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ABSTRACT

The GOES-R Solar Ultraviolet Imager (SUVI) will provide high-cadence full-disk
images of the solar atmosphere in six narrow-band extreme ultraviolet (EUV)
spectral channels that will support Space Weather forecast activities at NOAA’s
Space Weather Prediction Center (SWPC).

This document provides a comprehensive description of the SUVI Thematic Map
algorithm. A SUVI Thematic Map is a 2D array of integer-valued pixel labels.
Each integer value corresponds to one of a finite set of known solar features, or
classes (e.g., coronal hole, solar flare, etc.) that can be uniquely identified using
one or more nearly simultaneous narrow-band SUVI spectral channels. The 2D
integer array may be displayed by itself, providing a simplified view of the solar
disk that emphasizes solar features relevant to space weather forecasting, or it
may serve as input for higher level solar image product algorithms like coronal
hole boundary maps or flare location reports.

The algorithm chosen for SUVI thematic maps is a supervised multichannel
Bayesian pixel classifier. In short, class-dependent multichannel pixel value
means and covariances are determined from training data selected offline by
solar image experts. These statistical parameters are then combined with actual
measurements online to generate data-conditioned probabilities that each pixel
belongs to one of the predefined classes. The class with the highest probability,
or maximum likelihood (ML), is assigned to each pixel. Additionally, prior
probabilities that favor a degree of smoothness in the SUVI thematic map are
generated from the ML solution, then combined with the conditional probabilities
according to Bayes’ theorem to generate a maximum a posteriori probability
(MAP) solution to reduce pixel classification noise.

Information necessary for developers and reviewers to verify that the algorithm
meets operational requirements is presented. Also presented, when applicable,
is traceability to heritage, and the design details necessary for development and
implementation of the algorithm into operational use. Test and validation
procedures are also provided along with assumptions and known limitations of
the algorithm.
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1 INTRODUCTION

The GOES-R Algorithm Working Group (AWG) Space Weather Application Team
(SWx AT) is responsible for producing algorithms that generate products using
space environment data from the GOES-R series satellites. These algorithms
shall meet the operational needs of the NOAA/NWS/NCEP Space Weather
Prediction Center (SWPC) to observe and forecast space weather conditions
impacting near-earth systems such as satellites, communications, electrical
power grids, manned space missions and many others. They shall also meet the
requirements of outside operational and research agencies as agreed.

1.1 Purpose of This Document

This Algorithm Theoretical Basis Document (ATBD) details of the GOES-R Solar
Ultraviolet Imager (SUVI) Thematic Map algorithm design and processing. The
ATBD provides operational requirements for this product and defines how these
requirements will be met using this algorithm. The algorithm inputs, processing,
and outputs are described in enough detail to design, develop, test and
implement the necessary processing software and storage mechanisms.

1.2 Who Should Use This Document

The members of the Space Weather Forecast Office and the Research and
Customer Requirements Section of the SWPC shall use this ATBD to verify their
operational requirements are being met by the proposed algorithm. They should
also use it to understand the strengths and weaknesses of the algorithm as well
as its applicability, accuracy, and robustness. The STAR Algorithm Integration
Team (AIT) shall use this document to integrate the algorithm into their
collaborative framework environment. It shall also be used by the prime
development and implementation contractor to design, develop, test, validate and
implement the algorithm into the final operational processing system.
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1.3 Inside Each Section

Section 2.0 OBSERVING SYSTEM OVERVIEW:
e provides objectives of the SUVI thematic map algorithm including the
output thematic maps and how they may be used operationally;
e discusses SUVI instrument characteristics and the fundamental algorithm
approach;

Section 3.0 ALGORITHM DESCRIPTION:
e contains a complete SUVI thematic map algorithm description, including
an outline of the processing, input data, and a theoretical description;
e provides estimates of the algorithm performance and output quality;
e reviews the numerical computation, programming and procedural issues
and a description of how the algorithm has been validated;

Section 4.0 TEST DATA SETS AND OUTPUTS:
e describes the test data sets used to characterize the performance of the
algorithm and quality of the data product(s),;
e discusses the results from algorithm processing on simulated input data;

Section 5.0 PRACTICAL CONSIDERATIONS:
e discusses issues involving numerical computation, programming and
procedures, quality assessment and diagnostics and exception handling at
a level of detail appropriate for the current algorithm maturity;

Section 6.0 ASSUMPTIONS AND LIMITATIONS:

e describes all assumptions concerning the SUVI Composite algorithm
theoretical basis and performance;
e discusses planned product improvements for future enhancements;

Section 7.0 REFERENCES:
e Provides references to all sources cited in the ATBD.

1.4 Related Documents

GOESR SUVI thematic map Test Plan and Results
GOESR SUVI thematic map Implementation and User’s Guide
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1.5 Revision History

Revision Date Author Revision Reason for
Number Description Revision

2 OBSERVING SYSTEM OVERVIEW

2.1 Product Generated

A SUVI thematic map is a 2D array of integer-valued pixel labels. Each integer
value corresponds to one of a predefined finite set of known solar features (e.g.,
coronal hole, solar flare, etc.), or classes that can be uniquely identified using
one or more nearly simultaneous narrow-band SUVI spectral channels. The 2D
integer array may be displayed by itself, providing a simplified view of the solar
disk that emphasizes solar features relevant to space weather forecasting (see
Figure 1), or it may serve as an input for higher level solar image product
algorithms like coronal hole boundary maps or flare location reports.

Solar Corona MAP Thematic Map

Flare

Prominence
Active
Region

| Quiet Corona
(off-disk)

| Quiet Corona

| Coronal Hole
| (off-disk)

Coronal Hole
Quter Space

Undefined

Figure 1 SUVI thematic map
Images from six EUV channels of SUVI proxy data were used to generate a
thematic map of the sun during a small flare event on August 7, 2010.
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2.2 Instrument Characteristics

The SUVI instrument operational requirements are detailed in section 3.4.2.4 of
the GOES-R Series Mission Requirements Document (MRD) Version 3.9, dated
November 2009. The SUVI thematic map algorithm assumes inputs that meet
these minimum requirements, although in all likelihood, the delivered instrument
performance will exceed these requirements. To start, individual SUVI spectral
channel specifications are repeated in Table 1 for ease of reference, along with
the type of EUV solar feature that motivated each spectral channel choice.

Table 1 SUVI image spectral channels
|Channe| |Wave|ength Sample Use

SUVI (Fe XVIII) I9.39 nm |Flares (~6x106 °K)

Flares (~10x106 °K) and
Hot flares (~15x106 °K)

SUVI (Fe IX) 17.1 nm Active regions (~6x105 °K)
Active regions (~1x106 °K) and

SUVI (Fe VIII) 13.1 nm |

SUVI (Fe XII) 19.5nm |Hot Flares (~20x106 °K)
SUVI (Fe XV) 28.4 nm |Corona| holes (~2x106 °K)
SUVI (He lI) 30.4 nm |Fi|aments (~6x104 °K)

The minimum spatial resolution of a SUVI image is 2.5 arcseconds, which when
combined with a field-of-view requirement of 1.3 solar radii, translates to an
image array of approximately 1000x1000 pixels. A measurement range of 0.3-
10° photons/s/cm?/arcsec? is also specified in the MRD, a dynamic range that is
not achievable with a single exposure given SUVI's hardware limitations. Multi-
exposure, high dynamic range composite images, a separate level 2 SUVI data
product, will serve as the primary input to the SUVI thematic map algorithm.

SUVI's minimum refresh rate is one full dynamic range image every 2 minutes.
Note that this does not call for all spectral channels to refresh every 2 minutes. If
higher level data products (e.g., solar flare location report) require a thematic
map input at a relatively high cadence, it is likely, that a single full dynamic range
composite image will serve as input to more than one thematic map. The SUVI
Thematic Map algorithm assumes all necessary input images are assembled and
presented to it by a space weather data processing framework.
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Finally, while SUVI has not yet flown aboard any NOAA satellite, the Solar
Dynamics Observatory (SDO) was launched in the spring of 2010, and it carries
the Atmospheric Imagine Array (AlA), a scientific instrument that has mostly
compatible spectral channels to SUVI, and a very similar optical design and
hardware selection. Details about the SUVI proxy data generated from SDO/AIA
images will be presented later, but Figure 2 offers a preview of the kind of solar
image data that will be returned by GOES-R SUVI, and that will serve as input for
the SUVI thematic map algorithm.

SDOJAIA 193 A

SDO/AIA 304 A SDO/AIA 131 A

SDOSAIA 94 A SDOJAIA 171 A SDOJALA 211 A

Figure 2 SUVI proxy data

Six select EUV channels from the Solar Dynamics Observatory (SDO)
Atmospheric Imaging Array (AlA) are spatially and temporally binned/re-
sampled to closely match SUVI's expected characteristics. The spectral
band passes also nearly match those expected on SUVI, with the exception
of SUVI's 28.4 nm channel, which we have chosen to replace with AlA’s
21.1 nm channel for development and testing purposes.
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3 ALGORITHM DESCRIPTION

3.1 Algorithm Overview

Class-dependent multichannel pixel means and covariances are determined from
training data collected offline. These statistical parameters fully characterize a
multivariate normal, or Gaussian, sample distribution of pixel values for each
solar pixel class. The mathematics required to generate these input parameters
are described in Section 3.4.2, although this is not technically part of the
Thematic Map algorithm.

The multichannel pixel means and covariances are combined online with actual
measurements to generate data-conditioned probabilities that each pixel belongs
to one of the predefined set of classes. The integer corresponding to the class
with the highest probability is then assigned to each pixel. Because we assume
Gaussian distributions, the pixel with the highest probability is also known as the
maximum likelihood (ML) solution.

A ML solution can be quite noisy when viewed in the context of an entire image.
By invoking Bayes’ theorem, we can incorporate prior probabilities that favor a
degree of smoothness in the thematic map. These are initially generated from
the whole-image ML solution, then combined with conditional probabilities to give
a posterior probability that each pixel belongs to a given class. The class that
generates the maximum a posteriori probability (MAP) is then assigned to the
corresponding pixel.

As will be described in detail in subsection 3.4.2, the smoothness priors are
themselves a function of a whole-image thematic map solution. This results in an
algorithmic nonlinearity that requires an iterative solution where prior probabilities
are recalculated from the MAP whole-image solution repeatedly until a stable
solution is found.
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3.2 Processing Outline
Steps required to construct a SUVI thematic map are:

1. Process algorithm configuration parameters and input images to construct
multichannel image for subsequent classification:
a. read parameters for generating conditional probabilities
b. read parameters for generating prior probabilities
c. Read image metadata, pixel values, pixel weights, and pixel flags
for most recent single-channel image
d. apply image selection criteria and/or replace bad pixels (TBR)
e. save single-channel pixel array to appropriate slice of 3D
multichannel pixel array
f. repeat la-le until 3D multichannel image is complete
2. Generate initial ML thematic map
a. generate data-conditioned probabilities for each class (Eqg. (3.9)) at
each pixel, and store for subsequent processing
b. initialize posterior probabilities with data-conditioned probabilities
c. determine ML solution from posterior probabilities and use as initial
MAP solution
3. Update MAP thematic map:
a. calculate smoothness prior probability for each class at each MAP
TM pixel using class ID of the pixel's nearest neighbors (Eq. (3.11))
b. combine smoothness priors with class-conditioned probabilities to
generate a new set of posterior probabilities (Eq. (3.2))
C. repeat steps 3a-3b until the maximum number of iterations have
been performed
4. Write out thematic map and associated metadata

The process flow is depicted graphically in Figure 3.
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Start SUVI
Thematic Map

Initialize Variables;
Read Configuration
File(s)

Process latest
input image

Process latest
multichannel image

Read L2 metadata;
Read L2 image data

Validate metadata and image data
for further processing:

1) Apply image selection criteria
(observation date, channel, etc.);

2) replace bad/missing pixels with
appropriate substitute values

3) Save image and associated
metadata to array of images that
constitute a multi-channel image;

0) Initialize posterior probabilities
with conditional probabilities for
each pixel;

1) (Re)calculate smoothness prior
probabilities from pixel class with
highest posterior probability;

2) Combine smoothness priors with
data-conditioned probabilities to
form new posterior probabilities;

3) MAP solution is pixel class that
maximizes posterior probability;

>

Is this

NO last image in this YES
L2 group?

Max. number

of iterzy NO

YES

1) Compile thematic map meta data,
including any pixel quality metrics
and/or whole-image statistics;

2) Write metadata and thematic
map data array to file;

3) Deallocate image buffer;

Stop SUVI
Thematic Map

Figure 3 Flow diagram of SUVI thematic map algorithm
This flow diagram depicts at a high level steps required to generate a SUVI
thematic map from SUVI composite images.
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3.3 Algorithm Input

3.3.1 Primary Sensor Data

The SUVI thematic map algorithm requires as its primary input high dynamic
range composite images, a separate level 2 SUVI data product, or something
compatible at the metadata and pixel value levels. Itis assumed that a Space
Weather L2 data processing framework will make all necessary images available.
A listing of the information expected in any input image is provided in Table 2.

Table 2. SUVI L2 inputs to thematic map algorithm

Name Description TYPE (Dimension)
Date/Time I(r(:g?(\e(s?(t\?,I(’\i/lrll\j,ng(,ehﬁﬁm,ss.sss) CHAR(2) or Integer(7)
Channel/Filter [ldentifier for channel/filter combo CHAR (1)
Exposure Time |Accumulated exposure duration REAL (1)
Pixels Composite image pixel value REAL (n,, n )
Pixel Weights |Composite image pixel weights REAL (n,, n)
Pixel Flags |Composite image pixel flags INTEGER (ny, ny)
DC, z(eict\e(rpixel coordinates of solar disk REAL (2)
b [ooeutvenge descrtng s el PRt o, (o
P, E;);SLOQ _aarg(?sle between solar north and REAL (1)
L, Carrington longitude of Earth REAL (1)
bo St longtude or SV 011UV |
B, Heliographic latitude of SUVI REAL (1)
Ds Distance from sun center to SUVI REAL (1)
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3.3.2 Ancillary Data

Ancillary data are assumed to be data not generated by SUVI or the GOES-R
spacecraft. We include multichannel class-conditioned statistical parameters and
user configurable inputs in this category. It may be desirable to ignore a channel
or solar pixel class in the processing, but to demonstrate that this was deliberate,
associated metadata should be retained. This is allowed via Boolean arrays that
indicate which channel/class will be processed. These are all listed in Table 3.

Table 3. Ancillary inputs to SUVI thematic map algorithm

Name Description TYPE (Dimension)

Channel-Class |Multichannel mean vector for each

Means pixel class REAL (1, Nchan, Nelass)

Channel-Class |Multichannel covariance matrix for

. . REAL (Nchan, Nchan, N
Covariances |each pixel class (Nehan, Nehan, Netass)

Channel Strings to associate with the column

Strings indices of channel-class arrays CHAR(Nchan)

Processed |Flags to specify which channels

Channels should be processed BOOLEAN(Nchan)

Maximum number of bad pixels in a
given channel before whole channel {INTEGER (1)
is automatically discarded.

Max Bad
Pixels

Strings to associate with integer-

Class Strings | ed pixel classes CHAR(Ncass)
Processed |Flags to specify which classes
Classes should be processed BOOLEAN(Nciass)
a Class weights parameter vector REAL (Ngjass)
B Smoothness prior parameter REAL (1)
Nicer Number of iterations to run ICM INTEGER (1)

solver
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Optional “logical channels” may also be considered ancillary data. These may be
non-SUVI solar images (e.g., hydrogen-alpha images from ground-based
observatories), or even artificially generated pseudo-channels designed to apply
some a priori knowledge of the solar scene (e.g., a mask of on-disk vs. off-disk
pixels). These must be compatible with SUVI high dynamic range composite
images in terms of the coordinates of the solar disk center and the solar disk
radius, along with all appropriate metadata. It is assumed that the operational
framework will make these images available to the thematic map algorithm as
required.

3.4 Theoretical Description

Thematic maps derived from multispectral imagery have long been used to
classify landcover types in Earth-directed satellite remote sensing. Assuming
that ratios of reflected sunlight measured at a single pixel across multiple spectral
channels are representative of a single “thin slab”, they tend to exhibit unique
profiles for different dominant landcover types.

The classification of solar image pixels into scientifically and operationally useful
categories has long been based on labor-intensive expert analysis (e.g., NOAA’s
synoptic solar disk drawings), or theoretically-derived thresholds or bins in
brightness (e.g., NOAA'’s current solar flare location reports). More recently,
solar imaging research has focused on statistically robust pixel classification
techniques, but these have been mostly based on a single spectral channel.

There are good reasons for this, not the least of which is that, until recently, there
has been neither the quantity nor quality of solar imagery as has existed in the
Earth remote sensing world for many decades. Experts in solar image analysis
have had the time and ability to manually tease information out of lower cadence,
lower resolution, mono-spectral images because humans are inherently good at
recognizing spatial and temporal patterns in images, albeit slow. They are not
nearly so good at simultaneously considering multiple spectral channels.

Also, it is only recently that the technological ability to measure multiple spectral
bands that exhibit meaningful differential variation in spectral intensity across
different solar features of interest has matured to the point of operational utility.
This is mostly because many solar spectral features of interest to space weather
lie in the EUV and X-ray portions of the electromagnetic spectrum, which is
difficult to design optics and electronic hardware to measure, and actually
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impossible to measure from Earth’s surface due to almost complete atmospheric
absorption at these wavelengths. Extremely high-flying balloons and satellites
are the only platforms on which such instrumentation would be able to function.

3.4.1 Physics of the Problem

In contrast to the reflectances measured by most Earth-pointing remote sensing
instruments, the spectral bands that correspond to interesting solar features are
usually emission lines falling in the EUV and soft X-ray portions of the solar
electromagnetic spectrum. These lines are typically generated by fairly localized
dynamical processes, which are often organized by height above the solar
“surface”. The thin slab assumptions noted for terrestrial landcover pixel
classification may not be perfectly justified.

On the other hand, information in a magnetized plasma like the solar corona is
transmitted more readily along field lines than via more isotropic fluid mechanical
processes (i.e., compression waves), and field lines nearer to the sun are
generally radial across a range of altitudes. A change to any particular emission
line tends be quickly communicated to other altitudes at the same heliographic
latitude and longitude. Therefore, thin slab assumptions may be reasonable for
many events, especially if some sort of geometric correction is applied.

Using this logic, we justify applying techniques developed to analyze one regime
(Earth’s surface reflectance) to analyze and classify images in a very different
regime (solar corona emission). Clearly there is inherent uncertainty to this
approach, but it is no more than what is already associated with any analysis,
manual or automated, of solar corona images.

3.4.2 Mathematical Description

Instrument and algorithmic noise, atmospheric distortion, and sub-pixel variations
in actual landcover all contribute to a degree of uncertainty in the multichannel
ratios described above. Therefore, there is an implied probability density function
describing the likelihood that any given combination of single-channel pixel
values corresponds to a particular thematic map pixel class. If this probability
density function is known, or can be parameterized in some fashion from a
limited training data set, it becomes possible to generate a probability that a
given pixel belongs to a certain class. A sensible decision criterion is then to
assign the pixel to the class with the highest probability.
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Bayes’ Theorem:

We choose to use Bayes’ Theorem as a framework for calculating probabilities
that a given multichannel pixel belongs to a particular solar pixel class. This is
shown in its most general form via Equation (3.1).

P(Xi L:Z;I);J(WJ) (3.1)

P(w_/lxi):

In words, this states that the posterior probability that the " multichannel pixel
vector x; belongs to the /" class w; is equal to the data-conditioned probability of
pixel vector x; when class w; is assumed, scaled by the ratio of a prior probability
of class w; to a prior probability of pixel vector x;.

The prior probability of pixel vector x; can be difficult to determine if there are
more than a few possible pixel values for any given channel, so it is common
practice to just assume a uniform probability distribution. This implies that the
posterior probability is proportional numerator of the RHS in Equation (3.1).

P(Wj |Xi)°¢ P(Xi | W/')P(W_/‘) (3.2)

Finally, if there is no a priori knowledge of the probability that a pixel belongs to a
certain class, the probability that a given multichannel pixel belongs to a class is
simply proportional to the data-conditioned probability.

P(wj |xl.)oc P(xi|wj) (3.3)

Calculating the Maximum Likelihood (ML) Solution:

Class-dependent mean vectors (pj) and covariance matrices (C)) can be readily

calculated from carefully selected training data, and used to fully characterize the
pixel value distributions if all pixel value distribution functions are assumed to be
Gaussian. These statistical parameters will be provided as inputs to the
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algorithm, but we demonstrate how they are constructed here to assist with
explanations due later in this document.

Start by defining a multichannel pixel as a vector of pixel values, one for each
channel being considered:

Xz[xl X, X, ]T (3.4)

Here “T” is the transpose operator, so xis a column vector with a length equal to
the number of channels, nchan. This orientation becomes important later. The first
statistical moment of xis its mean vector.

B 250 (3.5)

By ==

n;

Here, n;is the number of multichannel pixels that have been assigned to the /"
class in the training data set. The mean vector for each class will look much like
the multichannel pixel vector:

wo=lw o ﬂ]j (3.6)

A covariance matrix is an N-dimensional generalization of the variance, or the 2"
statistical moment of a distribution of multichannel pixel values. Using training
pixels assigned to a particular class, we get:

3.7)*

Z;:[X_/,t - “j]x [X_/,t K, ]T

C_

J

n;

! Equation (3.7) is a biased estimate of the sample covariance. The denominator is ni-1 for an
unbiased estimate, but if n; is sufficiently large, the difference is negligible. Furthermore, this form
allows means and covariances from different samples to be merged using standard mixture
reduction (SMR) techniques.
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Given that x,, and p; are column vectors of length nchan, matrix multiplication

rules turn the term inside the summation of Equation 3.7 into a symmetric square
matrix of dimension nchan. The diagonal elements of C; hold the class-

dependent variance of each channel, while the off-diagonal elements of Chold

the class-dependent covariance between each channel. A covariance matrix for
the /" class will look like:

Lighan

4 Cio
C2 1 VZ 2,Mehan

C ;= . . . . (3.8)
Nghan 1 Nchan 2 o Mehan j

Equation (3.7) guarantees that variances will always be positive. However, a
valid covariance matrix must also be “positive-definite”. This is guaranteed if n; is
at least equal to ncnhan, but to avoid issues related to machine precision, n; should
be much larger than nchan. There are more and less efficient ways to test for
positive definiteness, but in effect, they all check to see if all eigen values for C,

are positive. Invalid covariance matrices should never be used by the algorithm.
Given these definitions and constraints, and assuming that valid class-dependent

mean vectors and covariance matrices were provided to the algorithm, the data-
conditioned probability that the /" multichannel pixel belongs to the /" class is:

P(Xz’ |wj):;exp(—%x(xi K, )T Xc;l X(Xi R, )) (3.9)

" ]

Here, “p” is the number of spectral channels, ‘CJ‘ is the scalar-valued

determinant of the covariance matrix, “C;l”

matrix (all other terms and operators have been previously defined). Expanding
this to fully represent the necessary matrix operations, we get:

is the inverse of the covariance
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-2 % [(xi,l _/J_/,l) (xf,z _/“j,z) (xi,nchan T H )], x

-1

c v, - C
Plx, [w,)=—t _ex B TE o TR ) (3.10)

Nchan 1 Mehan 2 Mechan
T

[(xi,l - /uj,l) (xi,z - :“_;,2) (xi,nchan ~H g )]l

Applying standard matrix multiplication rules, the large matrix operation inside the
exponent reduces to a simple scalar value, so P(xi | wj) is just a scalar value that

equals the probability that pixel i belongs to classj. The class with the highest
probability is assigned to a thematic map pixel i, and is referred to as the
maximum likelihood (ML) solution.

Smoothness Prior Probabilities:

ML thematic maps can be prone to noise in the form of spatially isolated pixels
that are mistakenly classified as one solar pixel type, even though they are
surrounded by a fairly homogenous field of another solar pixel type. While this is
sometimes a perfectly legitimate phenomenon, more likely than not, solar pixels
will be surrounded by pixels of a similar class.

To formalize this prior assumption of smoothness, we turn to Markov Random
Field theory. A pixel rresides in a 2D “neighborhood” system. A neighborhood
system can be ordered according to the Euclidian distance between r and its
neighbors. A zeroth-order system includes only r. A first-order system includes
those pixels directly above/below/left/right of r. A second-order system includes
these and those pixels off of pixel r's diagonals (see Figure 4). This could be
continued ad infinitum, but a second-order system will suffice for us.
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2 1 2
1 r 1
2 1 2

Figure 4 Pixel neighborhood system

The pixel r and its 2™ order neighborhood system in a discrete 2D
coordinate system. The rank or the Euclidian distance from r defines the
order of the system.

The probability that a pixel belongs to a particular class is a function of the
number of neighboring pixels that belong to that class, and the prior probability of
belonging to that pixel class.

exp(awj + pn, )

P(WJ | N" ): n, ( ) (311)
2. expla, + fn,
where...

wj — pixel class j of n,,

N, — pixels in ’s neighborhood

n, — number of pixels in N, belonging to class w;

ay;  — relative weight for class w;

p — smoothness parameter

The parameters a,; and f are defined by the user, and should be determined in
such a manner as to best meet the operational requirements of SWPC and the
space weather community in general. Roughly speaking however, if a,; is bigger
than other weights, class w; is more likely to be assigned to a given pixel. If gis
bigger, spatially isolated pixels of any class are less likely.
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Maximum A Posteriori Probability (MAP) Solution:

You will recall that Bayes’ Theorem states that the posterior probability that a
pixel belongs to a particular class is proportional to the product of the data-
conditioned probability when assuming a given class, and the prior probability of
that given class. The class corresponding to the highest posterior probability is
then assigned to each pixel. This is referred to as the Maximum A Posteriori
Probability (MAP) solution.

If smoothness priors are to be used to construct a MAP solution, it is clear that an
iterative solver is necessary because each smoothness prior is itself a function of
the class of its neighboring pixels, which may change once Equation (3.11) is
applied to every pixel in an image. A variety of techniques could be applied,
some faster, and some more accurate. A balance of speed and accuracy is
obtained using the Iterated Conditional Modes (ICM) algorithm described in
Section 3.2.

3.4.3 Algorithm Output

The SUVI thematic map algorithm generates a 2D array of integer-valued pixel
classes. It also generates metadata necessary to register the image in space
and time. These will, in all likelihood, simply be coordinates passed through from
the most recent composite input image. An exhaustive list of channel and pixel
class labels to assist in final interpretation of the product should also be provided.
Also, because it may be desirable for the algorithm to function with one or more
missing spectral channels, or with a particular class being ignored, Boolean
arrays of lengths equal to the number of channels and classes respectively
should be provided, and defined such that the channels and classes used are
obvious. Finally, the parameters used to configure the ICM algorithm itself
should be listed. All outputs are listed in Table 4.
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Table 4. Level 2 outputs of SUVI thematic map algorithm.
Name Description TYPE (Dimension)

Date and time tags of latest

composite image CHAR(2) or Integer(7)

Date/Time

Channel-Class |Version number of the channel-

Version # |class input parameters CHAR (1)

Channel Strings to associate with the column
Strings indices of channel-class arrays

Processed |[Flags indicating processed
Channels channels

CHAR (nchan)

BOOLEAN(nchan)

Maximum number of bad pixels in a
given channel before whole channel {INTEGER (1)
is automatically discarded.

Max Bad
Pixels

Strings to associate with integer-

valued pixel classes CHAR (N¢lass)

Class Strings

Processed o
Classes Flags indicating processed classes |BOOLEAN(Ncjass)
Pixels Integer-valued pixel classes INTEGER (ny, ny)
Py Pos(uon angle b_etween solar north REAL (1)
and image Y-axis
Carrington heliographic longitude of
Lo Earth REAL (1)
Stonyhurst heliographic longitude of
ds SUVI (0 if SUVI and Earth are co- |REAL (1)
located)
Bo Heliographic latitude of SUVI REAL (1)
Ds Distance from sun center to SUVI  |REAL (1)
a Class weights parameter vector REAL (N¢jass)
B Smoothness prior parameter REAL (1)
Niger Number of iterations to run ICM INTEGER (1)

solver
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4 TEST DATA SETS AND OUTPUTS

4.1 Simulated/Proxy Input Data Sets

GOES satellites 12-15 carry a Solar X-ray Imager (SXI) designed to provide
forecasters with a global picture of the solar corona using fairly broad spectral
bands in the soft X-ray portion of the solar spectrum. The SXIs served, and
continue to serve, this purpose well, but for a variety of reasons, the GOES-R
program chose to switch to a narrower band, EUV imager that is now known as
SUVI. SXI images cannot serve as an adequate proxy for SUVI for the purposes
of testing and demonstrating the SUVI Thematic Map algorithm.

The Solar Dynamics Observatory (SDO) Atmospheric Imaging Array (AlA) was
launched in the spring of 2010, and has a very similar design, both optical and
electronic, to SUVI. The important differences are:

e SDO-AIA is comprised of four separate telescopes, compared to SUVI's
single telescope, quadrupling the rate at which images can be acquired,;

e each SDO-AIA primary mirror has ~4x the photon collecting area of the
SUVI primary mirror for each spectral channel;

e the SDO-AIA CCD is 4096x4096 pixels, compared to the SUVI CCD’s
~1000x1000 pixels;

Given SDO-AIA’s higher cadence, sensitivity, and spatial resolution, one can bin
and resample to time and spatial grids comparable to SUVI and reduce the noise
attributable to Poissonian photon counting statistics by over a factor of 42. We
choose to consider these “truth” images, which we then systematically corrupt by
applying random Poisson noise to simulate photon counting statistics. To do this
properly, digital numbers (DN) provided in the SDO-AIA numbers must be
converted to photons, which requires assumptions about the electronics gain
(electrons per DN), physical gain (electrons per absorbed photon), and CCD
guantum efficiency (% incident photons actually absorbed). These were not
provided with the images presented here, so best guesses were made.

Figures 5, 6, and 7 show the “truth”, simulated long exposures, and simulated
short exposures used for all subsequent tests and validation.

% This rough estimate assumes that signal-to-noise (SNR) scales as VN, and that N, the number
of collected photons, scales linearly with accumulated exposure time and photon collection area.
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SDO/AIA 193 A SDO/AIA 304 A

SDO/AIA 131 A SDO/AIA 171 A

SDO/AIA 211 A SDO/AIA 94 A

Figure 5 Sample of SDO/AIA SUVI proxy “truth” images
Six low-noise EUV solar images constructed from SDO-AIA data that nearly
match SUVI's expected cadence, spatial resolution, and spectral channels.
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SDO/AIA 193 A SDO/AIA 304 A

SDO/AIA 131 A SDO/AIA 171 A

SDO/AIA 211 A SDO/AIA 94 A

Figure 6 Simulated SUVI long exposures
These are the “truth” exposures with random Poisson noise added to simulate

a 1 second exposure.
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SDO/AIA 193 A SDO/AIA 304 A

SDO/AIA 131 A SDO/AIA 171 A

SDO/AIA 211 A SDO/AIA 94 A

Figure 7 Simulated SUVI short exposures
These are the “truth” exposures with random Poisson noise added to simulate

a .025 second exposure.
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For the purpose of developing, testing, and demonstrating a prototype of the
SUVI Thematic Map algorithm, a small M-class flare event was chosen that
occurred on August 7, 2010. The images of proxy data shown in Figures 5, 6,
and 7 correspond to the immediately pre-flare phase of this event, as determined
from NOAA's so-called Edited Events List, available online from the Space
Weather Prediction Center. In addition to these pre-flare scenes, a peak-flare,
and a declining phase set of images were used to train and test the algorithm.
These are not shown here.

Simulated Corona - Pathlength

In addition, a pseudo-channel was —

-
created that simulated the geometric F -
effects of limb brightening. This T
phenomenon occurs in optically thin

plasmas, and leads to a brightening near el
and immediately above the solar limb 12566 km
because the look vector of the observer

passes through more photon-emitting I
solar atmosphere. The pseudo-channel

u P

used here is the path length in kilometers 7.50e5 4am
of the look vector passing through a solar

atmosphere that was modeled as a spherical shell around the photosphere, with
a thickness of 1 solar radii. This is by no means intended to perfectly resemble
reality, and was provided merely as a demonstration of how pseudo-channels
can help the SUVI Thematic Map algorithm generate better output.

Finally, an “expert” in solar image analysis used a semi-GUI manual pixel
selection tool to assign one of a predefined set of 8 solar feature classes to
subsets of pixel coordinates. All channels represented by the proxy inputs were
examined, even though only a single channel at a single time-step is presented
in Figure 8. These training data were assembled into vectors of multichannel
pixels (Eq. (3.4)), and processed into class-dependent multi-channel means and
covariances (Egs. (3.5)). These were in turn combined with multichannel proxy
Images to generate a sequence of SUVI Thematic Maps for this event. A
representative ML and MAP thematic map for each of the “truth”, long exposure,
and short exposure images is shown in the next subsection.
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SDOJAIA 171 A (Outer Space) SDOfAIA 171 A (Corenal Hole) SDOJAIA 171 A (Coronal Hole (off-disk))

SDO/AIA 171 A (Quiet Corona {off-disk)) SDOJAIA 171 A (Active Reglen)

SDO/AIA 171 A (Quiet Corona)

[ 4

-

SDO/AIA 171 A (Prominence) SDOJAIA 171 A (Flare) Solar Corona Pixel Class Training Mask

Figure 8 Training pixel selection
Colorized training pixel masks overlay a 171 A grayscale image (the same
training pixels apply to all channels). A more compact representation of color-

coded training pixels is also shown.
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4.2 Output from Simulated/Proxy Inputs Data Sets

Solar Corona ML Thematic Map

Flare

Prominence

Active
Region

| Quiet Corona
(off-disk)

Quiet Corona

| Coronal Hole
(off-disk)

Coronal Hole

Quter Space

Undefined

Flare

Prominence

Active
Region

| Quiet Corona
(off-disk)

Quiet Corona

| Coronal Hole
(off-disk)

Coronal Hole

Quter Space

Undefined

Figure 9 Thematic maps (ML & MAP) for “truth” images
Sample thematic maps generated from images taken at onset of M class solar
flare.
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Solar Corona ML Thematic Map

Flare

Prominence

Active
Region

Quiet Corona
(off-disk)

Quiet Corona

| Coronal Hole
(oft-disk)

Coronal Hole

QOuter Space

Undefined

Solar Corona MAP Thematic Map
Flare
Prominence

Active
Region

Quiet Corona
(aff-disk)

Quiet Corona

| Coronal Hole
(off-disk)

Coronal Hole
Outer Space

Undefined

Figure 10 Thematic maps (ML & MAP) for simulated long exposures.
Sample thematic maps generated from images taken at onset of M class solar
flare.
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Solar Corona ML Thematic Map

Flare

Prominence

Active
Region

Quiet Corona
(off-disk)

Quiet Corona

| Coronal Hole
(oft-disk)

Coronal Hole

QOuter Space

Undefined

Flare

Prominence

Active
Region

Quiet Corona
(aff-disk)

Quiet Corona

| Coronal Hole
(off-disk)

Coronal Hole

Outer Space

Undefined

Figure 11 Thematic maps (ML & MAP) for simulated short exposures.
Sample thematic maps generated from images taken at onset of M class solar
flare.
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4.2.1 Precisions and Accuracy Estimates

The accuracy of a pixel classification scheme can be characterized using a so-
called “confusion” matrix. This contingency table for more-than-binary output is a
square matrix with diagonal members that hold the number of correctly classified
pixels, and off-diagonal members that hold the number of incorrectly classified
pixels. The off-diagonal values down a column are label counts from the test
data for each class, and correspond to type Il or omission error (false negatives).
The values across a row are label counts from the pixel classification, and
correspond to type I, or commission error (false positives).

The sum of a column from a confusion matrix represents the number of pixels
that should have been identified as the class corresponding to that column. The
sum of a row represents the number of pixels that were identified as the class
corresponding to that row. The ratio of the diagonal to these totals provides
class-specific “producer’s” and “user’s” accuracy, respectively. The overall
accuracy is determined by the ratio of the sum of the diagonal members of the
confusion matrix to the total number of classified pixels.

To obtain a measure of the overall accuracy in a manner that considers type |
and type Il errors (i.e., the off-diagonal members of the confusion matrix), the x

(read “kappa”) coefficient offers a reasonable normalized metric, where 1 is a
perfect classification, and 0 implies a classification as good as random chance.

r

Nixii _Z(xi+ 'x+i)
_ =1

K= i - i=1 (4.1)

N? _Z(xi+ 'x+i)

i=1

Here, r is the number of columns (and rows) in the confusion matrix, x; is the
number of correct classifications for class i (i.e., the diagonal members of the
confusion matrix), and x;+ and x; are the row and column totals for each class,
respectively. Nis the total number of observations, and should equal the sum of
either the row or column totals if the confusion matrix was constructed properly.

Table 6-Table 10 present confusion matrices for ML and MAP thematic maps
derived from “truth”, simulated long exposures, and simulated short exposures.

Their captions include the x coefficient calculated from the matrix values.
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Table 5. Confusion matrix for ML solution derived from “truth” images

(x = 0.961)
guter Ct'::lrolnal C:)-Iroolr;al cQuiet c%l:(i;t a I?cti've Prominence Flare Surp alultol;'nlatic
pace ole (off-disk) orona (off-disk) egion pixel labels
Outer Space | 29,243 0 0 0 0 0 0 0 29,243
Coronal Hole 0| 3233 0 0 8 0 0 0 3241
(o] I Hol
Toftaisk) 0 o| 5806 0 22 0 20 0 5848
Quiet Corona 0 30 0| 20,281 23 5 236 0 20,575
Quiet Corona
(off-disk) 0 0 802 0 14,904 0 430 0 16,136
Active Region 0 0 0 66 7| 2418 3 1 2495
Prominence 0 1 2 0 696 20 3156 0 3875
Flare 0 0 0 0 0 57 0 764 821
Sum expert-
chosen pixel | 29,243 3264 6610] 20,347| 15,660] 2500 3845 765 82,234
labels
Table 6. Confusion matrix for MAP solution derived from “truth” images
(k= 0.962)
Outer Coronal Ct'::lrolnal Quiet cQuiet Active . Sum automatic
Space Hole o'e Corona orona Region Prominence Flare pixel labels
(off-disk) (off-disk)
Outer Space | 29,243 0 0 0 0 0 0 0 29,243
Coronal Hole 0| 3240 0 0 8 0 0 0 3248
(o] I Hol
o(;t;fr::isk? ¢ 0 0 5795 0 24 0 16 0 5835
Quiet Corona 0 24 0| 20,303 30 5 236 0 20,598
Quiet Corona
(off-disk) 0 0 815 0 14,910 0 417 0 16,142
Active Region 0 0 0 44 0 2443 0 1 2488
Prominence 0 0 0 1 688 15 3176 0 3879
Flare 0 0 0 0 0 37 0 764 801
S rt-
c::;:: ';?xel 29,243 3264 6610 20,347| 15,660] 2500 3845 765 82,234
labels
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Table 7. Confusion matrix for ML solution derived from long exposures

(k = 0.962)
Outer Coronal C:Irolnal Quiet cQuiet Active . Sum automatic
Space Hole o'e Corona orona Region Prominence Flare pixel labels
(off-disk) (off-disk)
Outer Space | 29,243 0 10 0 2 0 0 0 29,255
Coronal Hole 0| 3233 0 0 8 0 0 0 3241
Coronal Hole
(off-disk) 0 0 5774 0 60 0 17 0 5851
Quiet Corona 0 30 0| 20,305 30 15 232 0 20,612
Quiet Corona
(off-disk) 0 0 825 0| 14,961 0 464 0 22,423
Active Region 0 0 0 40 0 2454 2 21 2517
Prominence 0 1 1 2 599 12 3130 0 3745
Flare 0 0 0 0 0 19 0 744 763
Sum expert-
ct:jose: pixel | 29,243 3264 6610 | 20,347 15,660 2500 3845 765 82,234
labels

Table 8. Confusion matrix for MAP solution derived from long exposures
(x =0.961)

Coronal Quiet

Outer Coronal Hole Quiet Corona Acti've Prominence Flare Sur_n automatic
Space Hole (off-disk) Corona (off-disk) Region pixel labels
Outer Space | 29,243 0 9 0 2 0 0 0 29,254
Coronal Hole 0| 3239 0 0 7 0 0 0 3246
C | Hol
(oft-disk) 0 o| 5701 0 72 0 17 0 5790
Quiet Corona 0 25 0| 20,312 31 16 235 0 20,619
Quiet Corona
(off-disk) 0 0 899 0| 14,964 0 446 0 16,309
Active Region 0 0 0 35 0 2467 0 21 2523
Prominence 0 0 1 0 584 9 3147 0 3741
Flare 0 0 0 0 0 8 0 744 752
Sum expert-
chosen miel | 29,243| 3264| 6610 20,347| 15,660| 2500 3gas| 7e5| 82,234
labels
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Table 9. Confusion matrix for ML solution derived from short exposures

(k = 0.950)
Outer Coronal Coronal Quiet Quiet Active Sum automatic
s Hole Corona . Prominence Flare .
pace Hole (off-disk) Corona (off-disk) Region pixel labels
Outer Space | 29,243 7 26 3 62 0 0 0 29341
Coronal Hole 0| 3220 0 15 7 0 0 0 3242
Coronal Hole
(off-disk) 0 0 5668 0 240 0 34 0 5942
Quiet Corona 0 37 01 20,247 30 4 205 0 20,523
Quiet Corona
(off-disk) 0 0 916 0| 14,482 0 557 0 15,955
Active Region 0 0 0 82 1| 2397 0 2 2482
Prominence 0 0 0 0 838 18 3049 0 3905
Flare 0 0 0 0 0 81 0 763 844
Sum expert-
cr:jose: pixel | 29,243 3264 6610 | 20,347 15,660 2500 3845 765 82,234
labels

Table 10. Confusion matrix for MAP solution derived from short exposures
(x = 0.955)

Coronal Quiet

Outer Coronal Hole Quiet Corona Acti've Prominence Flare Sur_n automatic
Space Hole (off-disk) Corona (off-disk) Region pixel labels
Outer Space | 29,243 7 14 3 63 0 0 0 29,330
Coronal Hole 0| 3242 0 3 7 0 0 0 3252
C | Hol
(oft-disk) 0 0| 5645 0 74 0 19 0 5738
Quiet Corona 0 15 0| 20,306 31 3 205 0 20,560
Quiet Corona
(off-disk) 0 0 951 0| 14,693 0 543 0 16,187
Active Region 0 0 0 35 0| 2421 0 2 2458
Prominence 0 0 0 0 792 12 3078 0 3882
Flare 0 0 0 0 0 64 0 763 827
Sum expert-
chosen miel | 29,243| 3264| 6610 20,347| 15,660| 2500 3gas| 7e5| 82,234
labels
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The accuracies of these classifications are almost certainly overstated. This is
not surprising because the same data was used for training and testing the
thematic map, and because the training data was selected in a highly non-
random manner (usually as clusters of similar pixels). Ideally, training and test
data would be generated independently, and the test data at least should be
selected in a more random fashion.

One important point to note here, however, is that as input images become more
corrupted by noise, the MAP thematic map solution tends to perform increasingly
better, as measured by the K coefficient, relative to the ML solution. Other case
studies in which the proxy images were corrupted by significantly more noise
bear this point out even more. This result justifies the decision to add a level of
complexity to the thematic map algorithm in the form of smoothness priors.

4.2.2 Error Budget
TBD

5 PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

Test runs of a prototype Thematic Map algorithm suggest that ML classification,
plus ~10 iterations of the ICM statistical smoother, should complete in well under
a minute on a modern PC workstation with no substantial optimization. However,
if this is not sufficient, there are several options for speeding up the algorithm:

e there are several runtime variables that are static, and can be defined
outside any loop over the million or so image pixels (e.g., the covariance
matrix determinant and inverse);

e Equation (3.9) can be simplified if one takes its natural logarithm, thus
causing the exponential function to disappear; all remaining terms with a
natural log are constant (again, allowing them to be removed from the big
loop), and because the natural log function is monotonic, maximizing log
probabilities is equivalent to maximizing probabilities to obtain the ML
solution for a pixel (it is more complicated to obtain a MAP solution using
smoothness assumptions, but Tso & Mather (2009) explain how);

e the SUVI Thematic Map algorithm operates on a per-pixel basis, or on a
pixel and its immediate neighbors, so it should be easy to parallelize the
code to exploit a multi-CPU system, and increase speed as needed.
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5.2 Programming and Procedural Considerations

Multichannel pixel statistics (i.e., the class-dependent means and covariances)
are to be determined prior to runtime from an exhaustive set of training data (i.e.,
the multichannel input images are not missing any expected channels, and the
solar scenes contain all solar features expected to be classified during daily
operations). They should be updated periodically using training data collected by
experts in solar imagery, preferably using a more randomized procedure than
that used to generate the examples presented in Section 4.2.1. These updates
should occur at least once per year, if not more frequently, and are necessary to
track changes in instrument performance as well as variations in solar activity.
All pixel statistics updates must be made available to the space weather data
processing framework well before their first use.

The Thematic Map algorithm should work whether a subset of SUVI channels is
used, all six SUVI channels are used, or even additional non-SUVI channels are
used. All inputimages/channels are expected to be made available to the SUVI
Thematic Map algorithm via the Space Weather data processing framework,
although the algorithm itself should be responsible for assembling multichannel
images so that they correspond to the multichannel pixel statistics provided as
runtime configuration parameters.

All individual input images should be translated, scaled, and rotated to align with
a common point of view (POV). This POV should remain constant over time so
Thematic Maps for different epochs can be compared. One useful POV is to
center the sun in the pixel array, rotate it so that solar north points to the top of
the image array, and rescale the solar disk so that its pixel radius matches what
is expected for SUVI at a distance of 1AU from the sun.

5.3 Quality Assessment and Diagnostics

The quality of the SUVI Thematic Map algorithm should be assessed and tracked

over time using “confusion matrices”, and associated x coefficients, as described
in Section 4.2.1. These in turn should be determined using test data collected
periodically by experts in solar imagery, preferably using a more randomized
procedure than that used to generate the examples presented in Section 4.2.1.
These (re)assessments should occur at least once a year, if not more frequently.
They may coincide with updates to the multichannel pixel statistics, although care
should be taken to keep the training and test data statistically independent.

If possible, the quality of the algorithm output should be compared to what would
be obtained using alternative but similar input data. For example, if the SDO-AIA
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instrument is still operational, the training data (pixel coordinates and labels)
should be used to generate SDO-AIA-specific statistic (because SDO-AIA’s
calibration factors will likely vary substantially from SUVI’s), and these statistics
should then be used as input along with the SDO-AIA images to generate
alternative thematic maps for comparison with SUVI-derived thematic maps.

These comparisons should be made using confusion matrices and x coefficients
generated from identical pixel coordinates and pixel labels.

Finally, as there are at least two downstream L2 SUVI products that are expected
to use SUVI Thematic Maps as their primary input (coronal hole boundaries and
flare location reports), the quality of these downstream products should be
assessed and tracked with an eye toward the influence of their respective inputs.

54 Exception Handling

The following is a list of exceptions and required actions for the SUVI Thematic
Maps algorithm:

e Class-dependent covariance matrix fails positive-definiteness test
o0 action: assign “undefined” class (i.e., 0) to all pixels in thematic map
o0 action: check for other invalid covariance matrices
o0 action: adjust metadata to reflect which classes had invalid
covariance matrices

e Input pixel value is NaN, OR input pixel is flagged as “missing” or “bad”,
OR input pixel weight is equal to zero:
0 action: stop processing current pixel, and assign “undefined” class
0 action: proceed to next pixel

e One or more entire input channels are missing, OR there is bad or
incomplete metadata for one or more input channels, OR a configurable
threshold number or percentage of bad pixels (e.g., MAXBADPIX) is
exceeded for one or more input channels:

o0 action: assign “undefined” class to all pixels in thematic map

o action: check for other invalid channels

0 action: adjust metadata to reflect which channels were bad when
generating the thematic map

o TBR: it may make sense for MAXBADPIX to be channel-dependent
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5.5 Algorithm Validation

The SUVI Thematic Map algorithm will be validated by ascertaining its
operational value to the SWPC forecast office, both as an independent data
product, and as input to other more derived data products. Ideally this will be
done as part of a GOES Program Proving Ground demonstration project.

6 ASSUMPTIONS AND LIMITATIONS

6.1 Performance

The SUVI Thematic Map algorithm is a supervised pixel classification scheme.
As such, its accuracy can only be as good as the quality of training and/or test
data used to configure it. This is by design, and places a higher premium on
matching forecaster and other experts’ judgment than on any kind of physics.

It should be noted that a deliberate choice was made to use a statistical classifier
that assumes all class-dependent multichannel pixel distributions are Gaussian.
These distributions can be fully characterized by their means and covariances,
allowing actual probabilities of membership to a specific pixel class to be easily
calculated. This in turn offers an intuitive explanation for why one pixel class
might have been selected over another. However, depending on how training
data is selected, this assumption is not always valid, and can occasionally lead to
end results that, while statistically consistent, are not realistic or intuitive.

6.2 Assumed Sensor Performance

The SUVI instrument is expected to perform to its operational requirements
described in the GOES-R Mission Requirements Document (MRD), and related
documentation. As of the time of this writing, the SUVI vendor has informally
agreed to provide metadata with each image that informs the user or algorithm
iffwhen these level 1b performance requirements may not be getting met. This
includes, for example, channel-specific noise floors and saturation thresholds in
units comparable to the pixel values.
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6.3 Possible Product Improvements

6.3.1 Covariance Matrix Check

It is expected that the multichannel pixel statistics for each solar feature class
can be assembled into a valid positive definite covariance matrix. The algorithm
should test for this condition at runtime, and exit immediately on failure. A
positive definite matrix is one where all eigen values are positive. Round-off
error can lead to eigen values that are not quite zero, even though the matrix is
NOT positive definite. To ensure that the covariance matrix is positive definite, a
test should invoke some kind of numerical tolerance that returns a “fail” result for
positive definiteness if any eigen value is less than the tolerance. This tolerance
should scale with the so-called Frobenious norm of the matrix:

tol.oc f = /;ICTCIM (6.1)

Typically, fis multiplied by the machine epsilon (eps; i.e., the smallest floating
point number that can be added to 1.0 and still change its value) corresponding
to binary precision of the data type used to hold C.

6.3.2 Probability Thresholds

It is not uncommon for the maximum conditional probability that a pixel belongs
to a specific class (Eqg. (3.9) ) to be exceedingly low, especially in low-brightness
regions. However, such results are often erroneous, resulting in increased
classification noise. Perhaps it makes sense then to prescribe a minimum
probability below which pixels will be considered unclassifiable.

It turns out that the scalar product of the matrix multiplication in Eq. (3.9) (i.e., the

Mahalanobis distance) follows a chi-square distribution for p degrees of freedom.
This should allow one to determine a threshold Mahalanobis distance for each
class based on a specified critical value (0.95, 0.99, 0.999, etc.). This can be
easily transformed into a minimum significant probability. If this threshold is not
met, the probability should simply be set equal to zero, and if all class-specific
probabilities equal zero, the thematic map pixel in question should be labeled
zero, or “undefined”. If the ambiguity that arises between these pixels and those
left undefined due to missing data is not acceptable, the label might be multiplied
by -1 instead.
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6.3.3 Improved Exception Handling

The initial version of the SUVI Thematic Map algorithm does not handle the case
of a missing channel at the pixel level, except to set the multichannel pixel class
as undefined (i.e., zero). However, it may be desirable to generate class-
dependent probabilities with an incomplete set of channels, even for a specific
pixel. This requires adjusting class-dependent means and covariance matrices
accordingly (i.e., removing the channel-specific elements), and re-calculating the
normalization constant. This could be algorithmically onerous if performed for
individual pixels, but is none-the-less possible.

It is not always appropriate to proceed directly in this manner. Degradation may
be too severe if too few “good” channels are available, either per-image, or per
multichannel pixel. The following lists possible exceptions, and the required
actions in response to these exceptions:

e one or more input channels are missing, OR there is bad or incomplete
metadata for one or more input channels, OR a configurable threshold
number or percentage of bad pixels (e.g., MAXBADPIX) is exceeded for
one or more input channels

o0 action: adjust multichannel pixel statistics to reflect bad or missing
channel, then proceed normally

0 action: adjust metadata to reflect which channels were skipped
when generating the thematic map

o TBR: it may make sense for MAXBADPIX to be channel-
dependent

e configurable threshold number of bad channels (e.g., MAXBADCHAN)
exceeded
0 action: assign “undefined” class (i.e., 0) to each pixel
o0 action: adjust metadata to reflect bad channels

e configurable threshold number of bad channels (e.g., MAXBADCHAN) is
exceeded for a given multichannel pixel
o0 action: skip probability calculations and assign “undefined” class (i.e.,
0) to pixel; note that this action does not allow one to specify which
channel(s) may have been bad, and is therefore TBR.
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