata should be retained.  This is allowed via Boolean arrays that 
indicate which channel/class will be processed.  These are all listed in Table 3. 
 
Table 3. Ancillary inputs to SUVI thematic map algorithm 

Name Description TYPE (Dimension) 

Channel-Class 
Means 

Multichannel mean vector for each 
pixel class 

REAL (1, nchan, nclass) 

Channel-Class 
Covariances 

Multichannel covariance matrix for 
each pixel class 

REAL (nchan, nchan, nclass) 

Channel 
Strings 

Strings to associate with the column 
indices of channel-class arrays  

CHAR(nchan) 

Processed 
Channels 

Flags to specify which channels 
should be processed 

BOOLEAN(nchan) 

Max Bad 
Pixels 

Maximum number of bad pixels in a 
given channel before whole channel 
is automatically discarded. 

INTEGER (1) 

Class Strings 
Strings to associate with integer-
valued pixel classes 

CHAR(nclass) 

Processed 
Classes 

Flags to specify which classes 
should be processed 

BOOLEAN(nclass) 

α Class weights parameter vector REAL (nclass) 

β Smoothness prior parameter REAL (1) 

Niter  
Number of iterations to run ICM 
solver

 
 

INTEGER (1) 
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Optional “logical channels” may also be considered ancillary data.  These may be 
non-SUVI solar images (e.g., hydrogen-alpha images from ground-based 
observatories), or even artificially generated pseudo-channels designed to apply 
some a priori knowledge of the solar scene (e.g., a mask of on-disk vs. off-disk 
pixels).  These must be compatible with SUVI high dynamic range composite 
images in terms of the coordinates of the solar disk center and the solar disk 
radius, along with all appropriate metadata.  It is assumed that the operational 
framework will make these images available to the thematic map algorithm as 
required. 
 

3.4 Theoretical Description 
Thematic maps derived from multispectral imagery have long been used to 
classify landcover types in Earth-directed satellite remote sensing.  Assuming 
that ratios of reflected sunlight measured at a single pixel across multiple spectral 
channels are representative of a single “thin slab”, they tend to exhibit unique 
profiles for different dominant landcover types.   
 
The classification of solar image pixels into scientifically and operationally useful 
categories has long been based on labor-intensive expert analysis (e.g., NOAA’s 
synoptic solar disk drawings), or theoretically-derived thresholds or bins in 
brightness (e.g., NOAA’s current solar flare location reports).  More recently, 
solar imaging research has focused on statistically robust pixel classification 
techniques, but these have been mostly based on a single spectral channel. 
  
There are good reasons for this, not the least of which is that, until recently, there 
has been neither the quantity nor quality of solar imagery as has existed in the 
Earth remote sensing world for many decades.  Experts in solar image analysis 
have had the time and ability to manually tease information out of lower cadence, 
lower resolution, mono-spectral images because humans are inherently good at 
recognizing spatial and temporal patterns in images, albeit slow.  They are not 
nearly so good at simultaneously considering multiple spectral channels. 
 
Also, it is only recently that the technological ability to measure multiple spectral 
bands that exhibit meaningful differential variation in spectral intensity across 
different solar features of interest has matured to the point of operational utility.  
This is mostly because many solar spectral features of interest to space weather 
lie in the EUV and X-ray portions of the electromagnetic spectrum, which is 
difficult to design optics and electronic hardware to measure, and actually 
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impossible to measure from Earth’s surface due to almost complete atmospheric 
absorption at these wavelengths.  Extremely high-flying balloons and satellites 
are the only platforms on which such instrumentation would be able to function. 

3.4.1 Physics of the Problem 
In contrast to the reflectances measured by most Earth-pointing remote sensing 
instruments, the spectral bands that correspond to interesting solar features are 
usually emission lines falling in the EUV and soft X-ray portions of the solar 
electromagnetic spectrum.  These lines are typically generated by fairly localized 
dynamical processes, which are often organized by height above the solar 
“surface”.  The thin slab assumptions noted for terrestrial landcover pixel 
classification may not be perfectly justified. 
 
On the other hand, information in a magnetized plasma like the solar corona is 
transmitted more readily along field lines than via more isotropic fluid mechanical 
processes (i.e., compression waves), and field lines nearer to the sun are 
generally radial across a range of altitudes.  A change to any particular emission 
line tends be quickly communicated to other altitudes at the same heliographic 
latitude and longitude. Therefore, thin slab assumptions may be reasonable for 
many events, especially if some sort of geometric correction is applied. 
 
Using this logic, we justify applying techniques developed to analyze one regime 
(Earth’s surface reflectance) to analyze and classify images in a very different 
regime (solar corona emission).  Clearly there is inherent uncertainty to this 
approach, but it is no more than what is already associated with any analysis, 
manual or automated, of solar corona images. 

3.4.2 Mathematical Description 
Instrument and algorithmic noise, atmospheric distortion, and sub-pixel variations 
in actual landcover all contribute to a degree of uncertainty in the multichannel 
ratios described above.  Therefore, there is an implied probability density function 
describing the likelihood that any given combination of single-channel pixel 
values corresponds to a particular thematic map pixel class.  If this probability 
density function is known, or can be parameterized in some fashion from a 
limited training data set, it becomes possible to generate a probability that a 
given pixel belongs to a certain class.  A sensible decision criterion is then to 
assign the pixel to the class with the highest probability.  
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Bayes’ Theorem: 

We choose to use Bayes’ Theorem as a framework for calculating probabilities 
that a given multichannel pixel belongs to a particular solar pixel class.  This is 
shown in its most general form via Equation (3.1). 
 

     
 i

jji
ij P

wPwP
wP

x

x
x

|
|   (3.1) 

 
In words, this states that the posterior probability that the ith multichannel pixel 
vector xi belongs to the jth class wj is equal to the data-conditioned probability of 
pixel vector xi when class wj is assumed, scaled by the ratio of a prior probability 
of class wj to a prior probability of pixel vector xi.  
 
The prior probability of pixel vector xi can be difficult to determine if there are 
more than a few possible pixel values for any given channel, so it is common 
practice to just assume a uniform probability distribution. This implies that the 
posterior probability is proportional numerator of the RHS in Equation (3.1). 
 

     jjiij wPwPwP || xx   (3.2)  

 
Finally, if there is no a priori knowledge of the probability that a pixel belongs to a 
certain class, the probability that a given multichannel pixel belongs to a class is 
simply proportional to the data-conditioned probability. 
 

   jiij wPwP || xx   (3.3) 

 
Calculating the Maximum Likelihood (ML) Solution: 

Class-dependent mean vectors (µ
j
) and covariance matrices (Cj) can be readily 

calculated from carefully selected training data, and used to fully characterize the 
pixel value distributions if all pixel value distribution functions are assumed to be 
Gaussian.  These statistical parameters will be provided as inputs to the 
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algorithm, but we demonstrate how they are constructed here to assist with 
explanations due later in this document. 

Start by defining a multichannel pixel as a vector of pixel values, one for each 
channel being considered: 
 

 T
chan21 nxxx x  (3.4) 

Here “T” is the transpose operator, so x is a column vector with a length equal to 
the number of channels, nchan.  This orientation becomes important later. The first 
statistical moment of x is its mean vector. 
 

j

n

i
ij

j n

j


 1

,x
μ  

(3.5) 

Here, nj is the number of multichannel pixels that have been assigned to the jth 
class in the training data set.  The mean vector for each class will look much like 
the multichannel pixel vector: 
 

 T
jnj chan21  μ  (3.6) 

A covariance matrix is an N-dimensional generalization of the variance, or the 2nd 
statistical moment of a distribution of multichannel pixel values.  Using training 
pixels assigned to a particular class, we get: 
 

   
j

n

i
jijjij

j n

j





 1

,,
Tμxμx

C  
(3.7) 1 

                                            
 
1 Equation (3.7) is a biased estimate of the sample covariance. The denominator is nj-1 for an 
unbiased estimate, but if nj is sufficiently large, the difference is negligible. Furthermore, this form 
allows means and covariances from different samples to be merged using standard mixture 
reduction (SMR) techniques. 
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Given that ij ,x  and jμ  are column vectors of length nchan, matrix multiplication 

rules turn the term inside the summation of Equation 3.7 into a symmetric square 
matrix of dimension nchan.  The diagonal elements of jC  hold the class-

dependent variance of each channel, while the off-diagonal elements of jC hold 

the class-dependent covariance between each channel.  A covariance matrix for 
the jth class will look like: 
 

jnnn

n

n

j

VCC

CVC

CCV























chanchanchan

chan

chan

2,1,

,221,2

,12,11









C  (3.8) 

Equation (3.7) guarantees that variances will always be positive.  However, a 
valid covariance matrix must also be “positive-definite”.  This is guaranteed if nj is 
at least equal to nchan, but to avoid issues related to machine precision, nj should 
be much larger than nchan.  There are more and less efficient ways to test for 
positive definiteness, but in effect, they all check to see if all eigen values for jC  

are positive.  Invalid covariance matrices should never be used by the algorithm. 

Given these definitions and constraints, and assuming that valid class-dependent 
mean vectors and covariance matrices were provided to the algorithm, the data-
conditioned probability that the ith multichannel pixel belongs to the jth class is: 
 

      jijji

j

ji wP μxCμx
C

x  1
2
1exp

2

1
| T




 (3.9) 

Here, “ρ” is the number of spectral channels, “ jC ” is the scalar-valued 

determinant of the covariance matrix, “ 1
jC ” is the inverse of the covariance 

matrix (all other terms and operators have been previously defined).  Expanding 
this to fully represent the necessary matrix operations, we get: 
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Applying standard matrix multiplication rules, the large matrix operation inside the 
exponent reduces to a simple scalar value, so  ji wP |x  is just a scalar value that 

equals the probability that pixel i belongs to class j.  The class with the highest 
probability is assigned to a thematic map pixel i, and is referred to as the 
maximum likelihood (ML) solution. 

Smoothness Prior Probabilities: 

ML thematic maps can be prone to noise in the form of spatially isolated pixels 
that are mistakenly classified as one solar pixel type, even though they are 
surrounded by a fairly homogenous field of another solar pixel type.  While this is 
sometimes a perfectly legitimate phenomenon, more likely than not, solar pixels 
will be surrounded by pixels of a similar class. 

To formalize this prior assumption of smoothness, we turn to Markov Random 
Field theory.  A pixel r resides in a 2D “neighborhood” system.  A neighborhood 
system can be ordered according to the Euclidian distance between r and its 
neighbors.  A zeroth-order system includes only r.  A first-order system includes 
those pixels directly above/below/left/right of r.  A second-order system includes 
these and those pixels off of pixel r’s diagonals (see Figure 4).  This could be 
continued ad infinitum, but a second-order system will suffice for us. 
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The probability that a pixel belongs to a particular class is a function of the 
number of neighboring pixels that belong to that class, and the prior probability of 
belonging to that pixel class. 
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j rw
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n
NwP
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exp
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 (3.11) 

where… 

wj  – pixel class j of nw  
Nr  – pixels in r’s neighborhood 
nr  – number of pixels in Nr belonging to class wj  
αwj  – relative weight for class wj  
β  – smoothness parameter 

The parameters αwj and β are defined by the user, and should be determined in 
such a manner as to best meet the operational requirements of SWPC and the 
space weather community in general.  Roughly speaking however, if αwj  is bigger 
than other weights, class wj is more likely to be assigned to a given pixel.  If β is 
bigger, spatially isolated pixels of any class are less likely. 
 

2 1 2 

1 r 1 

2 1 2 

 

Figure 4  Pixel neighborhood system 
The pixel r and its 2nd order neighborhood system in a discrete 2D 
coordinate system.  The rank or the Euclidian distance from r defines the 
order of the system. 
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 Maximum A Posteriori Probability (MAP) Solution: 

You will recall that Bayes’ Theorem states that the posterior probability that a 
pixel belongs to a particular class is proportional to the product of the data-
conditioned probability when assuming a given class, and the prior probability of 
that given class.  The class corresponding to the highest posterior probability is 
then assigned to each pixel.  This is referred to as the Maximum A Posteriori 
Probability (MAP) solution. 
 
If smoothness priors are to be used to construct a MAP solution, it is clear that an 
iterative solver is necessary because each smoothness prior is itself a function of 
the class of its neighboring pixels, which may change once Equation (3.11) is 
applied to every pixel in an image.  A variety of techniques could be applied, 
some faster, and some more accurate.  A balance of speed and accuracy is 
obtained using the Iterated Conditional Modes (ICM) algorithm described in 
Section 3.2. 

3.4.3 Algorithm Output 
The SUVI thematic map algorithm generates a 2D array of integer-valued pixel 
classes.  It also generates metadata necessary to register the image in space 
and time.  These will, in all likelihood, simply be coordinates passed through from 
the most recent composite input image.  An exhaustive list of channel and pixel 
class labels to assist in final interpretation of the product should also be provided.  
Also, because it may be desirable for the algorithm to function with one or more 
missing spectral channels, or with a particular class being ignored, Boolean 
arrays of lengths equal to the number of channels and classes respectively 
should be provided, and defined such that the channels and classes used are 
obvious.  Finally, the parameters used to configure the ICM algorithm itself 
should be listed.  All outputs are listed in Table 4. 
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Table 4. Level 2 outputs of SUVI thematic map algorithm. 

Name Description TYPE (Dimension) 

Date/Time 
Date and time tags of latest 
composite image 

CHAR(1) or Integer(7) 

Channel-Class 
Version # 

Version number of the channel-
class input parameters 

CHAR (1) 

Channel 
Strings 

Strings to associate with the column 
indices of channel-class arrays 

CHAR (nchan) 

Processed 
Channels 

Flags indicating processed 
channels 

BOOLEAN(nchan) 

Max Bad 
Pixels 

Maximum number of bad pixels in a 
given channel before whole channel 
is automatically discarded. 

INTEGER (1) 

Class Strings 
Strings to associate with integer-
valued pixel classes 

CHAR (nclass) 

Processed 
Classes 

Flags indicating processed classes BOOLEAN(nclass) 

Pixels Integer-valued pixel classes INTEGER (nx, ny) 

P0 
Position angle between solar north 
and image Y-axis 

REAL (1) 

L0 
Carrington heliographic longitude of 
Earth 

REAL (1) 

S 
Stonyhurst heliographic longitude of 
SUVI (0 if SUVI and Earth are co-
located) 

REAL (1) 

B0 Heliographic latitude of SUVI REAL (1) 

DS Distance from sun center to SUVI REAL (1) 

α Class weights parameter vector REAL (nclass) 

β Smoothness prior parameter REAL (1) 

Niter  
Number of iterations to run ICM 
solver

 
 

INTEGER (1) 
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4 TEST DATA SETS AND OUTPUTS 

4.1 Simulated/Proxy Input Data Sets 

GOES satellites 12-15 carry a Solar X-ray Imager (SXI) designed to provide 
forecasters with a global picture of the solar corona using fairly broad spectral 
bands in the soft X-ray portion of the solar spectrum.  The SXIs served, and 
continue to serve, this purpose well, but for a variety of reasons, the GOES-R 
program chose to switch to a narrower band, EUV imager that is now known as 
SUVI.  SXI images cannot serve as an adequate proxy for SUVI for the purposes 
of testing and demonstrating the SUVI Thematic Map algorithm. 

The Solar Dynamics Observatory (SDO) Atmospheric Imaging Array (AIA) was 
launched in the spring of 2010, and has a very similar design, both optical and 
electronic, to SUVI.  The important differences are: 

 SDO-AIA is comprised of four separate telescopes, compared to SUVI’s 
single telescope, quadrupling the rate at which images can be acquired; 

 each SDO-AIA primary mirror has ~4x the photon collecting area of the 
SUVI primary mirror for each spectral channel; 

 the SDO-AIA CCD is 4096x4096 pixels, compared to the SUVI CCD’s 
~1000x1000 pixels; 

Given SDO-AIA’s higher cadence, sensitivity, and spatial resolution, one can bin 
and resample to time and spatial grids comparable to SUVI and reduce the noise 
attributable to Poissonian photon counting statistics by over a factor of 42.  We 
choose to consider these “truth” images, which we then systematically corrupt by 
applying random Poisson noise to simulate photon counting statistics.  To do this 
properly, digital numbers (DN) provided in the SDO-AIA numbers must be 
converted to photons, which requires assumptions about the electronics gain 
(electrons per DN), physical gain (electrons per absorbed photon), and CCD 
quantum efficiency (% incident photons actually absorbed).  These were not 
provided with the images presented here, so best guesses were made. 

Figures 5, 6, and 7 show the “truth”, simulated long exposures, and simulated 
short exposures used for all subsequent tests and validation.  

                                            
 
2 This rough estimate assumes that signal-to-noise (SNR) scales as √ , and that N, the number 
of collected photons, scales linearly with accumulated exposure time and photon collection area. 
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4.2.1 Precisions and Accuracy Estimates 

The accuracy of a pixel classification scheme can be characterized using a so-
called “confusion” matrix.  This contingency table for more-than-binary output is a 
square matrix with diagonal members that hold the number of correctly classified 
pixels, and off-diagonal members that hold the number of incorrectly classified 
pixels.  The off-diagonal values down a column are label counts from the test 
data for each class, and correspond to type II or omission error (false negatives).  
The values across a row are label counts from the pixel classification, and 
correspond to type I, or commission error (false positives). 

The sum of a column from a confusion matrix represents the number of pixels 
that should have been identified as the class corresponding to that column.  The 
sum of a row represents the number of pixels that were identified as the class 
corresponding to that row.  The ratio of the diagonal to these totals provides 
class-specific “producer’s” and “user’s” accuracy, respectively. The overall 
accuracy is determined by the ratio of the sum of the diagonal members of the 
confusion matrix to the total number of classified pixels. 

To obtain a measure of the overall accuracy in a manner that considers type I 
and type II errors (i.e., the off-diagonal members of the confusion matrix), the κ 
(read “kappa”) coefficient offers a reasonable normalized metric, where 1 is a 
perfect classification, and 0 implies a classification as good as random chance. 
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11  (4.1) 

 

Here, r is the number of columns (and rows) in the confusion matrix, xii is the 
number of correct classifications for class i (i.e., the diagonal members of the 
confusion matrix), and xi+ and x+i are the row and column totals for each class, 
respectively.  N is the total number of observations, and should equal the sum of 
either the row or column totals if the confusion matrix was constructed properly. 

 

Table 6-Table 10 present confusion matrices for ML and MAP thematic maps 
derived from “truth”, simulated long exposures, and simulated short exposures.  
Their captions include the κ coefficient calculated from the matrix values. 
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Table 5. Confusion matrix for ML solution derived from “truth” images  
(κ = 0.961) 

 
Outer 
Space 

Coronal 
Hole 

Coronal 
Hole  

(off-disk) 

Quiet 
Corona 

Quiet 
Corona 

(off-disk) 

Active 
Region 

Prominence Flare 
Sum automatic 

pixel labels 

Outer Space 29,243 0 0 0 0 0 0 0  29,243

Coronal Hole 0  3233  0  0 8 0  0  0  3241 

Coronal Hole 
(off-disk) 0 0  5806 0  22  0  20  0  5848 

Quiet Corona 0  30  0  20,281 23  5  236  0  20,575

Quiet Corona 
(off-disk) 0  0  802  0  14,904 0  430  0  16,136

Active Region 0  0  0  66  7  2418  3  1  2495 

Prominence 0  1  2  0  696  20  3156  0  3875 

Flare 0  0  0  0  0  57  0  764  821 

Sum expert-
chosen pixel 

labels 
29,243  3264  6610  20,347 15,660 2500 3845  765  82,234

 

Table 6. Confusion matrix for MAP solution derived from “truth” images  
(κ = 0.962) 

 
Outer 
Space 

Coronal 
Hole 

Coronal 
Hole  

(off-disk) 

Quiet 
Corona 

Quiet 
Corona 

(off-disk) 

Active 
Region 

Prominence Flare 
Sum automatic 

pixel labels 

Outer Space 29,243 0 0 0 0 0 0  0  29,243

Coronal Hole 0  3240 0  0  8  0  0  0  3248 

Coronal Hole 
(off-disk) 0 0  5795  0  24  0  16  0  5835 

Quiet Corona 0  24  0  20,303 30  5  236  0  20,598

Quiet Corona 
(off-disk) 0 0  815  0  14,910 0  417  0  16,142

Active Region 0 0  0  44  0  2443  0  1  2488 

Prominence 0  0  0  1  688  15  3176  0  3879 

Flare 0  0  0  0  0  37  0  764  801 

Sum expert-
chosen pixel 

labels 
29,243  3264  6610  20,347 15,660 2500  3845  765  82,234
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Table 7. Confusion matrix for ML solution derived from long exposures  
(κ = 0.962) 

 
Outer 
Space 

Coronal 
Hole 

Coronal 
Hole  

(off-disk) 

Quiet 
Corona 

Quiet 
Corona 

(off-disk) 

Active 
Region 

Prominence Flare 
Sum automatic 

pixel labels 

Outer Space 29,243 0 10 0  2  0  0  0  29,255 

Coronal Hole 0  3233  0  0  8  0  0  0  3241 

Coronal Hole 
(off-disk) 0  0  5774  0  60  0  17  0  5851 

Quiet Corona 0  30  0  20,305 30  15  232  0  20,612

Quiet Corona 
(off-disk) 0  0  825  0  14,961 0  464  0  22,423 

Active Region 0  0 0 40 0 2454 2 21 2517

Prominence 0 1 1 2 599 12 3130 0 3745

Flare 0  0  0  0  0  19 0  744 763

Sum expert-
chosen pixel 

labels 
29,243  3264 6610 20,347 15,660 2500 3845 765 82,234

 
Table 8. Confusion matrix for MAP solution derived from long exposures  
(κ = 0.961) 

 
Outer 
Space 

Coronal 
Hole 

Coronal 
Hole  

(off-disk) 

Quiet 
Corona 

Quiet 
Corona 

(off-disk) 

Active 
Region 

Prominence Flare 
Sum automatic 

pixel labels 

Outer Space 29,243 0 9 0 2 0 0 0 29,254

Coronal Hole 0 3239 0 0 7 0  0  0  3246

Coronal Hole 
(off-disk) 0 0 5701 0 72 0 17 0 5790

Quiet Corona 0 25 0 20,312 31 16 235 0 20,619

Quiet Corona 
(off-disk) 0 0 899 0 14,964 0 446 0 16,309

Active Region 0 0 0 35 0 2467 0 21 2523

Prominence 0 0 1 0 584 9 3147 0 3741

Flare 0  0  0  0  0  8 0  744 752

Sum expert-
chosen pixel 

labels 
29,243  3264 6610 20,347 15,660 2500 3845 765 82,234
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Table 9. Confusion matrix for ML solution derived from short exposures  
(κ = 0.950) 

 
Outer 
Space 

Coronal 
Hole 

Coronal 
Hole  

(off-disk) 

Quiet 
Corona 

Quiet 
Corona 

(off-disk) 

Active 
Region 

Prominence Flare 
Sum automatic 

pixel labels 

Outer Space 29,243 7  26 3 62 0 0 0  29341

Coronal Hole 0 3220 0 15 7 0 0 0 3242

Coronal Hole 
(off-disk) 0 0 5668 0 240 0 34 0 5942

Quiet Corona 0 37 0 20,247 30 4 205 0 20,523

Quiet Corona 
(off-disk) 0 0 916 0 14,482 0 557 0 15,955

Active Region 0 0 0 82 1 2397 0 2 2482

Prominence 0 0 0 0 838 18 3049 0 3905

Flare 0 0 0 0 0 81 0 763 844

Sum expert-
chosen pixel 

labels 
29,243  3264 6610 20,347 15,660 2500 3845 765 82,234

 
Table 10. Confusion matrix for MAP solution derived from short exposures  
(κ = 0.955) 

 
Outer 
Space 

Coronal 
Hole 

Coronal 
Hole  

(off-disk) 

Quiet 
Corona 

Quiet 
Corona 

(off-disk) 

Active 
Region 

Prominence Flare 
Sum automatic 

pixel labels 

Outer Space 29,243 7 14 3 63 0 0 0 29,330

Coronal Hole 0 3242 0 3 7 0 0 0 3252

Coronal Hole 
(off-disk) 0 0 5645 0 74 0 19 0 5738

Quiet Corona 0 15 0 20,306 31 3 205 0 20,560

Quiet Corona 
(off-disk) 0 0 951 0 14,693 0 543 0 16,187

Active Region 0 0 0 35 0 2421 0 2 2458

Prominence 0 0 0 0 792 12 3078 0 3882

Flare 0 0 0 0 0 64 0 763 827

Sum expert-
chosen pixel 

labels 
29,243  3264 6610 20,347 15,660 2500 3845 765 82,234
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The accuracies of these classifications are almost certainly overstated.  This is 
not surprising because the same data was used for training and testing the 
thematic map, and because the training data was selected in a highly non-
random manner (usually as clusters of similar pixels).  Ideally, training and test 
data would be generated independently, and the test data at least should be 
selected in a more random fashion. 

One important point to note here, however, is that as input images become more 
corrupted by noise, the MAP thematic map solution tends to perform increasingly 
better, as measured by the κ coefficient, relative to the ML solution.  Other case 
studies in which the proxy images were corrupted by significantly more noise 
bear this point out even more.  This result justifies the decision to add a level of 
complexity to the thematic map algorithm in the form of smoothness priors. 

4.2.2 Error Budget 

TBD 

5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 

Test runs of a prototype Thematic Map algorithm suggest that ML classification, 
plus ~10 iterations of the ICM statistical smoother, should complete in well under 
a minute on a modern PC workstation with no substantial optimization.  However, 
if this is not sufficient, there are several options for speeding up the algorithm: 

 there are several runtime variables that are static, and can be defined 
outside any loop over the million or so image pixels (e.g., the covariance 
matrix determinant and inverse); 

 Equation (3.9) can be simplified if one takes its natural logarithm, thus 
causing the exponential function to disappear; all remaining terms with a 
natural log are constant (again, allowing them to be removed from the big 
loop), and because the natural log function is monotonic, maximizing log 
probabilities is equivalent to maximizing probabilities to obtain the ML 
solution for a pixel (it is more complicated to obtain a MAP solution using 
smoothness assumptions, but Tso & Mather (2009) explain how); 

 the SUVI Thematic Map algorithm operates on a per-pixel basis, or on a 
pixel and its immediate neighbors, so it should be easy to parallelize the 
code to exploit a multi-CPU system, and increase speed as needed. 
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5.2 Programming and Procedural Considerations 

Multichannel pixel statistics (i.e., the class-dependent means and covariances) 
are to be determined prior to runtime from an exhaustive set of training data (i.e., 
the multichannel input images are not missing any expected channels, and the 
solar scenes contain all solar features expected to be classified during  daily 
operations).  They should be updated periodically using training data collected by 
experts in solar imagery, preferably using a more randomized procedure than 
that used to generate the examples presented in Section 4.2.1.  These updates 
should occur at least once per year, if not more frequently, and are necessary to 
track changes in instrument performance as well as variations in solar activity.  
All pixel statistics updates must be made available to the space weather data 
processing framework well before their first use.  

The Thematic Map algorithm should work whether a subset of SUVI channels is 
used, all six SUVI channels are used, or even additional non-SUVI channels are 
used.  All input images/channels are expected to be made available to the SUVI 
Thematic Map algorithm via the Space Weather data processing framework, 
although the algorithm itself should be responsible for assembling multichannel 
images so that they correspond to the multichannel pixel statistics provided as 
runtime configuration parameters. 

All individual input images should be translated, scaled, and rotated to align with 
a common point of view (POV).  This POV should remain constant over time so 
Thematic Maps for different epochs can be compared.  One useful POV is to 
center the sun in the pixel array, rotate it so that solar north points to the top of 
the image array, and rescale the solar disk so that its pixel radius matches what 
is expected for SUVI at a distance of 1AU from the sun.   

5.3 Quality Assessment and Diagnostics 

The quality of the SUVI Thematic Map algorithm should be assessed and tracked 
over time using “confusion matrices”, and associated  coefficients, as described 
in Section 4.2.1.  These in turn should be determined using test data collected 
periodically by experts in solar imagery, preferably using a more randomized 
procedure than that used to generate the examples presented in Section 4.2.1.  
These (re)assessments should occur at least once a year, if not more frequently.  
They may coincide with updates to the multichannel pixel statistics, although care 
should be taken to keep the training and test data statistically independent. 

If possible, the quality of the algorithm output should be compared to what would 
be obtained using alternative but similar input data.  For example, if the SDO-AIA 
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instrument is still operational, the training data (pixel coordinates and labels) 
should be used to generate SDO-AIA-specific statistic (because SDO-AIA’s 
calibration factors will likely vary substantially from SUVI’s), and these statistics 
should then be used as input along with the SDO-AIA images to generate 
alternative thematic maps for comparison with SUVI-derived thematic maps.  
These comparisons should be made using confusion matrices and  coefficients 
generated from identical pixel coordinates and pixel labels. 

Finally, as there are at least two downstream L2 SUVI products that are expected 
to use SUVI Thematic Maps as their primary input (coronal hole boundaries and 
flare location reports), the quality of these downstream products should be 
assessed and tracked with an eye toward the influence of their respective inputs. 

5.4 Exception Handling 

The following is a list of exceptions and required actions for the SUVI Thematic 
Maps algorithm: 

 Class-dependent covariance matrix fails positive-definiteness test 
o action:  assign “undefined” class (i.e., 0) to all pixels in thematic map 
o action:  check for other invalid covariance matrices 
o action:  adjust metadata to reflect which classes had invalid 

covariance matrices 

 Input pixel value is NaN, OR input pixel is flagged as “missing” or  “bad”, 
OR input pixel weight is equal to zero: 
o action:  stop processing current pixel, and assign “undefined” class 
o action:  proceed to next pixel 

 One or more entire input channels are missing, OR there is bad or 
incomplete metadata for one or more input channels, OR a configurable 
threshold number or percentage of bad pixels (e.g., MAXBADPIX) is 
exceeded for one or more input channels: 
o action:  assign “undefined” class to all pixels in thematic map 
o action:  check for other invalid channels 
o action:  adjust metadata to reflect which channels were bad when 

generating the thematic map 
o TBR:  it may make sense for MAXBADPIX to be channel-dependent 
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5.5 Algorithm Validation 
The SUVI Thematic Map algorithm will be validated by ascertaining its 
operational value to the SWPC forecast office, both as an independent data 
product, and as input to other more derived data products.  Ideally this will be 
done as part of a GOES Program Proving Ground demonstration project. 

6 ASSUMPTIONS AND LIMITATIONS 

6.1 Performance 

The SUVI Thematic Map algorithm is a supervised pixel classification scheme.  
As such, its accuracy can only be as good as the quality of training and/or test 
data used to configure it.  This is by design, and places a higher premium on 
matching forecaster and other experts’ judgment than on any kind of physics. 

It should be noted that a deliberate choice was made to use a statistical classifier 
that assumes all class-dependent multichannel pixel distributions are Gaussian. 
These distributions can be fully characterized by their means and covariances, 
allowing actual probabilities of membership to a specific pixel class to be easily 
calculated.  This in turn offers an intuitive explanation for why one pixel class 
might have been selected over another.  However, depending on how training 
data is selected, this assumption is not always valid, and can occasionally lead to 
end results that, while statistically consistent, are not realistic or intuitive. 

6.2 Assumed Sensor Performance 

The SUVI instrument is expected to perform to its operational requirements 
described in the GOES-R Mission Requirements Document (MRD), and related 
documentation.  As of the time of this writing, the SUVI vendor has informally 
agreed to provide metadata with each image that informs the user or algorithm 
if/when these level 1b performance requirements may not be getting met.  This 
includes, for example, channel-specific noise floors and saturation thresholds in 
units comparable to the pixel values. 
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6.3 Possible Product Improvements 

6.3.1 Covariance Matrix Check 

It is expected that the multichannel pixel statistics for each solar feature class 
can be assembled into a valid positive definite covariance matrix.  The algorithm 
should test for this condition at runtime, and exit immediately on failure. A 
positive definite matrix is one where all eigen values are positive.  Round-off 
error can lead to eigen values that are not quite zero, even though the matrix is 
NOT positive definite.  To ensure that the covariance matrix is positive definite, a 
test should invoke some kind of numerical tolerance that returns a “fail” result for 
positive definiteness if any eigen value is less than the tolerance.  This tolerance 
should scale with the so-called Frobenious norm of the matrix: 
  

 
k

kkf CCTtol.  (6.1) 

Typically, f is multiplied by the machine epsilon (eps; i.e., the smallest floating 
point number that can be added to 1.0 and still change its value) corresponding 
to binary precision of the data type used to hold C. 

6.3.2 Probability Thresholds 

It is not uncommon for the maximum conditional probability that a pixel belongs 
to a specific class (Eq. (3.9) ) to be exceedingly low, especially in low-brightness 
regions.  However, such results are often erroneous, resulting in increased 
classification noise.  Perhaps it makes sense then to prescribe a minimum 
probability below which pixels will be considered unclassifiable. 

It turns out that the scalar product of the matrix multiplication in Eq. (3.9) (i.e., the 
Mahalanobis distance) follows a chi-square distribution for ρ degrees of freedom.  
This should allow one to determine a threshold Mahalanobis distance for each 
class based on a specified critical value (0.95, 0.99, 0.999, etc.).  This can be 
easily transformed into a minimum significant probability.  If this threshold is not 
met, the probability should simply be set equal to zero, and if all class-specific 
probabilities equal zero, the thematic map pixel in question should be labeled 
zero, or “undefined”.  If the ambiguity that arises between these pixels and those 
left undefined due to missing data is not acceptable, the label might be multiplied 
by -1 instead. 
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6.3.3 Improved Exception Handling 

The initial version of the SUVI Thematic Map algorithm does not handle the case 
of a missing channel at the pixel level, except to set the multichannel pixel class 
as undefined (i.e., zero).  However, it may be desirable to generate class-
dependent probabilities with an incomplete set of channels, even for a specific 
pixel.  This requires adjusting class-dependent means and covariance matrices 
accordingly (i.e., removing the channel-specific elements), and re-calculating the 
normalization constant.  This could be algorithmically onerous if performed for 
individual pixels, but is none-the-less possible. 

It is not always appropriate to proceed directly in this manner.  Degradation may 
be too severe if too few “good” channels are available, either per-image, or per 
multichannel pixel.  The following lists possible exceptions, and the required 
actions in response to these exceptions: 

 one or more input channels are missing, OR there is bad or incomplete 
metadata for one or more input channels, OR a configurable threshold 
number or percentage of bad pixels (e.g., MAXBADPIX) is exceeded for 
one or more input channels 

o action:  adjust multichannel pixel statistics to reflect bad or missing 
channel, then proceed normally 

o action:  adjust metadata to reflect which channels were skipped 
when generating the thematic map 

o TBR:  it may make sense for MAXBADPIX to be channel-
dependent 

 configurable threshold number of bad channels (e.g., MAXBADCHAN) 
exceeded 
o action:  assign “undefined” class (i.e., 0) to each pixel 
o action:  adjust metadata to reflect bad channels 

 configurable threshold number of bad channels (e.g., MAXBADCHAN) is 
exceeded for a given multichannel pixel  
o action:  skip probability calculations and assign “undefined” class (i.e., 

0) to pixel; note that this action does not allow one to specify which 
channel(s) may have been bad, and is therefore TBR. 
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